Vorlesungsskript

PHYS1100.0 Elektrizität und Magnetismus
Bachelor Physik
Bachelor Wirtschaftsphysik
Lehramt Physik

Othmar Marti
Institut für Experimentelle Physik
Universität Ulm

veröffentlicht unter Lizenzinformationen

9. Juli 2018
Nothing is too wonderful to be true if it be consistent with the laws of nature.

Why, sir, there is every possibility that you will soon be able to tax it! (to PM William Gladstone, on the usefulness of electricity)

But still try, for who knows what is possible?

Michael Faraday, 1791-1861
Inhaltsverzeichnis

1 Einleitung 9
1.1 Lizenzinformationen ... 9
1.2 Dank .. 10

2 Elektrostatik 11
2.1 Elektrische Ladung und Coulombsches Gesetz 12
2.2 Das elektrische Feld .. 14
2.3 Zusammenhang zwischen Ladung und Feld: das Gaussische Gesetz . 18
 2.3.1 Dipole in elektrischen Feldern 21
2.4 Elektrische Felder von Leitern 21
 2.4.1 Influenz und Bildladung 28
2.5 Elektrostatisches Potential 28
2.6 Poisson-Gleichung ... 36
2.7 Kapazität: eine geometrische Eigenschaft 37
2.8 Energie des elektrischen Feldes 42
 2.8.1 Diskussion Versuch Flächenladungsdichte 43
2.9 Elektrische Eigenschaften der Materie 45
 2.9.1 Dielektrika .. 47
 2.9.2 Elektrische Phänomene 53
2.10 Zusammenfassung: die Grundgleichungen der Elektrostatik 55

3 Elektrische Ströme 59
3.1 Die Kontinuitätsgleichung und der Begriff des Stromes 60
3.2 Das Ohmsche Gesetz .. 65
3.3 Elektromotorische Kraft und Joulsche Wärme 70
3.4 RC-Stromkreise .. 72
3.5 Schaltungen und Bauelemente 74
 3.5.1 Grafische Methode zur Bestimmung von Arbeitspunkten ... 77
 3.5.2 Transistoren ... 79
3.6 Magnetfeld und Lorentzkraft 83
3.7 Die magnetische Kraft .. 83
 3.7.1 Ladungsinvarianz bewegter Bezugssysteme 84
 3.7.2 Relativistische Berechnung 85
 3.7.3 Magnetisches Feld 88
3.8 Eigenschaften des magnetischen Feldes 89
 3.8.1 Eigenschaften des B-Feldes 89
 3.8.2 Das Biot-Savart-Gesetz 92
 3.8.3 Das Ampèresche Durchflutungsgesetz 97
 3.8.4 Quellenfreiheit .. 101
3.8.5 Das B-Feld einer beliebigen Stromverteilung	104
3.9 Hall-Effekt	110
3.10 Die Lorentz-Transformation der Felder E und B	111
3.11 Zusammenfassung: Ströme	115

4 Elektrodynamik: zeitlich veränderliche Magnetfelder und magnetische Induktionen	119
4.1 Das Faradaysche Induktionsgesetz	119
4.1.1 Eine bewegte Leiterschleife in einem stationären B-Feld	119
4.1.2 Der magnetische Fluss	120
4.1.3 Induktionsgesetz von Faraday, Integral- und Differentialform	123
4.1.4 Wirbelströme	126
4.1.5 Unendlich lange Spule	128
4.1.6 Transformator	129
4.1.7 Kirchhoffsche Gesetze	134
4.1.8 Wechselstromkreise, Impedanzen	134
4.1.9 Elektromotoren	140
4.1.10 Betatron	146
4.1.11 Skinneffekt	148
4.2 Energie des Magnetfeldes	151
4.3 Magnetische Eigenschaften der Materie	153
4.3.1 Kugeln im inhomogenen Magnetfeld	153
4.3.2 Der Satz von Larmor	154
4.3.3 Diamagnetismus	158
4.3.4 Magnetisierung	160
4.3.5 Das magnetische Moment des Elektrons: Spin	161
4.3.6 Paramagnetismus	162
4.3.7 Ferromagnetismus	164
4.4 Zusammenfassung: zeitlich veränderliche Magnetfelder	168

5 Die Maxwellschen Gleichungen	173
5.1 Was wissen wir?	173
5.2 Auflösung des Widerspruchs zur Kontinuitätsgleichung, Maxwellgleichungen	173
5.3 Maxwellgleichungen	174
5.4 Maxwellgleichungen in isotropen zeitunabhängigen Medien	176
5.5 Anwendung der Maxwellgleichungen	177

6 Elektromagnetische Wellen	179
6.1 Die Wellengleichung im Vakuum	179
6.2 Allgemeine Lösung der Wellengleichung	181
6.3 Elektromagnetische Wellen im Doppelleitersystem	183
6.3.1 Wellenwiderstand	187
6.3.2 Stehende Wellen	189
6.4 Poynting-Vektor und Energiefluss	189
6.5 Elektromagnetische Wellen im Raum	191
6.5.1 Ebene Wellen	195
6.5.2 Kugelwellen	195
6.6 Lichtgeschwindigkeit im Medium und Intensität	196
6.7 Polarisation .. 197
 6.7.1 Polarisation durch Absorption (Dichroismus) 198
6.8 Die Fresnelschen Formeln 199
 6.8.1 s-Polarisation ... 205
 6.8.2 p-Polarisation ... 208
 6.8.3 Grenzfall des senkrechten Einfalles 212
 6.8.4 Brewster-Winkel ... 213
 6.8.5 Beispielkurven für die Fresnelformeln 216
 6.8.6 Energiefluss senkrecht zur Grenzfläche 217
 6.8.7 Felder und Intensitäten bei senkrechtem Einfall 221
 6.8.8 Evaneszente Wellen .. 222
6.9 Zusammenfassung ... 224

A Literaturhinweise .. 227

B Begriffe .. 229

C Mathematische Sätze ... 237
 C.1 Ableitung .. 237
 C.2 Differentiationsregeln 238
 C.3 Differentiation einfacher Funktionen 239
 C.4 Taylorreihe und Reihen 240
 C.5 Einige Reihen ... 241
 C.6 Ableitungen zur näherungsweisen Berechnung von Funktionswerten 242
 C.7 Vektoren .. 244
 C.7.1 Gesetze .. 246
 C.8 Vektorenidentitäten ... 247
 C.8.1 Produkte mit Vektoren 247
 C.8.2 Ableiten von Vektoren 248
 C.8.3 Vektorableitungen bei Skalarfeldern 248
 C.8.4 Vektorableitungen bei Vektorfeldern 249
 C.8.5 Graphische Darstellung der Ableitungen in drei Dimensionen 250
 C.8.6 Totale Ableitung bei mitgeführten Koordinatensystemen 255
 C.9 Satz von Gauss ... 256
 C.10 Satz von Green ... 256
 C.11 Satz von Stokes ... 256

D Rechnen mit Integralen ... 259
 D.1 Integration .. 259
 D.2 Unbestimmte Integrale 261
 D.2.1 Bestimmte Integrale und Integrale mit variabler oberer Grenze 261
 D.3 Berechnung von Linienintegralen 262
 D.4 Die Diracsche Deltafunktion 263

E Umrechnung zwischen Koordinatensystemen 267
 E.1 Vom kartesischen ins sphärische System 268
 E.2 Vom sphärischen ins kartesische System 268
 E.3 Vom kartesischen ins zylindrische System 268
 E.4 Vom zylindrischen ins kartesische System 269
E.5 Vom sphärischen ins zylindrische System .. 269
E.6 Vom zylindrischen ins sphärische System 269

F Geschwindigkeiten und Beschleunigungen in Kugelkoordinaten 271
 F.1 Geschwindigkeiten .. 273
 F.2 Beschleunigung ... 275
 F.2.1 Interpretation ... 280

G Berechnungen in ebenen schiefwinkligen Dreiecken 283

H Berechnung der Ableitung in rotierenden Bezugssystemen 285

I Drehungen 289
 I.1 Drehmatrizen .. 289
 I.2 Drehung von Vektoren und Matrizen (oder Tensoren) 290
 I.3 Allgemeine Drehung mit Eulerwinkeln 291

J Berechnung elektrischer Felder 293
 J.1 In der Nähe eines Leiterstückes 293
 J.2 Auf der Symmetrieachse einer Kreisscheibe 296
 J.3 Innerhalb und außerhalb einer geladenen Zylinderfläche 297
 J.4 In allen Bereichen zweier koaxialer zylinderförmiger Leiter 298

K Lorentztransformationen 301
 K.1 Lorentztransformationen für die magnetische Induktion 301
 K.2 Lorentztransformation für das magnetische Feld 302

Abbildungsverzeichnis 303

Tabellenverzeichnis 309

Literaturverzeichnis 311

Index 315
1. Einleitung

1.1. Lizenzinformationen

Diese Skript wird unter der Creative Commons Lizenz CC-BY-SA 4.0 veröf
tlicht. Dies heisst,

- Sie dürfen das Werk ganz oder in Teilen in allen denkbaren Formaten wei
terverwenden, vervielfältigen und weiterverbreiten

- das Werk oder Teile davon neu zusammenstellen, verändern und darauf wei
tere Werke aufbauen,

sofern Sie

- den Namen der Verfassers dieses Werkes sowie deren Institution, die Uni
ersität Ulm, nennen und angemessene Rechte- und Urheberrechtsangaben
machen, einen Link zur Lizenz beifügen und angeben, ob Sie Änderungen
vorgenommen haben. Dabei darf nicht der Eindruck entstehen, die Verfasser
oder die Universität Ulm würden Sie oder Ihre Nutzung unterstützen.

- Wenn Sie Dieses Werk oder Teile davon neu zusammenstellen, verändern
und darauf weitere Werke aufbauen, dürfen Sie ihre Beiträge nur unter der
gleichen Lizenz wie dieses Werk wie dieses Original verbreiten.

Sie dürfen insbesondere keine weiteren Einschränkungen einsetzen und auch kei
ne technischen Verfahren wie z.B. DRM verwenden, die anderen Nutzern etwas
untersagt oder daran hindert, das abgeleitete Werk nach dieser Lizenz zu nutzen.
Der Lizenzgeber kann diese Freiheiten nicht widerrufen solange Sie sich an die
Lizenzbedingungen halten.
Eine detaillierte Erklärung finden Sie unter
http://www.uni-ulm.de/en/einrichtungen/e-learning/blog/article/was-sind-eigentlich-
cclizenzen.html
oder unter
http://creativecommons.org/licenses/by-sa/4.0/
oder unter
https://creativecommons.org/licenses/by-sa/4.0/deed.de

Die CC-Icons und -Buttons wurden unter der Lizenz CC BY von http://creativecommons.org/about/downloads veröf
tlicht.
1.2. Dank

2. Elektrostatik

Elektrostatik wird benötigt, um

• die Wirkung von Klebestreifen,
• die Ladungstrennung beim Ausgiessen,
• die Funktion von Elektronenröhren,
• die Funktion der Braunschen Röhre und
• die Funktion des Kondensators
beschreiben.

Versuch zur Vorlesung: Entfernen eines Klebestreifens von einem Elektrometer
Versuch zur Vorlesung:
Ladungstrennung (Versuchskarte ES-24)

Versuch zur Vorlesung:
Ladungstrennung (Versuchskarte ES-25)

Die Kraft zwischen Ladungen kann stärker als die Gravitationskraft sein.

Es gibt auch Situationen, wo sich durch Reibung geladene Teilchen abstossen.

Es gibt mindestens zwei Arten von Ladungen!

Versuch zur Vorlesung:

Reibungselektrizität (Versuchskarte ES-15)
Genaue Untersuchungen haben gezeigt, dass es genau zwei Arten von Ladungen gibt. Lichtenberg benannte die Ladungen so, dass Ladungen auf geriebenen Glasstäben positiv genannt werden und Ladungen auf geriebenem Bernstein negativ.

- Zwei Ladungen ziehen sich an, wenn sie verschiedener Art sind (positiv und negativ oder negativ und positiv)
- Zwei Ladungen stossen sich ab, wenn sie gleichnamig sind (positiv und positiv oder negativ und negativ)

Ladung ist eine extensive Größe, das heißt, sie skaliert mit der Größe des Systems.

Versuch zur Vorlesung:
Ladungen löffeln (Versuchskarte ES-13)

Genaue Messungen zeigen, dass für Elektronen die elektrostatischen Kräfte etwa 4.1681×10^{42} mal stärker als die Gravitationskräfte sind\(^1\). Die Gravitationskräfte können also nur beobachtet werden, da die Ladungen sich im Mittel sehr genau kompensieren.

2.1. Elektrische Ladung und Coulombsches Gesetz

(Siehe Tipler, Physik [TM04, pp. 617]) (Siehe Kneubühl, Repetitorium der Physik [Knc78, pp. 189])

\(^1\)Gravitation: $F_G(r) = \frac{Gm_1^2}{r^2} = 6.670 \times 10^{-11} \frac{Nm^2}{kg^2} \left(\frac{9.1091 \times 10^{-31} kg}{m^2}\right)^2 = 5.5345 \times 10^{-71} N m^2 r^{-2}.$

\(^2\)Elektrostatische Kraft: $F_E(r) = \frac{1}{4\pi\varepsilon_0} \frac{q_1^2}{r^2} = \frac{1}{4\pi \times 8.8544 \times 10^{-12} \frac{C^2}{Nm^2}} \left(\frac{1.6021 \times 10^{-19} C}{m^2}\right)^2 = 2.3068 \times 10^{-28} N m^2 r^{-2}.$
2.1 Elektrische Ladung und Coulombsches Gesetz

Abbildung 2.1.: Auslenkung zweier mit identischer Ladung q geladener Kugeln.

Wenn zwei Kugeln mit der gleichen Ladung q geladen sind, werden sie nach aussen abgestossen. Wird die Ladung verändert, ändert sich die Kraft proportional.

\[
\frac{q_1}{q_2} = \frac{F_1}{F_2} \tag{2.1.1}
\]

Dabei wird angenommen, dass die Ladungen PUNKTLADUNGEN sind.

LADUNGEN werden in Coulomb, abgekürzt, C, angegeben.

Eine Messung der Kräfte mit einer Drehwaage (nach Cavendish) ergibt das folgende Gesetz

\[
F(r) = K \frac{q_1 \cdot q_2 r_{12}^2}{r_{12}^2} \tag{2.1.2}
\]

wobei die Konstante vom Masssystem abhängt und im SI-System

\[
K = \frac{1}{4\pi \varepsilon_0} \tag{2.1.3}
\]

ist. Die Konstante ε_0 heisst PERMITTIVITÄT DES VAKUUMS. Ihre Grösse ist

\[
\varepsilon_0 = 8.8544 \cdot 10^{-12} \text{ C}^2/(\text{Nm}^2) \tag{2.1.4}
\]

Indem man ε_0 festlegt, legt man die Grösse der Ladungseinheit fest. Im SI-System wurde $K = 10^{-7}c^2 = 8.9874 \cdot 10^9$ gesetzt, damit die elektrischen Grössen einen handhabbaren Zahlenwert haben. Mit dieser Definition folgt der Wert von ε_0.

Dieses Gesetz kann durch folgende Überlegung erraten werden:

- $F(r)$ ist ein VEKTORFELD.

- Der mathematische Fluss dieses Vektorfeldes durch ein Flächenelement dA ist $d\Phi(r) = dA \cdot F(r)$, wobei die Richtung von A die Richtung der Normalen zu diesem Flächenelement ist.

- Der gesamte Fluss des Kraftfeldes durch die Kugeloberfläche $A(r) = 4\pi r^2$ ist durch $\Phi(r) = \iiint_A d\Phi(r) = \iiint_A F(r)dA$ gegeben.
• Da das Problem kugelsymmetrisch ist, kann $F(r)$ nicht von der Richtung abhängen und muss radial sein. Damit kann die Kraft vor das Integral genommen werden.

$\Phi(r) = F(r) \int_A dA = 4\pi r^2 F(r)$

• Wenn der Fluss des Vektorfeldes F unabhängig von r sein soll, so muss die Kraft umgekehrt proportional zu r^2 sein.

Versuch zur Vorlesung:

Coulomb-Gesetz (Versuchskarte ES-31)

Das Coulombsche Gesetz lautet

$$F(r) = \frac{1}{4\pi \varepsilon_0} \frac{q_1 \cdot q_2 r_1}{r_2^2}$$

(2.1.5)

Das Coulombsche Gesetz ist mathematisch äquivalent zum Gravitationsgesetz. Alle Aussagen über die Gravitation gelten auch für Ladungen, mit der Abweichung, dass Ladungen zwei Vorzeichen haben können.

Elektrostatische Kräfte sind additiv.

Ladungen sind nicht beliebig teilbar. Versuche von MILLIKAN ergaben, dass die kleinste beobachtbare Ladung den Betrag $1.6022 \cdot 10^{-19} \, \text{C}$ hat. Diese Ladung ist auf

Elektronen $q = -e = -1.6022 \cdot 10^{-19} \, \text{C}$ (Masse: $m_e = 9.1096 \cdot 10^{-31} \, \text{kg}$) und

Protonen $q = e = 1.6022 \cdot 10^{-19} \, \text{C}$ (Masse: $m_p = 1.6726 \cdot 10^{-27} \, \text{kg}$)

Ladungen können nur paarweise entstehen (jeweils die gleiche negative und positive Ladung). Die Gesamtladung in einem abgeschlossenen System ist konstant.

2.2. Das elektrische Feld

Wir wollen eine Formulierung finden, die die Stärke der elektrostatischen Kraft als eine Feldgrösse mal die Ladung der Testladung beschreibt, also $F = qE$. Damit
haben wir eine Beschreibung der Elektrostatik, die unabhängig von der Testladung ist. Genauer formuliert hat man

\[E(r) = \lim_{q \to 0} \frac{F(r)}{q} \]

(2.2.1)

Wir definieren

Das elektrische Feld der Ladung \(Q \) ist durch

\[E(r) = \frac{1}{4\pi \varepsilon_0} \frac{Q r}{r^2} \]

(2.2.2)

gegeben.

\(E \) ist das elektrische Feld und somit auch der Feldvektor des elektrischen Feldes\(^3\). Die Einheit von \(E \) ist \([E] = \text{NC}^{-1} = \text{Vm}^{-1} \)\(^4\).

\[
\begin{array}{|l|c|}
\hline
\text{Stromleitung in Wohnhäusern} & 10^{-2} \\
\text{Radiowellen} & 10^{-1} \\
\text{Atmosphäre} & 10^2 \\
\text{Sonnenlicht} & 10^3 \\
\text{Unter einer Gewitterwolke} & 10^4 \\
\text{In einer Röntgenröhre} & 10^6 \\
\text{Laser} & \text{bis} 10^{12} \\
\text{Am Ort des Elektrons im Wasserstoffatom} & 6 \cdot 10^{11} \\
\text{Auf der Oberfläche eines Uran-Spinners} & 2 \cdot 10^{21} \\
\hline
\end{array}
\]

Tab. 2.1.: Elektrische Felder in der Natur

Eine Verteilung von \(N + 1 \) Ladungen \(q_i(r_i) \) hat das elektrische Feld

\[E(r) = \sum_{i=0}^{N} E(r - r_i) = \frac{1}{4\pi \varepsilon_0} \sum_{i=0}^{N} q_i \frac{r - r_i}{|r - r_i|^2 |r - r_i|} \]

(2.2.3)

Die obige Gleichung gilt für alle \(r_i \neq r \), \(i = 0 \ldots N \). Für kontinuierliche Ladungsverteilungen führt man eine Ladungsichte

\[\rho_{el}(r) = \lim_{\Delta V \to 0} \frac{\Delta Q(r)}{\Delta V} \]

(2.2.4)

ein. Das resultierende elektrische Feld ist dann

\[E(r_0) = \frac{1}{4\pi \varepsilon_0} \iiint_{V} \frac{\rho_{el}(r)}{|r_0 - r|^2 |r_0 - r|} dV \]

(2.2.5)

\(^3\)\(g \) ist der Feldvektor des Gravitationsfeldes

\(^4\)Es ist \(VA = W = N \text{m/s} \) sowie \(C/s = \Lambda \). Also ist \(CV = A s V = N \text{m} \) und damit \(C = N \text{m/V} \).
Versuch zur Vorlesung:
Elektrische Feldlinien (Versuchskarte ES-4)

Feldlinien laufen von der positiven LADUNG zu der negativen LADUNG.

Abbildung 2.2.: Feldlinien. Links von einer positiven LADUNG, rechts von einer negativen LADUNG. Die Feldlinien zeigen von der positiven LADUNG zu der negativen LADUNG.

Versuch zur Vorlesung:
Applet: elektrostatische Felder (Versuchskarte)

Link zur Vorlesung:(Applet: elektrostatische Felder)
1. Elektrische Feldlinien beginnen bei positiven LADUNGEN und enden bei negativen LADUNGEN.

2. Um eine einzelne Punktladung herum sind alle Feldlinien kugelsymmetrisch verteilt.

3. Die Anzahl der Feldlinien, die von positiven LADUNGEN ausgehen, oder auf negativen LADUNGEN enden, ist proportional zu der Grösse der LADUNG.

4. An jedem Punkt des Raumes ist die Feldliniendichte proportional zur Feldstärke in diesem Punkt.

6. Feldlinien schneiden sich nicht.
Wenn das elektrische Feld die einzige Ursache der Beschleunigung ist, dann gilt

$$a = \frac{q}{m}E$$ \hspace{1cm} (2.2.6)

Ladungen, die aus der Ruhe durch ein elektrisches Feld beschleunigt werden, folgen den Feldlinien. Elektrische Felder, die eine Ladung q mit der Masse m ablenken, erlauben q/m zu bestimmen.

2.3. Zusammenhang zwischen Ladung und Feld: das Gaußsche Gesetz

Nach der Gleichung (2.2.4) kann die gesamte Ladung in einem Raumgebiet begrenzt durch die Fläche A durch

$$Q = \iiint_{V(A)} \rho_{el}(r)dV$$ \hspace{1cm} (2.3.1)

ausgedrückt werden.
Wir betrachten eine kugelsymmetrische Situation um eine Punktladung Q. Wir definieren den Normalenvektor am Ort \mathbf{r} als $\mathbf{n} = \mathbf{r}/|\mathbf{r}| = \mathbf{r}/r$. Das Oberflächen-element da ist $da = r^2 \sin \Theta d\Theta d\varphi$.

Das elektrische Feld an der Kugeloberfläche ist

$$E(r) = \frac{Q}{4\pi \varepsilon_0 |r|^3} \quad (2.3.2)$$

Wir erhalten damit das Gaußsche Gesetz

$$\int_{\text{Kugeloberfläche}} E \cdot d\mathbf{a} = \int_{\text{Kugeloberfläche}} \left(\frac{Q}{4\pi \varepsilon_0 |r|^2} \cdot \frac{\mathbf{r}}{|\mathbf{r}|} \right) \cdot \frac{\mathbf{r}}{|\mathbf{r}|} r^2 \sin \Theta d\Theta d\varphi$$

$$= \int_{\text{Kugeloberfläche}} \frac{Q r^2}{4\pi \varepsilon_0 |r|^2} \cdot \left(\frac{\mathbf{r}}{|\mathbf{r}|} \cdot \frac{\mathbf{r}}{|\mathbf{r}|} \right) \sin \Theta d\Theta d\varphi$$

$$= \frac{Q}{4\pi \varepsilon_0} \int_{\text{Kugeloberfläche}} \sin \Theta d\Theta d\varphi$$

$$= \frac{Q}{\varepsilon_0} \quad (2.3.3)$$

Die Größe $\Phi = \int_{\text{Oberfläche}} E \cdot d\mathbf{a}$ ist der Fluss des Vektorfeldes E oder der Fluss des elektrischen Feldes E durch die Oberfläche. Dieses Integral kann vereinfacht werden, indem wir die dielektrische Verschiebung einführen. Die Einheit der dielektrischen Verschiebung ist $[\mathbf{D}] = \text{C/m}^2 = \text{As/m}^2$.
Weiter ist
\[\int_{\text{Kugeloberfläche}} D \cdot da = \int_{\text{Kugeloberfläche}} D \cdot n \, da = Q \] (2.3.5)

Allgemein gilt die obige Gleichung für beliebige geschlossene Flächen \(S \), die das Volumen \(V(S) \) einschließt.

Abbildung 2.6.: Approximation von beliebigen Oberflächen durch Kugelsegmente. Approximation einer kontinuierlichen Ladungsverteilung durch Punktladungen.

\[\iiint_A D(r) \cdot d\alpha(r) = \iiint_A D(r) \cdot n(r) \, d\alpha(r) = Q_{\text{in } A} = \iiint_{V(A)} \rho_{\text{el}}(r) \, dV \] (2.3.6)

Mit dem Gausssehen Satz (Gleichung (C.9.1)) kann die Gleichung umgeschrieben werden in
\[\iiint_A D(r) \cdot d\alpha(r) = \iiint_{V(A)} \text{div} \, D(r) \, dV = \iiint_{V(A)} \rho_{\text{el}}(r) \, dV \] (2.3.7)

Diese Gleichung muss für alle Oberflächen \(S \) gelten. Deshalb müssen die Integranden gleich sein
\[\text{div} \, D(r) = \rho_{\text{el}}(r) \] (2.3.8)

Dies ist die Differentialform der Gleichung für die elektrische Verschiebung. Die physikalische Interpretation ist: die LADUNGEN sind die QUELLEN (DIVERGENZ) der elektrischen Verschiebung und damit des elektrischen Feldes.

Im ladungsfreien Raum lautet Gleichung (2.3.8): \(\text{div} \, D(r) = 0 \). Diese Gleichung
ist mathematisch äquivalent zur Kontinuitätsgleichung strömender inkompressibler Flüssigkeiten. Für deren Geschwindigkeitsfeld $\mathbf{v}(r)$ gilt nämlich $\nabla \cdot \mathbf{v}(r) = 0$.

2.3.1. Dipole in elektrischen Feldern

Es gibt Moleküle, bei denen die negativen und die positiven LADUNGEN getrennte Schwerpunkte haben. Eine negative LADUNG $-q$ im Abstand ℓ von einer positiven LADUNG q heisst DIPOL mit dem DIPOLMOMENT

$$\mathbf{p} = q\ell$$ \hspace{1cm} (2.3.9)

Die Einheit des Dipolmoments ist $[\mathbf{p}] = \text{Cm}$. **Der Vektor des Dipols zeigt von $-q$ nach $+q$.**

Im homogenen elektrostatischen Feld \mathbf{E} wirkt auf die positive LADUNG die Kraft \mathbf{F} und auf die negative LADUNG $-\mathbf{F}$. Zusammen bilden diese beiden Kräfte ein Kräftepaar und erzeugen damit ein Drehmoment

$$\mathbf{T} = \ell \times \mathbf{F} = (q\ell) \times (\mathbf{F}/q) = \mathbf{p} \times \mathbf{E}$$ \hspace{1cm} (2.3.10)

Versuch zur Vorlesung: **Drehmoment auf einen elektrischen Dipol** (Versuchskarte ES-30)

2.4. Elektrische Felder von Leitern

(Siehe Tipler, Physik [TM04, pp. 645])

Versuch zur Vorlesung: **Elektrische Feldlinien** (Versuchskarte ES-4)

Die elektrischen Felder

- in der Nähe eines ausgedehnten Leiters
Elektrostatik

- auf der Symmetrieachse eines Kreisrings
- auf der Symmetrieachse einer Kreisscheibe
- innerhalb und ausserhalb einer geladenen Zylinderfläche
- in allen Bereichen zweier koaxialer zylinderförmiger Leiter

werden im Anhang berechnet.

Versuch zur Vorlesung:
Faraday-Becher (Versuchskarte ES-9)

Versuch zur Vorlesung:
Faraday-Käfig (Versuchskarte ES-21)

Wir berechnen das elektrische Feld innerhalb und ausserhalb einer Kugelschale.

Abbildung 2.8.: Berechnung eines Feldes einer Kugelschale

Die eingeschlossene Ladung durch die Kugelfläche mit dem Radius \(r > R \) ist

\[
Q_{ges} = \int \int \varepsilon_0 E_r \, da = \varepsilon_0 E_r 4\pi r^2
\]

(2.4.1)

Da die Gesamtladung innerhalb dieser Fläche \(Q \) ist, haben wir

\[
\frac{Q}{\varepsilon_0} = E_r 4\pi r^2
\]

(2.4.2)

Damit ist für \(r > R \)
Das elektrische Feld einer homogen geladenen Kugelschale ist also ununterscheidbar vom elektrischen Feld einer Punktladung. Für \(r < R \) ist die eingeschlossene Ladung \(Q = 0 \). Damit ist auch \(\Phi_{\text{ges}} = E_r 4\pi r^2 = 0 \) und folglich für \(r < R \)

\[
E_r = 0
\]
(2.4.4)

Abbildung 2.9.: Die Feldverteilung einer homogen geladenen Kugelschale.

Das elektrische Feld einer homogen geladenen Kugel mit dem Radius \(R \) wird analog berechnet. Ausserhalb der Kugel für \(r > R \) ist wie oben \(\Phi_{\text{ges}} = E_r 4\pi r^2 = Q/\varepsilon_0 \). Also ist für \(r > R \)

\[
E_r(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}
\]
(2.4.5)

Wenn die Ladungsichte \(\rho_{el} = Q/V = Q/(\frac{4\pi}{3} R^3) \) ist, ist die von einer zur homogen geladenen Kugel konzentrischen Kugelschale mit \(r < R \) umschlossene Ladung \(Q' = \rho_{el} V(r) = \rho_{el} \frac{4\pi}{3} r^3 \)

\[
Q(r) = \frac{Q}{\frac{4\pi}{3} R^3} \frac{4\pi}{3} r^3 = \frac{Q}{R^3} r^3
\]
(2.4.6)

Weiter haben wir \(E_r 4\pi \varepsilon_0 r^2 = Q \). Also ist für \(r < R \)

\[
E_r(r) = \frac{1}{4\pi\varepsilon_0} \frac{Qr}{R^3}
\]
(2.4.7)
Das elektrische Feld einer homogen geladenen Platte kann wie folgt berechnet werden.

- Da wir Translationsinvarianz für jede Richtung in der Plattenebene haben, muss das elektrische Feld senkrecht auf der Platte stehen.
- Die elektrischen Felder auf den beiden gegenüberliegenden Seiten der Platte müssen entgegengesetzt gerichtet sein, da die Platte eine Ebene mit Spiegelsymmetrie darstellt.
- Wir verwenden eine zylinderförmige Fläche parallel zur Platte. Die Seitenflächen können beliebig hoch sein, da die Symmetriebetrachtungen besagen, dass sie keinen Beitrag zum Fluss liefern.

Wenn σ die Ladungsdichte auf der Platte ist, dann ist

$$\frac{\sigma A}{\varepsilon_0} = \Phi = \int \int E_n \, da = 2AE_n$$

(2.4.8)

da sowohl die Unterseite wie auch die Oberseite einen Beitrag liefern. Also ist

Abbildung 2.10.: Elektrisches Feld einer homogen geladenen Kugel

Abbildung 2.11.: Integrationsfläche zur Berechnung des elektrischen Feldes einer Ebene
2.4 Elektrische Felder von Leitern

\[E_r = \frac{\sigma}{2\varepsilon_0} \]
(2.4.9)

homogen im Raum.

Abbildung 2.12.: Elektrisches Feld um eine endliche Platte.

Wir betrachten eine endliche ebene leitfähige Platte mit der Ausdehnung \(\ell \). Wir können drei Fälle unterscheiden:

\(r \ll \ell \) Das elektrische Feld ist von dem einer unendlich ausgedehnten ebenen leitfähigen Platte nicht unterscheidbar.

\(r \approx \ell \) Das elektrische Feld befindet sich in einem Zwischenzustand.

\(R \gg \ell \) Das elektrische Feld ist von dem einer Punktladung im Kugelmittelpunkt nicht unterscheidbar.

Ein Beispiel für diese Art Flächenladungen sind KLEBESTREIFEN. Andreas Döring [Dör01] gibt an, dass Haftklebematerialien spezifische Haftenergien von \(E_t = 30 \cdots 300 \) J/m² haben. Die Definition von \(E_t \) ist

\[E_t = \frac{v_s}{A} \int F(t) dt \approx \frac{v_s F \Delta t}{A} \]

wobei \(v_s = 0.01 \) m/s die Geschwindigkeit ist, mit der der Klebestreifen abgezogen wird und \(A \) die Kontaktfläche ist. \(\Delta t = 0.1 \) s ist die Loslösezeit. Die Haftkraft rührt von LADUNGEN her. Bei einer Flächenladungsdichte \(\sigma \) ist \(E = \sigma / \varepsilon_0 \). Die Kraft auf eine Flächenladungsdichte \(\sigma \) ist dann \(F/A = \sigma^2 / \varepsilon_0 \). Mit den Daten von Herrn Döring erhalten wir

\[\frac{F}{A} = \frac{\sigma^2}{\varepsilon_0} = \frac{E_t}{v_s \Delta t} \]
und daraus die Flächenladungsdichte

\[\sigma = \frac{e}{d^2} = \sqrt{\frac{\varepsilon_0 E_t}{v_s \Delta t}} \]

Dabei haben wir angenommen, dass Elementarladungen \(e \) im Abstand \(d \) angebracht sind. \(d \) ist dann

\[d = \sqrt{\frac{e}{\varepsilon_0 E_t}} \]

Wenn wir \(E_t \) einsetzen erhalten wir \(d \approx 10 \text{ nm} \ldots 18 \text{ nm} \). Dieser Abstand korreliert gut mit den bekannten Moleküldurchmessern.

Bei zwei homogen geladenen Platten, deren Flächenladungsdichte vom Betrage her gleich sind, aber unterschiedliches Vorzeichen haben, heben sich die Felder ausserhalb der Platten auf. Gleichzeitig verstärken sich die Felder im Inneren: Die elektrische Feldstärke wird \(E = \sigma / \varepsilon_0 \).

Abbildung 2.13.: Elektrisches Feld entgegengesetzt gleich geladener Platten.

Sind die Platten jedoch gleich geladen (oder ist die Oberflächenladung der Platten gleich), kompensieren sich die elektrischen Felder im Innern der Platte, verstärken sich aber im Aussenraum. Wieder ist im Aussenraum \(E = \sigma / \varepsilon_0 \).

Abbildung 2.14.: Elektrisches Feld gleich geladener Platten

Leiter haben in ihrem Inneren keine statischen elektrischen Felder.
Da Ladungen im Inneren eines Leiters beweglich sind, folgt, dass das elektrische Feld an einer beliebigen Oberfläche, die sich ganz im Inneren eines Leiters befindet, null ist. Damit ist die umschlossene Ladung ebenso null. Daraus folgt, dass Ladungen sich nur an der Oberfläche eines Leiters befinden können.

Das elektrische Feld an der Oberfläche eines Leiters kann mit dem Gaußschen Gesetz berechnet werden. Wir betrachten eine zylinderförmige Fläche, deren eine Kreisfläche unter der Oberfläche des Leiters und deren andere über der Oberfläche des Leiters ist.

\[\Phi_{ges} = \int E_n da = \frac{Q}{\varepsilon_0} \quad (2.4.10) \]

da das elektrische Feld im Inneren des Leiters null ist und die Höhe der Seitenflächen verschwinden soll, haben wir

\[\int \int E_n da = E_n \oint_{obere\ Fläche} da = E_n A = \frac{1}{\varepsilon_0} A \sigma \quad (2.4.11) \]

und

\[E_n = \frac{\sigma}{\varepsilon_0} \quad (2.4.12) \]

Aus dem Gaußschen Gesetz werden die zwei folgenden Schlüsse gezogen:

- Die makroskopisch beobachtbare elektrische Ladung eines Leiters befindet sich auf seiner Oberfläche.
- Das elektrische Feld an der Oberfläche eines Leiters steht senkrecht zu dieser Oberfläche und hat die Größe \(E_r = \frac{\sigma}{\varepsilon_0} \).
2.4.1. Influenz und Bildladung

Da elektrische Feldlinien immer senkrecht auf der Oberfläche eines Leiters stehen müssen, sieht das Feldlinienbild einer Punktladung in der Nähe eines Leiters wie die Hälfte des Feldlinienbildes eines Dipols aus. Das elektrische Feld der Punktladung erzeugt an der Oberfläche die INFLUENZLADUNG $\sigma(r)$, die das äussere Feld im Leiter abschirmt. Formal kann das Feldlinienbild berechnet werden, indem man zu einer LADUNG q im Abstand a von der Oberfläche eines Leiter im Leiter innen eine Bildladung $-q$ auch im Abstand a von der Oberfläche verwendet.

Das Konzept der Bildladung zeigt, dass eine LADUNG q im Abstand a von einem Leiter mit der Kraft

$$F(a) = -\frac{1}{4\pi\varepsilon_0} \frac{q^2}{4a^2}$$

angezogen wird. Die Senkrechtkomponente (z-Komponente) des elektrischen Feldes ist im Abstand r vom Aufpunkt in der Leiteroberfläche

$$E_z(r,a) = -\frac{2}{4\pi\varepsilon_0} \frac{qa}{(r^2 + a^2)^{3/2}}$$

Damit ist die Oberflächenladungsdichte

$$\sigma(r) = \frac{1}{2\pi} \frac{qa}{(r^2 + a^2)^{3/2}}$$

Mit analogen Überlegungen kann auch die Bildladungsdichte von kontinuierlichen Ladungsverteilungen berechnet werden5.

2.5. Elektrostatisches Potential

(Siehe Kneubühl, Repetitorium der Physik [Knc78, pp. 192]) (Siehe Tipler, Physik [TM04, pp. 681])

5Auch bei Dielektrika gibt es Bildladungen
Die Arbeit ist durch

$$W(r_1 \rightarrow r_2) = \int_{r_1}^{r_2} F(r) \cdot dr$$ \hspace{1cm} (2.5.1)

definiert.

Die potentielle Energie eines Kraftfeldes $F(x)$ ist die Arbeit gegen diese Feldkraft. Nach dem 3. Newtonschen Axiom ist $F_{\text{ext}} = -F$. Also

$$E_{\text{pot}}(x_2) = E_{\text{pot}}(x_1) + \int_{x_1}^{x_2} F_{\text{ext}}(x) \cdot dx$$ \hspace{1cm} (2.5.2)

$$= E_{\text{pot}}(x_1) - \int_{x_1}^{x_2} F(x) \cdot dx = E_{\text{pot}}(x_1) - W(x_1 \rightarrow x_2)$$ \hspace{1cm} (2.5.3)

Eine potentielle Energie existiert, wenn

- Die Arbeit $W(r_1 \rightarrow r_2)$ unabhängig vom Weg ist.
- Die Arbeit für jede geschlossene Bahn null ist (Die Bahn darf keine Singularitäten des Feldes umschliessen).
- $\text{rot } F(r) = 0$ für alle r

Die potentielle Energie einer Probelaufung q im Feld der LADUNG Q ist

$$E_{\text{pot}}(r_2) = E_{\text{pot}}(r_1) - \int_{r_1}^{r_2} \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \cdot dr$$ \hspace{1cm} (2.5.4)

Abbildung 2.17.: Approximation eines beliebigen Integrationsweges durch Kreissegmente. Auf den Kreissegmenten (grün) ist $\int E \cdot ds = 0$, entlang der radialen Teile ist $\int E \cdot ds = \int E(r)ds$.

Da wir jede Bahnrunde durch Stücke in radialer Richtung und durch Bahnen mit $r = \text{const}$ approximieren können, und da die Bahnen auf den Kugelflächen keinen Beitrag geben (sie sind senkrecht zur Kraft) können wir das Integral vereinfachen.

$$E_{\text{pot}}(r_2) = E_{\text{pot}}(r_1) - \frac{qQ}{4\pi\varepsilon_0} \int_{r_1}^{r_2} \frac{dr}{r^2}$$

$$= E_{\text{pot}}(r_1) - \frac{qQ}{4\pi\varepsilon_0} \left(-\frac{1}{r} \right)_{r_1}^{r_2} = E_{\text{pot}}(r_1) + \frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$ \hspace{1cm} (2.5.5)
Üblicherweise setzt man $E_{\text{pot}} (r = \infty) = 0$. Damit wird

$$ E_{\text{pot}} (r) = \frac{qQ}{4\pi\varepsilon_0} \cdot \frac{1}{r} \quad (2.5.6) $$

Aus der potentiellen Energie kann die Kraft mit dem Gradienten

$$ F (r) = -\nabla E_{\text{pot}} (r) \quad (2.5.7) $$

berechnet werden. Für die potentielle Energie der Coulomb-Kraft bekommen wir

$$ F (r) = -\nabla \left(\frac{qQ}{4\pi\varepsilon_0 r} \right) = -\frac{qQ}{4\pi\varepsilon_0} \nabla \frac{1}{r} = -\frac{qQ}{4\pi\varepsilon_0} \cdot \left(-\frac{1}{r^2} \right) \nabla r \quad (2.5.8) $$

In Komponenten ist $r = \sqrt{x^2 + y^2 + z^2}$ und $\nabla = \nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)$. Also

$$ \nabla \left(\frac{1}{r} \right) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \frac{1}{\sqrt{x^2 + y^2 + z^2}} $$

$$ = \frac{1}{2} \left(\frac{1}{x^2 + y^2 + z^2} \right) \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right) \left(x^2 + y^2 + z^2 \right) $$

$$ = \frac{1}{2} \left(\frac{1}{x^2 + y^2 + z^2} \right) \left(2x \right) $$

$$ = -\frac{1}{r^3} \cdot r \quad (2.5.9) $$

Ergänzend zu Coulomb-Kraft hatten wir das elektrische Feld als auf eine Einheitsladung normierte Größe eingeführt.

$$ E (r) = \frac{Q}{4\pi\varepsilon_0} \frac{r}{r^3} \quad (2.5.10) $$

Die potentielle Energie der Ladung q im Feld der Ladung Q, normiert auf $q = 1$ ist das elektrische Potential φ, auch Spannung U genannt. Ich verwende in diesem Skript die Begriffe elektrisches Potential und Spannung austauschbar.

$$ \varphi (r) = U (r) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r} = \frac{E_{\text{pot}} (r)}{q} \quad (2.5.11) $$

Wichtig ist die Beziehung

$$ E_{\text{pot}} (r) = q\varphi (r) = qU (r) \quad (2.5.12) $$

Wie die Kraft aus der potentiellen Energie über die Gradientenbildung hervorgeht, wird das elektrische Feld mit
Elektrostatisches Potential

\[E = -\nabla \varphi = -\nabla U \] (2.5.13)

berechnet.

Folgende Relationen gelten

\[
\begin{align*}
F(r) & \quad \lim_{q \to 0} /q \quad \rightarrow \quad E(r) \\
\downarrow & \quad \nabla E_{pot} \\
- \int F dr & \quad \uparrow \\
\downarrow & \quad -\nabla \varphi \\
E_{pot}(r) & \quad \lim_{q \to 0} /q \quad \rightarrow \\
\downarrow & \quad \varphi(r) = U(r)
\end{align*}
\] (2.5.14)

Wir merken uns

\[U(r_2) = U(r_1) - \int_{r_1}^{r_2} E(r) \cdot dr \] (2.5.15)

analog zur potentiellen Energie.

Die Einheit des elektrostatischen Potentials oder der Spannung ist

\[1 \text{ Volt} = \frac{1}{\text{Joule}} \frac{\text{Coulomb}}{\text{As}} = \frac{1}{\text{J}} \frac{\text{A}}{\text{s}} = \frac{1}{\text{W}} \frac{\text{A}}{\text{s}} \]

Bem.: Beim elektrischen Feld ist der Feldvektor \(E \), bei der Gravitation \(g \)

Das Gravitationspotential ist \(U_{grav}(r) = -Gm/r \).

Da die Coulomb-Kräfte additiv sind, ist auch das elektrostatische Potential oder die elektrostatische potentielle Energie additiv. Das Potential von Ladungen \(q_i \) an den Orten \(r_i \) ist also

\[U(r) = \sum_{i=0}^{N} U(r_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=0}^{N} \frac{q_i}{|r - r_i|} \] (2.5.16)

Für kontinuierliche Ladungsverteilungen \(\rho_{el}(r) \) ist das Potential

\[U(r) = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\rho_{el}(r_i)}{|r - r_i|} dV = \frac{1}{4\pi\varepsilon_0} \iiint \frac{dq(r_i)}{|r - r_i|} \] (2.5.17)

Versuch zur Vorlesung:
Flächenladungsdichte (Versuchskarte ES-8)
Eine homogen mit der Flächenladungsdichte σ geladene Ebene erzeugt ein konstantes elektrisches Feld $E = \sigma/(2\varepsilon_0)$. Das elektrostatische Potential eines Punktes P im Abstand $x > 0$ von der Platte kann gefunden werden, indem wir entlang des Lots vom Punkt P auf die Ebene integrieren.

$$U(x) = U(0) - \int_0^x E \, d\xi = U(0) - \frac{\sigma}{2\varepsilon_0} \int_0^x d\xi = U(0) - \frac{\sigma}{2\varepsilon_0} x \quad \text{für } x > 0 \quad (2.5.18)$$

Für $x < 0$ berechnet man

$$U(x) = U(0) - \left(-\frac{\sigma}{2\varepsilon_0}\right)x = U(0) + \frac{\sigma}{2\varepsilon_0} x \quad \text{für } x < 0 \quad (2.5.19)$$

Abbildung 2.18.: Potential senkrecht zu einer homogen geladenen Ebene mit $U_0 = 2$ und $\sigma = 2\varepsilon_0$.

Das elektrostatische Potential eines Kreisringes mit der LADUNG Q und dem Radius R im Abstand x auf der Symmetrieachse soll berechnet werden. Wir verwenden, dass

$$dU(x) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} dq$$

ist, mit

$$\int_0^{2\pi} dq = Q$$

Wir erhalten

$$U(x) = \frac{1}{4\pi\varepsilon_0} \int_0^{2\pi} \frac{dq}{r} = \frac{1}{4\pi\varepsilon_0} \int_0^{2\pi} \frac{dq}{\sqrt{x^2 + R^2}} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\sqrt{x^2 + R^2}} \quad (2.5.20)$$
Kreisring: Potential entlang der Symmetrieachse

Abbildung 2.19.: Potential eines Kreisringes entlang der Symmetrieachse für eine positive Ladung $Q = 4\pi \varepsilon_0$ und dem Radius $R = 2$.

Analog kann das Potential einer homogen geladenen Scheibe mit dem Radius R entlang ihrer Symmetrieachse x berechnet werden. Die Ladungsdichte der Scheibe sei $\sigma = Q/(\pi R^2)$. Ein Kreisring mit dem Radius a trägt die Ladung $dq = 2\pi a \sigma da$ und erzeugt dann das Potential

$$dU(a, x) = \frac{1}{4\pi \varepsilon_0} \frac{dq}{\sqrt{x^2 + a^2}} \quad (2.5.21)$$

Durch Integration über die gesamte Scheibe erhalten wir

$$U(x) = \frac{1}{4\pi \varepsilon_0} \int_0^R \frac{2\pi a \sigma da}{\sqrt{x^2 + a^2}} = \frac{\sigma}{2\varepsilon_0} \int_0^R \frac{a da}{\sqrt{x^2 + a^2}} \quad (2.5.22)$$

Dieses Integral ergibt nach Bronstein[BSMM08, Seite 309, Nr. 193]

$$U(x) = \frac{\sigma}{2\varepsilon_0} \sqrt{x^2 + a^2} \bigg|_0^R = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + R^2} - x \right) \quad (2.5.23)$$

Asymptotisch verläuft auch dieses Potential für $x \to \infty$ wie das Potential einer Punktladung, da

$$U(x) = \frac{\sigma}{2\varepsilon_0} \left(x \sqrt{1 + \frac{R^2}{x^2}} - x \right) \approx \frac{\sigma}{2\varepsilon_0} \left(x + \frac{R^2}{2x} - x \right) = \frac{\sigma}{4\varepsilon_0} \frac{R^2}{x}$$

Für den anderen Grenzfall berechnen wir die Taylorreihe um 0 bis zum ersten Glied.
\[U(0) = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{0^2 + R^2} - 0 \right) \]
\[\frac{d}{dx} U(x) \bigg|_{x=0} = \frac{\sigma}{2\varepsilon_0} \left(\frac{1}{2} \frac{2x}{\sqrt{x^2 + R^2}} - 1 \right) \bigg|_{x=0} = -\frac{\sigma}{2\varepsilon_0} \]
\[U(x) \approx \frac{\sigma}{2\varepsilon_0} \left(U(0) + \frac{d}{dx} U(x) \bigg|_{x=0} \right) = \frac{\sigma}{2\varepsilon_0} (R - x) \]

Die beiden Grenzfälle zeigen, dass sich die geladene Kreisplatte für \(x \gg R \) wie eine Punktladung und für \(x \ll R \) wie eine unendlich ausgedehnte Platte verhält.

Abbildung 2.20.: Elektrostatisches Potential einer homogen geladenen Kreisscheibe entlang ihrer Symmetrieachse mit \(R = 2 \) und \(\sigma = 2\varepsilon_0 \).

Das Potential einer homogen geladenen Kugelschale wird mit dem elektrischen Feld berechnet. Das radiale elektrische Feld ist \(E_r(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \). Damit ist das Potential

\[
U(r) = U(\infty) - \frac{1}{4\pi\varepsilon_0} \int_{r}^{\infty} \frac{Q}{r^2} dr \\
= U(\infty) - \frac{Q}{4\pi\varepsilon_0} \int_{r}^{\infty} \frac{dr}{r^2} \\
= U(\infty) - \frac{Q}{4\pi\varepsilon_0} \left(-\frac{1}{r} \right) \bigg|_{r}^{\infty} \\
= U(\infty) + \frac{Q}{4\pi\varepsilon_0} \frac{1}{r} \\
\]

(2.5.24)

Oder mit \(U(\infty) = 0 \)
2.5 Elektrostatisches Potential

\[U(r) = \frac{Q}{4\pi \varepsilon_0} \frac{1}{r} \quad \text{für } r > R \]
(2.5.25)

Innerhalb der Kugelschale ist das elektrische Feld null, das Potential also konstant.

\[U(r) = \frac{Q}{4\pi \varepsilon_0} \frac{1}{R} \quad \text{für } r < R \]
(2.5.26)

![Homogen geladene Kugelschale: Potential](image)

Abbildung 2.21.: Potential einer homogen geladenen Kugelschale mit \(R = 1 \) und \(Q = 8\pi \varepsilon_0 \).

Schließlich berechnen wir das elektrostatische Potential in der Nähe einer unendlich ausgedehnten Linienladung mit der Ladungsdichte \(\lambda \). Das radiale elektrische Feld ist \(E = \lambda/(2\pi \varepsilon_0 x) \). Das Potential ist dann

\[U(r) = U(r_0) - \int_{r_0}^{r} \frac{\lambda dx}{2\pi \varepsilon_0 x} = U(r_0) - \frac{\lambda}{2\pi \varepsilon_0} \ln \left(\frac{r}{r_0} \right) \]
(2.5.27)

Wir setzen \(U(r_0) = 0 \) und erhalten

\[U(r) = -\frac{\lambda}{2\pi \varepsilon_0} \ln \left(\frac{r}{r_0} \right) \]
(2.5.28)
2.6. Poisson-Gleichung

(Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 197]) (Siehe Tipler, Physik [TM04, pp. 703])

Wir hatten in Gleichung (2.3.8) gesehen, dass

\[\text{div } \mathbf{D}(\mathbf{r}) = \rho_{\text{el}}(\mathbf{r}) \quad (2.6.1) \]

ist.

Gleichung (2.5.13) besagt, dass

\[\mathbf{E}(\mathbf{r}) = -\text{grad } \varphi(\mathbf{r}) \quad (2.6.2) \]

ist. Mit der im Vakuum geltenden Beziehung \(\mathbf{D} = \varepsilon_0 \mathbf{E} \) erhalten wir die Poisson-Gleichung.

\[-\varepsilon_0 \text{div } \text{grad } \varphi(\mathbf{r}) = \rho_{\text{el}}(\mathbf{r}) = -\varepsilon_0 \Delta \varphi(\mathbf{r}) \quad (2.6.3) \]

oder

\[\Delta \varphi(\mathbf{r}) = -\frac{\rho_{\text{el}}(\mathbf{r})}{\varepsilon_0} \quad (2.6.4) \]

Dabei haben wir den Laplace-Operator \(\Delta = \text{div } \text{grad} = \nabla \cdot \nabla \) verwendet. In Komponentenschreibweise in einem kartesischen Koordinatensystem ist dies

\[\left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right) \cdot \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \quad (2.6.5) \]

Die POISSONGLEICHUNG ermöglicht eine Berechnung der Potentiale ausgehend von Ladungsverteilungen.

Bemerkung:
Im allgemeinen Falle bei beliebigen Materialien lautet die Beziehung zwischen der dielektrischen Verschiebung \(D \) und dem elektrischen Feld \(E \)

\[
D(r) = \varepsilon \varepsilon_0 E(r)
\]
(2.6.6)

Dabei ist die relative Dielektrizitätszahl \(\varepsilon \) im einfachsten Falle eine Zahl und im allgemeinen Falle ein Tensor zweiter Stufe. Die allgemeine POISSONGLEICHUNG (Gleichung (2.6.4)) wird dann wie folgt geschrieben

\[
\text{div} \ (\varepsilon \varepsilon_0 \nabla \varphi(r)) = -\rho_{el} = \nabla \cdot (\varepsilon \varepsilon_0 \nabla \varphi(r))
\]
(2.6.7)

Beispiel: Ebene

Bei einer geladenen Ebene ist \(\rho_{el}(x,y,z) = \delta(z) \sigma(x,y) = \delta(z) \sigma_0 \) mit \(\sigma(x,y) = \sigma_0 \). Die Poissongleichung wird, wegen der Translationssymmetrie in \(x \) und \(y \) zu

\[
\Delta U = \frac{\partial^2}{\partial z^2} U = -\frac{\sigma_0 \delta(z)}{\varepsilon_0}
\]
(2.6.8)

Daraus folgt, dass \(\frac{\partial U}{\partial z} = \text{const} \neq 0 \) für \(z \neq 0 \).

Bei \(z = 0 \) haben wir einen Sprung der Größe \(\frac{\sigma_0}{\varepsilon_0} \) der symmetrisch von \(+\frac{\sigma_0}{2\varepsilon_0} \) bis \(-\frac{\sigma_0}{2\varepsilon_0} \) reichen muss. Nochmals integrieren ergibt

\[
U(z) = \begin{cases}
U_0 + \frac{\sigma_0}{2\varepsilon_0} z & \text{für } z < 0 \\
U_0 - \frac{\sigma_0}{2\varepsilon_0} z & \text{für } z > 0
\end{cases}
\]
(2.6.9)

\(U_0 \) ist eine frei wählbare Integrationskonstante.

Das Innere eines Leiters ist ein Äquipotentialraum, da in einem Leiter unter Normalbedingungen sich Ladungen frei bewegen können. Da Feldlinien \(dE \) senkrecht zu einer Metalloberfläche, die immer eine Äquipotentialfläche ist, stehen kann man schliessen (und mathematisch beweisen), dass Feldlinien senkrecht auf Äquipotentialflächen stehen. An Luft kann man nicht beliebige Potentialunterschied aufrechterhalten. Die möglichen Potentialdifferenzen werden durch Funkenüberschläge begrenzt. Für Luft unter Normalbedingungen muss

\[
E < 3 \cdot 10^6 \text{ V/m}
\]
(2.6.10)

sein.

2.7. Kapazität: eine geometrische Eigenschaft

(Siehe Tipler, Physik [TM04, pp. 722]) (Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 202])

Versuch zur Vorlesung:

Kapazität von Kugeln (Versuchskarte ES-27)

Wir wollen das folgende Problem lösen:

- Wieviel LADUNG kann auf einer Leiteranordnung gespeichert werden?
Wir wissen:
Im Inneren der Leiter ist $U = \text{const}$ und $\rho_{el} = 0$

- An der Oberfläche sind die E-Felder senkrecht zur Oberfläche
- Zwischen den Leitern ist $\rho_{el} = 0$, also $\Delta U = 0$
- Die Ladungen auf den Leitern sind Oberflächenladungsdichten.

Wir betrachten eine kleine zylinderförmige Oberfläche und verwenden

$$\int \oint_a E \cdot da = \frac{q\text{eingeschlossen}}{\varepsilon_0} \quad (2.7.1)$$

Da das Feld im Inneren des Leiters verschwindet und die Seitenflächen keinen Beitrag geben, ist

$$\varepsilon_0 E_\perp = \sigma \quad (2.7.2)$$

Bei einer genügend grossen ebenen Fläche A ist die Ladung dann

$$Q = \int_A \sigma da = \int_A \varepsilon_0 E_\perp da \approx \varepsilon_0 E_\perp A \quad (2.7.3)$$

A repräsentiert hier die Geometrie, so dass man schliessen kann, dass die gesamte Ladung von der Geometrie der Leiter abhängt [Jac75, 48]. Wenn wir die Leiter $1, 2, \ldots, n$ betrachten, ist

$$U_j - U_i = \frac{Q_j - Q_i}{C_{ji}} = U_{ji} = \varphi_{ji} \quad (2.7.4)$$

mit U_j dem Potential auf dem Leiter j und U_i dem Potential auf dem Leiter i. C_{ji} ist die Kapazität zwischen den Leitern i und j.

Da die Nummerierung in der Gleichung (2.7.4) willkürlich ist, muss $C_{ij} = C_{ji}$ gelten.

Die Einheit der Kapazität ist

$$1 \text{ Farad} = 1 \text{ F} = 1 \text{ C/V} = 1 \text{ A s/V} \quad (2.7.5)$$

Als erstes Beispiel betrachten wir den Plattenkondensator.
Kapazität: eine geometrische Eigenschaft

Abbildung 2.24.: Geometrie eines Plattenkondensators. Wir betrachten auf beiden Seiten eine Fläche \(A \) die jeweils in eine unendlich ausgedehnte Fläche eingebettet ist.

Wir benutzen, dass das elektrische Feld einer unendlich ausgedehnten homogenen Flächenladung konstant \(E_{\text{Ebene}} = \frac{\sigma}{\varepsilon_0} \) ist (Gleichung (2.4.8)). Auf den Kondensatorplatten ist die Ladung \(Q = A\sigma = 2\varepsilon_0 E_{\text{Ebene}} A \).

Das elektrische Feld zwischen den beiden Platten stammt von beiden Platten, also ist

\[
E = 2E_{\text{Ebene}}
\]

Also ist \(Q = A\sigma = \varepsilon_0 EA \). Deshalb ist das Potential am Ort der zweiten Platte gemessen von der ersten Platte

\[
U_{2,1} = -E \cdot d \Rightarrow |U_{2,1}| = 2E_{\text{Ebene}} \cdot d = 2\frac{\sigma}{2\varepsilon_0}d = \frac{\sigma d}{\varepsilon_0}
\]

Damit ist die Potentialdifferenz zwischen den beiden Platten oder die angelegte Spannung

\[
U = \frac{\sigma d}{\varepsilon_0} = \frac{Qd}{A\varepsilon_0}
\]

oder

\[
\frac{Q}{U} = \varepsilon_0 \frac{A}{d} = C
\]

Damit haben wir die Kapazität eines Plattenkondensators berechnet. Wir haben dabei benutzt, dass \(\sigma \) die Flächenladungsdichte einer dünnen Platte ist. Hätten wir einen dicken Leiter genommen, mit den Oberflächenladungsdichten \(\sigma_+ \) und \(\sigma_- = -\sigma_+ \) auf jeweils leitenden Halbräumen, wäre das Resultat mit \(E_{\text{Halbraum}} = \frac{\sigma}{\varepsilon_0} \)

\[
U_{2,1,\text{Halbräume}} = (E_{\text{Halbraum,+}} - E_{\text{Halbraum,-}}) \cdot d = \frac{\sigma_+}{\varepsilon_0} - \frac{\sigma_-}{\varepsilon_0} = \frac{2\sigma_+}{\varepsilon_0}
\]

Dies ist kompatibel mit Gleichung (2.7.4). Bei realen, nicht unendlichen Platten
gibt es auch eine Wechselwirkung der Rückseiten. Weiter ist wegen der Influenz die Ladung nicht gleichverteilt.

Beachte, dass wir einen endlichen Plattenkondensator, der in einen unendlichen Plattenkondensator eingebettet ist, betrachtet haben, um Randeffekte auszuschliessen.

Abbildung 2.25.: Durch die Dreiteilung des Kondensators können bei einem rea- len Kondensator die Randeffekte minimiert werden. Die kleine Lücke stört das homogene Feld nur unwesentlich.

Beispiel: Ein Kondensator mit \(d = 0.1 \text{µm} \), \(A = 1 \text{ m}^2 \) und \(U = 10 \text{ V} \).

Dann ist \(C = 88.5 \text{ µF} \), \(Q = 0.885 \text{ mC} \), \(\sigma = \frac{Q}{A} = 0.885 \text{ mC/m}^2 \) und \(E = 10^8 \text{ V/m} \).

Aus der Additivität der Ladung folgt, dass bei der Parallelschaltung von Kondensatoren sich die Kapazitäten addieren.

Versuch zur Vorlesung:
Reihen- und Parallelschaltung von Kapazitäten (Versuchskarte EM-48)

Abbildung 2.26.: Parallelschaltung von Kondensatoren.

\[
\begin{align*}
Q_1 &= C_1 U \\
Q_2 &= C_2 U \\
Q_3 &= C_3 U \\
Q_{ges} &= Q_1 + Q_2 + Q_3 = (C_1 + C_2 + C_3) U
\end{align*}
\] (2.7.11)
oder
\[
\frac{Q_{ges}}{U} = C_{ges} = \frac{Q_1 + Q_2 + Q_3}{U} = C_1 + C_2 + C_3 \quad (2.7.13)
\]

bei Parallelschaltung
\[
C = \sum_{i=1}^{n} C_i \quad (2.7.14)
\]

Bei der **Reihenschaltung** wird die angelegte **Spannung** \(U \) auf die in Reihe geschalteten Kondensatoren aufgeteilt.

\[
\begin{array}{|c|c|c|c|}
\hline
& C_1 & C_2 & C_3 \\
U & U_1 & U_2 & 0 \\
\hline
\end{array}
\]

Abbildung 2.27.: Reihenschaltung oder Serienschaltung von Kondensatoren.

Auf den Kondensatoren sind die **Ladungen**
\(Q = Q_1 = (U - U_1) C_1 = Q_2 = (U_1 - U_2) C_2 = Q_3 = U_2 C_3 \) gespeichert, da in diesem System nur **Ladungen** verschoben, aber nicht erzeugt oder vernichtet werden können.

Also ist
\[
\frac{Q}{C_1} = U - U_1 \\
\frac{Q}{C_2} = U_1 - U_2 \\
\frac{Q}{C_3} = U_2 \\
\quad (2.7.15)
\]

oder
\[
U = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3} = Q \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) = \frac{Q}{C_{ges}}. \quad (2.7.16)
\]

Für die Reihenschaltung gilt
\[
\frac{1}{C_{ges}} = \sum_{i=1}^{n} \frac{1}{C_i} \quad (2.7.17)
\]
2.8. Energie des elektrischen Feldes

(Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 204]) (Siehe Tipler, Physik [TM04, pp. 729])

Versuch zur Vorlesung: Energie im Kondensator
Ein Plattenkondensator der Kapazität C sei auf die Spannung $U = \frac{Q}{C}$ aufgeladen. Wir transportieren die Ladung ΔQ von einer Seite zur anderen. Die Arbeit ist

$$W(Q, Q + \Delta Q) = U \cdot \Delta Q = \frac{Q \Delta Q}{C}$$

(2.8.1)

Dabei haben wir die Ladung ΔQ über die Potentialdifferenz U transportiert.

$$W(0, Q) = \int_{0}^{Q} \frac{Q dQ}{C} = \frac{Q^2}{2C}$$

(2.8.2)

also

$$E_{pot}(C) = \frac{Q^2}{2C}$$

(2.8.3)

oder mit $C = \frac{\varepsilon_0 A}{d}$

$$E_{pot}(d) = \frac{Q^2 d}{2 \varepsilon_0 A}$$

(2.8.4)

oder mit $Q = U \cdot C$

$$E_{pot}(U) = \frac{U^2 \cdot C}{2}$$

(2.8.5)

Das Integral über die Oberfläche eines Leiters verknüpft die Ladung $Q = EA\varepsilon_0$ mit dem elektrischen Feld. Das Volumen ist $V = A \cdot d$. Zusammen ergibt sich

$$E_{pot} = \frac{E^2 \cdot A \cdot d \cdot \varepsilon_0}{2} = \frac{E^2 \cdot V \cdot \varepsilon_0}{2} = \frac{E \cdot D \cdot V}{2}$$

(2.8.6)

oder mit $w_{el} = \lim_{V \to 0} \frac{E_{pot}}{V}$ der ENERGIEDICHTE DES ELEKTRISCHEN FELDES

$$w_{el} = \frac{\varepsilon_0 E^2}{2} = \frac{E \cdot D}{2}$$

(2.8.7)

Die Kraft ΔF_V auf ein Volumenelement ΔV wird durch

$$F_V(r) = \lim_{\Delta V \to 0} \frac{\Delta F_V(r)}{\Delta V} = \rho_{el}(r) E(r)$$

(2.8.8)

beschrieben, da

$$\Delta F_V(r) = E(r) \cdot \Delta Q = E(r) \cdot \rho_{el} \cdot \Delta V$$

(2.8.9)

Das elektrische Feld übt eine MECHANISCHE SPANNUNG aus

$$\sigma_{Maxwell} = \lim_{\Delta A \to 0} \frac{\Delta F(r) \cdot n}{\Delta A}$$

(2.8.10)
Diese Spannung wird MAXWELLSPANNUNG genannt. Sie hat die Einheit des Druckes. \(n \) ist der Normalenvektor der Oberfläche.

Die OBERFLÄCHENLADUNGSDICHTE eines Metalls sei die Ursache des elektrischen Feldes. Wir hatten die potentielle Energie im Feld des Plattenkondensators ausgerechnet: \(E_{pot} = \frac{Q^2}{2\varepsilon_0} \). Die Arbeit, den Kondensator von \(d \) auf \(d + \Delta d \) zu bringen ist.

\[
W (d, d + \Delta d) = F\Delta d = \frac{Q^2}{2\varepsilon_0 A} (d + \Delta d) - \frac{Q^2 d}{2\varepsilon_0 A} = \frac{Q^2\Delta d}{2\varepsilon_0 A} = \frac{\sigma^2 \Delta d A}{2\varepsilon_0} = \frac{\varepsilon_0 E^2 A\Delta d}{2} \quad (2.8.11)
\]

und damit

\[
\sigma_{Maxwell} = F = \frac{\varepsilon_0}{2} E^2 = \frac{D \cdot E}{2} \quad (2.8.12)
\]

Beispiel: In einem Laser können Felder von \(10^{12} \) V/m auftreten. Dies entspricht einer Maxwell-Spannung von \(4.43 \cdot 10^{12} \) Pa \(\simeq 4.43 \cdot 10^7 \) bar.

Versuch zur Vorlesung:
Spannungswaage (Kirchhoffsche Waage) (Versuchskarte ES-16)

2.8.1. Diskussion Versuch Flächenladungsdichte

Im Versuch Flächenladungsdichte wird die Flächenladungsdichte gemessen, indem eine kleine Kugel in Kontakt mit verschieden großen Kugeln auf einem konstanten Potential \(\varphi = U \) gebracht werden.
Abbildung 2.28.: Schematische Darstellung des Flächenladungsversuches.

In der Abbildung 2.28 wird der Messprozess schematisch gezeigt. Eine Kugel mit dem Radius R wird auf die Spannung U aufgeladen. Die kleine Kugel mit dem Radius r wird mit der grossen Kugel in Kontakt gebracht. Nach kurzer Zeit haben beide Kugeln gegen Erde (unendlich) das Potential $\varphi_0 = U$. Wenn wir annehmen, dass die kleine Kugel eine unwesentliche Störung der grossen Kugel ist, ist die Kapazität der beiden Kugeln

$$C_{\text{gemeinsam}} \approx C_R = 4\pi \varepsilon_0 R \quad (2.8.13)$$

Die Flächenladungsdichte der beiden Kugeln im Kontakt ist durch

$$Q_R = 4\pi \left(R^2 + r^2 \right) \sigma_{\text{gemeinsam}} = C_{\text{gemeinsam}} U \approx C_R U = 4\pi \varepsilon_0 RU \quad (2.8.14)$$

gegeben. Durch die Trennung der beiden Kugeln wird die Flächenladungsdichte $\sigma_{\text{gemeinsam}}$ auf beiden Kugeln eingefroren. Für die kleine Kugel haben wir dann

$$q_r = 4\pi r^2 \sigma_{\text{gemeinsam}} \quad (2.8.15)$$

Die Kugel hat nach der Trennung ein anderes Potential gegen unendlich, nämlich

$$q_r = 4\pi r^2 \sigma_{\text{gemeinsam}} = C_r U_r = 4\pi \varepsilon_0 r U_r = U_r = \frac{r \sigma_{\text{gemeinsam}}}{\varepsilon_0}$$

Aus dem Potential an der grossen Kugel $U = \frac{R \sigma_{\text{gemeinsam}}}{\varepsilon_0}$ bekommt man

$$\sigma_{\text{gemeinsam}} = \frac{\varepsilon_0 U}{R} \quad (2.8.16)$$

und

$$U_r = U \frac{r}{R} \quad (2.8.17)$$

Aus Gleichung (2.8.15) und Gleichung (2.8.16) erhalten wir

$$q_r = 4\pi r^2 \varepsilon_0 U = \frac{4\pi \varepsilon_0 r^2}{R} U = 4\pi r^2 \sigma_{\text{gemeinsam}} \quad (2.8.18)$$

Die Kugel wird schliesslich auf das Ladungsmessgerät (eigentlich ein Strom-Integrierer) aufgebracht. Die gemessene Ladung ist proportional zu $1/R$ und damit
proportional zu $\sigma_{\text{gemeinsam}}$.

2.9. Elektrische Eigenschaften der Materie

Abbildung 2.29.: Schematisches Bild eines Atoms mit seiner Elektronenhülle.

Auf den positiven Kern wirkt die Kraft

$$F_+ = ZeE$$

(2.9.1)

Auf die negative Elektronenwolke wirkt

$$F_- = -ZeE$$

(2.9.2)

Die Federkraft wirkt auf die positive Ladung wie

$$F_{+,\text{Feder}} = -kx$$

(2.9.3)

Auf die negative Ladung wirkt die Federkraft

$$F_{-,\text{Feder}} = -k(-x)$$

(2.9.4)

Das Kräftegleichgewicht für die positive Ladung lautet:

$$F_+ + F_{+,\text{Feder}} = ZeE - kx \Rightarrow ZeE = kx$$

(2.9.5)

Alternativ kann das Kräftegleichgewicht für die negative Ladung angegeben werden:

$$F_- + F_{-,\text{Feder}} = 0 = -ZeE - k(-x) \Rightarrow ZeE = kx$$

(2.9.6)

Das induzierte Dipolmoment ist

$$p_{\text{ind}} = Ze\hat{x}$$

(2.9.7)
und damit

\[p_{\text{ind}} = \frac{(Ze)^2}{k} \cdot E = \alpha E \]

(2.9.8)

Dabei ist \(\alpha \) die atomare Polarisierbarkeit (Einheit \([\alpha] = \text{F}m^2 = \text{C}m^2/V = \text{A}s\text{m}^2/V\)).

<table>
<thead>
<tr>
<th>Atom oder Molekül</th>
<th>(\alpha / \left(10^{-40}\text{Asm}^2/\text{V}\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0.2</td>
</tr>
<tr>
<td>Li(^+)</td>
<td>0.03</td>
</tr>
<tr>
<td>Ne</td>
<td>0.4</td>
</tr>
<tr>
<td>K(^+)</td>
<td>0.9</td>
</tr>
<tr>
<td>Xe</td>
<td>3.5</td>
</tr>
<tr>
<td>O(^-)</td>
<td>3.5</td>
</tr>
<tr>
<td>CCl(_4)</td>
<td>10</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>4</td>
</tr>
<tr>
<td>I(^-)</td>
<td>7</td>
</tr>
</tbody>
</table>

Tabelle 2.2.: Gefüllte Elektronenschale

<table>
<thead>
<tr>
<th>Atom oder Molekül</th>
<th>(\alpha / \left(10^{-40}\text{Asm}^2/\text{V}\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.7</td>
</tr>
<tr>
<td>Li</td>
<td>13</td>
</tr>
<tr>
<td>K</td>
<td>38</td>
</tr>
<tr>
<td>Cs</td>
<td>46</td>
</tr>
</tbody>
</table>

Tabelle 2.3.: Nicht gefüllte Elektronenschale

Die potentielle Energie des induzierten Dipols im homogenen Feld \(E \) ist

\[E_{\text{pot}} = \frac{\alpha}{2} E^2 = \frac{p_{\text{ind}}^2}{2\alpha} = \frac{1}{2} E p_{\text{ind}} \]

(2.9.9)

da

\[\Delta E_{\text{pot}} = W (p, p + \Delta p) = QE \cdot \Delta x = E \cdot \Delta p = \frac{p}{\alpha} \cdot \Delta p \]

(2.9.10)

und damit

\[E_{\text{pot}} = \int_0^p \frac{p}{\alpha} dp = \frac{p^2}{2\alpha} \]

(2.9.11)
2.9.1. Dielektrika

Versuch zur Vorlesung:
Plattenkondensator mit Dielektrikum (Versuchskarte ES-3)

Bis jetzt haben wir angenommen, dass das elektrische Feld im Vakuum gemessen wurde. Dann gilt

\[D = \varepsilon_0 E \quad (2.9.12) \]

Abbildung 2.30.: Isolatoren in einem Kondensator

Die Beziehung zwischen angelegter Spannung und dem elektrischen Feld ist

\[E = \frac{U}{d} \quad (2.9.13) \]

unabhängig von den Eigenschaften des Isolationsmaterials.

Andererseits ist

\[D = \varepsilon_0 E = \frac{\varepsilon_0 U}{d} = \frac{\varepsilon_0 Q}{Cd} = \frac{\varepsilon_0 Q}{\varepsilon_0 A d} = \frac{Q}{A} \quad (2.9.14) \]

abhängig von der gespeicherten Ladung. Am Kondensator können \(D \) und \(E \) unabhängig bestimmt werden.

In vielen Fällen sind \(D \) und \(E \) linear voneinander abhängig.

\[D = \varepsilon \varepsilon_0 E = (1 + \chi_e) \varepsilon_0 E \quad (2.9.15) \]

mit \(\varepsilon \geq 1 \) und \(\chi_e \geq 0 \)

\(\varepsilon \) heisst die Permittivität, \(\chi_e \) die dielektrische Suszeptibilität.
Im Allgemeinen sind ε und χ Tensoren.

<table>
<thead>
<tr>
<th>Material</th>
<th>ε</th>
<th>$\alpha/(10^{-40} \text{ As m}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakuum</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Luft</td>
<td>1.0006</td>
<td>2.00332</td>
</tr>
<tr>
<td>Paraffin</td>
<td>2.1</td>
<td>38.7601</td>
</tr>
<tr>
<td>Diamant</td>
<td>5.6</td>
<td>0.912181</td>
</tr>
<tr>
<td>Glas</td>
<td>5.9</td>
<td>5.71864 - 7.27827</td>
</tr>
<tr>
<td>Silizium</td>
<td>11.9</td>
<td>4.16924</td>
</tr>
<tr>
<td>Wasser (291 K, 0 Hz)</td>
<td>81</td>
<td>7.65901</td>
</tr>
<tr>
<td>Wasser (291 K, 1 PH z)</td>
<td>1.77</td>
<td>1.62297</td>
</tr>
<tr>
<td>Rutil (\perp)</td>
<td>90</td>
<td>7.9997</td>
</tr>
<tr>
<td>Rutil (\parallel)</td>
<td>170</td>
<td>8.12512</td>
</tr>
</tbody>
</table>

Tabelle 2.4.: Einige relative Permittivitäten

Alle Formeln der Elektrostatik können auf isotrope und homogene **DIELEKTRIKA** angewandt werden, indem ε_0 durch $\varepsilon\varepsilon_0$ ersetzt wird.

2.9.1.1. Woher rührt $\varepsilon > 1$?

Wenn ein Material ortsfeste permanente elektrische Dipole besitzt, dann werden diese im extremen Feld ausgerichtet. Die **LADUNGEN** im Inneren des Materials kompensieren sich. An der Oberfläche treten **LADUNGEN** auf, die das äussere Feld schwächen.

Abbildung 2.31.: Anordnung permanenter Dipole ohne und mit elektrischem Feld.

Dabei werden die positiven **LADUNGEN** an der Oberfläche angereichert, in die das elektrische Feld zeigt. Die negativen **LADUNGEN** werden auf der Gegenseite angereichert. Diese Polarisation heisst **ORIENTIERUNGSPOLARISATION**.
Ein unpolares Medium wird durch das äussere Feld nach Gleichung (2.9.8) polarisiert. Die Ladungsschwerpunkte der Elektronen verschieben sich und wieder entsteht ein inneres elektrisches Feld, das dem äusseres Feld entgegen wirkt. Diese Polarisation ist die Verschiebungs- polarisation.

2.9.1.2. Stetigkeitsbedingungen an der Grenze zweier Dielektrika

Wir verwenden das Gaussscbe Gesetz. Im ladungsfreien Raum gilt $\text{div } D = 0$ (siehe Gleichung (2.3.8)). Da das elektrostatische Feld ein konservatives Feld ist, gilt auch $\text{rot } E = 0$. Wir betrachten eine Oberfläche A, die ein Stück ΔA der Grenzfläche umschliesst. Dann ist

$$\int_A D \cdot da = -D_{1\perp} \Delta A + D_{2\perp} \Delta A = 0$$

und damit gilt für die dielektrische Verschiebung die folgende Stetigkeitsbedingung

$$D_{1\perp} = D_{2\perp} \quad (2.9.16)$$

Wir verwenden weiter eine Schlaufe s, die die Grenzfläche zweimal durchdringt und erhalten

$$\int_{A(s)} \text{rot } E \cdot da = \oint_s E \cdot ds = E_{1||} \frac{s}{2} - E_{2||} \frac{s}{2} = 0$$

und damit gilt für das elektrische Feld die folgende Stetigkeitsbedingung

$$E_{1||} = E_{2||} \quad (2.9.17)$$

An der Grenzfläche zweier Dielektrika gilt

- die Komponente der dielektrischen Verschiebung senkrecht zur Grenzfläche und
- die Komponente des elektrischen Feldes parallel zur Grenzfläche sind stetig.
Mit \(\text{grad } \varphi = -E \) können diese Stetigkeitsbedingungen auch für das Potential \(\varphi \) umgeschrieben werden

\[
\begin{align*}
\epsilon_1 \frac{\partial \varphi_1}{\partial n} &= \epsilon_2 \frac{\partial \varphi_2}{\partial n} \\
\end{align*}
\]

(2.9.18)

2.9.1.3. Das Gesetz von Clausius und Mosotti

In diesem Abschnitt wollen wir aus einer mikroskopischen Betrachtung einen Zusammenhang zwischen der relativen Permittivität und der Polarisierbarkeit ableiten. Die Polarisation eines Atoms oder Moleküls hängt von der Polarisierbarkeit \(\alpha \) sowie vom lokalen elektrischen Feld \(E_{\text{lokal}} \) ab. Dieses lokale Feld ist die Summe aus dem externen Feld \(E \) sowie dem Feld aller anderen Dipole am Beobachtungsort, \(E_i \).

\[
E_{\text{lokal}} = E + E_i
\]

(2.9.19)

Die Polarisation hängt vom lokalen Feld \(E_{\text{lokal}} \) wie folgt ab:

\[
P = n p_{\text{ind}} = n \alpha E_{\text{lokal}}
\]

(2.9.20)

wobei \(n \) die Dichte der induzierten Dipole ist. Die Polarisation \(P \) hat dann die Einheit \([P] = \text{C/m}^2 \).

Abbildung 2.33.: Berechnung des Gesetzes von Clausius-Mosotti

Zur Berechnung von \(E_i \) und damit \(E_{\text{lokal}} \) betrachten wir ein homogenes Dielektrikum mit \(\varepsilon \), bei dem ein kugelförmiges kleines Volumen mit dem Radius \(R \) entfernt wurde. In diesem Volumen berechnen wir das lokale Feld\([\text{Som78}, 68],[\text{LL85}]\), das von einem externen Feld \(E \) in der \(x \)-Richtung hervorgerufen wird. Das externe elektrische Feld erzeugt im Inneren des Dielektrikums eine Polarisation, die das externe elektrische Feld schwächt. Deshalb gibt es an der Oberfläche
Eine Oberflächenladungsdichte, die durch die Polarisation im Inneren des Dielektrikums hervorgerufen wird.

Die Polarisation steht senkrecht auf der Kugeloberfläche (analoge Argumentation wie bei E). Das Dielektrikum erzeugt deshalb an der Oberfläche des Hohlraums eine Ladungsdichte $\sigma(\Theta) = P_n = P_x \cos \theta$, analog wie eine Ladungsdichte und ein elektrisches Feld mit $E = \sigma/\varepsilon_0$ zusammenhängt. Nach dem Coulombgesetz (Gleichung (2.1.5)) ist der Beitrag von σda gegeben durch

$$dE_{i,r} = \frac{\sigma da}{4\pi \varepsilon_0 R^2} = \frac{P_x \cos \theta}{4\pi \varepsilon_0 R^2} da$$

gegeben. Die x-Komponente ist dann

$$dE_{i,x} = \frac{P_x \cos^2 \theta}{4\pi \varepsilon_0 R^2} da,$$

da $dE_{i,r}$ auf die x-Achse projiziert werden muss. Wir integrieren über die ganze Kugel und beachten, dass $da = r^2 \sin \theta d\theta d\varphi$ ist. Die Integration über φ (Faktor 2π) und diejenige über r (Faktor 1, da die Ladung an der Oberfläche konzentriert ist) sind sofort ausführbar, so dass wir mit $\int \cos^2(\theta) \sin(\theta) d\theta = -\frac{1}{3} \cos^3(\theta)$

$$E_{i,x} = \frac{P_x}{4\pi \varepsilon_0} \int_0^{\pi} \cos^2 \theta \sin \Theta d\theta = \frac{1}{3\varepsilon_0} P_x$$

erhalten. Da die x-zufällig gewählt wurde, gilt die Lorentz-Beziehung auch allgemein

$$E_i = \frac{1}{3\varepsilon_0} P$$

Mit

$$P = (\varepsilon - 1) \varepsilon_0 E = \chi_e \varepsilon_0 E$$

wird aus der Kombination von Gleichung (2.9.20) und Gleichung (2.9.24) die Clausius-Mosotti-Beziehung

$$\frac{\chi_e}{\chi_e + 3} = \frac{\varepsilon - 1}{\varepsilon + 2} = \frac{n\alpha}{3\varepsilon_0}$$

die die Polarisierbarkeit α mit der relativen Permittivität ε verknüpft. n ist die Dichte der induzierten Dipole.
Die Rechnung verläuft folgendermassen

\[P = (\varepsilon - 1)\varepsilon_0 E \]

\[P = n\alpha E_{\text{lokal}} \]

\[E_{\text{lokal}} = \frac{P}{n\alpha} \]

\[E_{\text{lokal}} = \frac{P}{n\alpha} + \frac{P}{3\varepsilon_0} \]

\[\frac{1}{n\alpha} = \frac{1}{(\varepsilon - 1)\varepsilon_0} + \frac{1}{3\varepsilon_0} \]

\[= \frac{1}{\varepsilon_0} \left(\frac{3 + \varepsilon - 1}{3(\varepsilon - 1)} \right) \]

\[n\alpha \frac{\varepsilon - 1}{3\varepsilon_0} = \frac{\varepsilon - 1}{\varepsilon + 2} \]

2.9.1.4. Kondensator gefüllt mit Dielektrikum

Abbildung 2.34.: Links: Kondensator ohne und rechts: mit Dielektrikum

Wir betrachten einen Kondensator, dessen Platten die konstante Ladung \(Q \) tragen. Das Feld im Inneren des Kondensators sei um den Faktor \(\varepsilon \) geringer als das Feld \(E_0 \) ohne Dielektrikum

\[E = \frac{E_0}{\varepsilon} \quad (2.9.27) \]

Bei einem Plattenkondensator mit dem Abstand \(d \) ist

\[U = Ed = \frac{E_0d}{\varepsilon} = \frac{U_0}{\varepsilon} \quad (2.9.28) \]

Die Kapazität ist

\[C = \frac{Q}{U} = \frac{Q}{\frac{Q}{U_0}} = \varepsilon \frac{Q}{U_0} = \varepsilon C_0 \quad (2.9.29) \]

Also ist beim Plattenkondensator
\[C = \varepsilon \varepsilon_0 \frac{A}{d} \]
(2.9.30)

Die dielektrische Verschiebung ist im obigen Falle konstant

\[D = \frac{Q}{A} \]
(2.9.31)

Hält man die Spannung fest, wenn ein Dielektrikum in den Kondensator eingebracht wird ist,

\[Q = \varepsilon Q_0 \]
(2.9.32)

2.9.2. Elektrische Phänomene

Versuch zur Vorlesung:
Steighöhe im Kondensator (Versuchskarte ES-12)

Die Energiedichte im Kondensator ist

\[w_{el} = \frac{1}{2} D \cdot E \]
(2.9.33)

Abbildung 2.35.: Links eine dielektrische Flüssigkeit im Kondensator ohne angelegtes Feld. Rechts mit angelegtem Feld.

Wenn wir das obige Experiment durchführen, steigt die dielektrische Flüssigkeit. Dabei erhöht sich die im elektrischen Feld gespeicherte Energie und auch die potentielle Energie.

Wie geht das?
Abbildung 2.36.: Skizze der Änderungen beim Anlegen einer Spannung

Zur Berechnung müssen wir auch die Batterie oder Spannungsquelle mit betrachten [Kän78].

1. **Mechanische Arbeit:**

 \[dW_{\text{mech}} = F \, dx \]

2. **Elektrostatische Energie** im Volumen \(ab \, dx \): Die Spannung \(U \) wird konstant gehalten, und damit auch

 \[E = \frac{U}{a} \]

 Dabei nehmen wir ein homogenes Feld an

 \[
 dW_{\text{el}} = \left(\frac{1}{2} \varepsilon \varepsilon_0 E^2 - \frac{1}{2} \varepsilon_0 E^2 \right) abdx
 = \frac{1}{2} \left(\varepsilon - 1 \right) \varepsilon_0 \frac{U^2}{a^2} abdx
 = \frac{1}{2} \left(\varepsilon - 1 \right) \varepsilon_0 U^2 \frac{b}{a} dx \]

 (2.9.34)

3. Die **Batterie** liefert elektrische Energie, da die Ladungsmenge sich ändert. Die Kapazität ändert sich um

 \[
 dC = \varepsilon_0 \frac{bdx}{a} - \varepsilon_0 \frac{bdx}{a}
 = \left(\varepsilon - 1 \right) \varepsilon_0 \frac{bdx}{a} \]

 (2.9.35)

 Die Spannung \(U_0 \) wird aufrecht erhalten und die Ladung \(dQ \) transportiert \((E_{\text{pot}} = qU) \)

 Also

 \[
 dW_{\text{Batt}} = UdQ
 = U \cdot UdC
 = \left(\varepsilon - 1 \right) \varepsilon_0 U^2 \frac{bdx}{a} \]

 (2.9.36)

4. Die **Energiebilanz** ist

 \[dW_{\text{mech}} + dW_{\text{el}} = dW_{\text{Batt}} \]

 (2.9.37)
2.10 Zusammenfassung: die Grundgleichungen der Elektrostatik

\[Fdx + \frac{1}{2} (\varepsilon - 1) \varepsilon_0 U^2 b dx = (\varepsilon - 1) \varepsilon_0 U^2 b dx \]
(2.9.38)

und somit

\[F = \frac{1}{2} (\varepsilon - 1) \varepsilon_0 b U^2 \]
(2.9.39)

2.9.2.1. Dielektrische Flüssigkeit im Kondensator bei konstanter Ladung

Wenn der Kondensator von allen Spannungsquellen getrennt ist, bleibt die Ladung auf seinen Platten, \(Q \), konstant. Die dielektrische Verschiebung \(D \) und nicht das elektrische Feld \(E \) bleiben konstant.

1. **Mechanische Arbeit:**

 \[dW_{\text{mech}} = Fdx \]

2. **Elektrostatische Energie** im Volumen \(abdx \): Die Ladung \(Q \) wird konstant gehalten, und damit auch

 \[D = \frac{Q}{A} \]

Dabei nehmen wir ein homogenes Feld an

\[
dW_{el} = \left(\frac{1}{2\varepsilon \varepsilon_0} D^2 - \frac{1}{2\varepsilon_0} D^2 \right) abdx
= \frac{1 - \varepsilon Q^2}{2\varepsilon \varepsilon_0} A^2 abdx
= \frac{1 - \varepsilon}{2\varepsilon_0} \frac{Q^2}{ab} dx
= \frac{1 - \varepsilon}{2\varepsilon_0} \frac{Q^2}{ab} dx
\]
(2.9.40)

\(dW_{el} \) ist negativ, da \(1 - \varepsilon < 0 \) ist.

3. Die **Energiebilanz** ist

 \[dW_{\text{mech}} + dW_{el} = 0 \]
(2.9.41)

 \[Fdx + \frac{1 - \varepsilon}{2\varepsilon \varepsilon_0} \frac{Q^2}{ab} dx = 0 \]
(2.9.42)

und somit

\[F = \frac{1}{2} \frac{(\varepsilon - 1) Q^2}{\varepsilon \varepsilon_0 \frac{ab}{}} \]
(2.9.43)

2.10. Zusammenfassung: die Grundgleichungen der Elektrostatik

Permittivität Gleichung (2.1.4)

\[\varepsilon_0 = 8.8544 \times 10^{-12} \frac{C^2}{N \cdot m^2} \]
Elektrostatik

Coulomb-Gesetz Gleichung (2.1.5)

\[F(r) = \frac{1}{4\pi \varepsilon_0} \frac{q_1 \cdot q_2}{r_{12}^2} \]

Elektrisches Feld Gleichung (2.2.2)

\[E(r) = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r_{12}^2} \]

Elektrische Feldlinien

- Elektrische Feldlinien beginnen bei der positiven **Ladung** und enden bei der negativen **Ladung**.
- Die Anzahl der von einer **Ladung** ausgehenden oder auf einer **Ladung** endenden Feldlinien ist proportional zur Ladungsmenge.
- Ihre Dichte ist proportional zum elektrischen Feld.

Elektrisches Feld einer kontinuierlichen Ladungsverteilung Gleichung (2.2.5)

\[E(r_0) = \frac{1}{4\pi \varepsilon_0} \iiint \frac{\rho_{el}(r)}{|r_0 - r|^2 |r_0 - r|} dV \]

Ladung in einem Raumgebiet Gleichung (2.3.1)

\[Q = \int_{V(S)} \rho_{el}(r) dV \]

dielektrische Verschiebung Gleichung (2.3.4)

\[D(r) = \varepsilon_0 E(r) \]

elektrischer Fluss \[\Phi = \int_{Oberfläche} E \cdot da \]

Gaussisches Gesetz Gleichung (2.3.3)

\[\int_{Kugeloberfläche} E \cdot n da = \int_{Kugel} \frac{Q}{4\pi \varepsilon_0 |r|^3} \frac{r}{|r|} r^2 \sin \Theta d\Theta d\varphi = \frac{Q}{4\pi \varepsilon_0} \int_{Kugeloberfläche} \sin \Theta d\Theta d\varphi = \frac{Q}{\varepsilon_0} \]

Differentialform des Gausssschen Gesetzes Gleichung (2.3.8)

\[\text{div } D(r) = \rho_{el}(r) \]

Leiter Leiter haben in ihrem Inneren keine statischen elektrischen Felder.
2.10 Zusammenfassung: die Grundgleichungen der Elektrostatischn

Potentielle Energie einer Probelaufung Gleichung (2.5.4)

\[
E_{\text{pot}}(r_2) = E_{\text{pot}}(r_1) - \int_{r_1}^{r_2} \frac{qQ}{4\pi\varepsilon_0 r^2} \cdot dr
\]

Elektrostatisches Potential und Spannung Gleichung (2.5.11)

\[
\varphi(r) = U(r) = \frac{Q}{4\pi\varepsilon_0 r} = \frac{E_{\text{pot}}(r)}{q}
\]

Potentielle Energie und Potential Gleichung (2.5.14)

\[
F(r) \quad \left\{ \begin{array}{l}
\lim_{q \to 0} /q \quad \rightarrow \\
\lim_{q \to 0} \cdot q \quad \leftarrow \\
\end{array} \right.
\]

\[
E(r) \\
\quad \left\{ \begin{array}{l}
\lim_{q \to 0} /q \\
\lim_{q \to 0} \cdot q \\
\end{array} \right.
\]

\[
- \int Fdr \quad \uparrow \\
\downarrow - \text{grad } E_{\text{pot}} \\
\]

\[
- \int Edr \quad \uparrow \\
\downarrow - \text{grad } U \\
\]

Potential einer kontinuierlichen Ladungsverteilung Gleichung (2.5.17)

\[
U(r) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho_{el}(r)}{|r - r_i|} dV = \frac{1}{4\pi\varepsilon_0} \int \frac{dq(r)}{|r - r_i|}
\]

Poisson-Gleichung Gleichung (2.6.4)

\[
\Delta U(r) = -\frac{\rho_{el}(r)}{\varepsilon_0}
\]

Kapazität Gleichung (2.7.4)

\[
U_j - U_i = \frac{Q}{C_{ji}} = U_{ji} = \varphi_{ij}
\]

Parallelschaltung von Kondensatoren Gleichung (2.7.14)

\[
C = \sum_{i=1}^{n} C_i
\]

Reihenschaltung von Kondensatoren Gleichung (2.7.17)

\[
\frac{1}{C_{\text{ges}}} = \sum_{i=1}^{n} \frac{1}{C_i}
\]
Energiedichte des elektrostatischen Feldes Gleichung (2.8.7)

\[w_{el} = \frac{\varepsilon_0 E^2}{2} = \frac{E \cdot D}{2} \]

Maxwell-Spannung Gleichung (2.8.10) und Gleichung (2.8.12)

\[\sigma_{\text{Maxwell}} = \lim_{\Delta A \to 0} \frac{\Delta F(r) \cdot n}{\Delta A} \]
\[\sigma_{\text{Maxwell}} = \frac{F}{A} = \frac{\varepsilon_0}{2} E^2 = \frac{D \cdot E}{2} \]

induziertes Dipolmoment Gleichung (2.9.8)

\[p_{\text{ind}} = \frac{(Ze)^2}{k} \cdot E = \alpha E \]

Lorentz-Beziehung Gleichung (2.9.24)

\[E_i = \frac{1}{3\varepsilon_0} P \]

dielektrische Suszeptibilität Gleichung (2.9.15)

\[D = \varepsilon \varepsilon_0 E = (1 + \chi_e) \varepsilon_0 E \]

Stetigkeit der Feldkomponenten An der Grenzfläche zweier Dielektrika gilt

- die Komponente der dielektrischen Verschiebung senkrecht zur Grenzfläche und
- die Komponente des elektrischen Feldes parallel zur Grenzfläche sind stetig.

Stetigkeitsbedingung für das Potential

\[\varphi_1 = \varphi_2 \]
\[\varepsilon \frac{\partial \varphi_1}{\partial n} = \varepsilon_2 \frac{\partial \varphi_2}{\partial n} \]
3. Elektrische Ströme

Ströme und Magnetfelder beschreiben
- die Funktionsweise von Motoren,
- die Funktionsweise von Fernsehröhren,
- die Funktionsweise von Beschleunigern,
- die Arbeitsweise von Magnetbändern und Festplatten und
- die Funktionsweise von Lautsprechern.

Abbildung 3.1.: Kräfte auf Ladungen in einem Leiter

Bei Anlegen eines elektrischen Feldes werden Ladungen beschleunigt. Die Wechselwirkung der Ladungen mit dem Medium ergibt eine Begrenzung der Driftgeschwindigkeit. Medien für den Ladungstransport können sein:

- Metalle
- Ionische Materialien
- Plasmen

Die Ladungsträger sind

- Elektronen
- Ionen
- Positronen
- Protonen
also alle geladenen Teilchen oder Moleküle.

Der Strom wird als

\[I = \frac{\Delta Q}{\Delta t} \]

(3.0.1)

die in einer bestimmten Zeit durch eine Fläche \(A \) fließende Ladungsmenge definiert.\(^1\)

Der elektrische Strom \(I \) beschreibt den Fluss von Ladung. Deshalb fließt der Strom von „+“ nach „-“. Der elektrische Strom \(I \) darf nicht mit dem Massenstrom \(\dot{m} \) verwechselt werden. Bei positiver Ladung ist die Geschwindigkeit des die Ladung tragenden Masseteilchens parallel zur Stromrichtung. Bei negativer Ladung ist die Geschwindigkeit des die Ladung tragenden Masseteilchens antiparallel zur Stromrichtung.

Man beobachtet, dass \(I \) proportional zu \(U = E\ell \), der angelegten Spannung über der Strecke \(\ell \) ist.

3.1. Die Kontinuitätsgleichung und der Begriff des Stromes

(Siehe Leisi, Klassische Physik II [Lei98, pp. 64])

\(^1\) Der an Gymnasien propagierte physikalische Strom von „-“ nach „+“ ist ein Massenstrom, aber nicht ein Strom von Ladung. Wir beschäftigen uns hier mit Ladungsströmen und nicht mit Massenströmen. Die gymnasiale Unterscheidung von von physikalischer und technischer Stromrichtung ist unsinnig. Die physikalische Stromrichtung ist das gleiche wie die technische Stromrichtung, also so wie hier definiert.
3.1 Die Kontinuitätsgleichung und der Begriff des Stromes

Abbildung 3.2.: Berechnung des Stromes in einem Medium

Wir betrachten Ladungsträger mit der einheitlichen Ladung q. Die Ladungsträgerdichte n_j habe die Geschwindigkeit v_j.

Der Strom δI_j durch das Flächenelement $d\alpha$ ist

$$\delta I_j = \frac{\delta Q_j}{dt} \quad (3.1.1)$$

Die Ladungsmenge ist

$$\delta Q_j = qn_j |v_j| \cdot dt \cdot \cos \alpha \cdot |d\alpha| \quad (3.1.2)$$

und damit

$$\delta I_j = qn_j |v_j| \cos \alpha |d\alpha| = qn_j v_j \cdot d\alpha \quad (3.1.3)$$

Der gesamte Strom der Ladungsträger q ist dann

$$dI (d\alpha) = nq \frac{1}{n} \left(\sum_j n_j v_j \right) \cdot d\alpha \quad (3.1.4)$$

wobei $n = \Sigma n_j$ ist.

Die mittlere Geschwindigkeit der Ladungsträger ist

$$\langle v \rangle = \frac{1}{n} \sum_j n_j \cdot v_j \quad (3.1.5)$$

Wir definieren das Vektorfeld der Stromdichte

$$i = nq \langle v \rangle \quad (3.1.6)$$

i ist abhängig vom Ort, da auch n und $\langle v \rangle$ ortsabhängig sind.

Der Strom bezüglich $d\alpha$ ist dann

$$dI (d\alpha) = i \cdot d\alpha \quad (3.1.7)$$
und, integriert,

\[I (A) = \int_A i \cdot da \] (3.1.8)

Diese Gleichung besagt, dass der Strom gleich dem Fluss des Stromdichtefeldes durch eine Fläche \(A \) ist.

Wird der Strom durch mehrere Arten von Ladungsträgern gebildet, schreibt man

\[i = \sum_k n_k q_k \langle v_k \rangle \] (3.1.9)

Beispiel:

Driftgeschwindigkeit in einem Kupferdraht mit 10 mm Durchmesser und \(I = 100 \) A

Annahme: 1 Elektron pro Cu - Atom

Anzahl Cu - Atome pro Volumen

\[
n_a = \frac{\rho N_A}{M_{Mol}} = \frac{8930 \text{ kg/m}^3 \cdot 6.02 \cdot 10^{23} / \text{mol}}{0.0635 \text{ kg/mol}}
= 8.47 \cdot 10^{28}/\text{m}^3 = n_e
\] (3.1.10)

Und mit \(q_k = e \)

\[
\langle v \rangle = \frac{I}{n_e e A} = \frac{100 \text{ A}}{8.47 \cdot 10^{28}/\text{m}^3 \cdot \frac{\pi}{4} (0.01)^2 \cdot \frac{\pi}{4} (0.01)^2 \text{ m}^2 \cdot 1.6 \cdot 10^{-19} \text{ C}}
\approx 1 \mu\text{m/s}
\] (3.1.11)

Mit \(v(t) = v_0 \cos(2\pi \nu t) \) und \(x(t) = \int v(t) dt \) hat man

\[x(t) = \frac{v_0}{2\pi \nu} \sin(2\pi \nu t) + \text{const} \]

Die maximale Strecke erhält man wenn der Sinus von \(-1\) nach \(+1\) geht.

Folgerung: bei \(\nu = 50 \text{ Hz} \) Wechselstrom zittern die Elektronen einige \(\frac{1 \mu\text{m/s}}{2\pi \cdot 50 \text{ Hz}} \cdot 2 \approx 6.4 \text{ nm} \) weit.
3.1 Die Kontinuitätsgleichung und der Begriff des Stromes

Wir betrachten eine geschlossene Fläche A, die wir in zwei Teilflächen A' und A'' aufteilen, so dass auf der Fläche A' die Feldlinie aus der Fläche austreten und auf der Fläche A'' sie eindringen.

Die Ladungserhaltung fordert:

$$I_{\text{aus}} - I_{\text{ein}} = -\frac{d}{dt}Q_{\text{innen}} \quad (3.1.12)$$

Wir schreiben die Gleichung mit der Stromdichte um

$$\iint_{A'} i \cdot da' - \iint_{A''} i (-da'') = -\frac{d}{dt} \iiint_{V(A)} \rho_{el} dV \quad (3.1.13)$$

oder

$$\iiint_{A} i \cdot da = -\frac{d}{dt} \iint_{V} \rho_{el} dV \quad (3.1.14)$$

Dies ist die Integralform der Kontinuitätsgleichung.
Mit dem Gaußschen Satz bekommen wir

$$\iint_{A} i \cdot da = \iiint_{V} \text{div} \ i \ dV = -\iint_{V} \frac{d}{dt} \rho_{el} \ dV \quad (3.1.15)$$

Die Differentialform der Kontinuitätsgleichung lautet demnach:

$$\text{div} \ i (x, t) = -\frac{d}{dt} \rho_{el} (x, t) \quad (3.1.16)$$

Bei stationären Strömen hängen i und ρ_{el} nicht von der Zeit ab, so dass

$$\text{div} \ i = 0 \quad (3.1.17)$$

ist.

$$\iint_{A} i \cdot da = 0 \quad (3.1.18)$$

Beispiel:
Wir betrachten eine quasistationäre Änderung am Kondensator

\[
\int_{A_1} i \cdot da = \int_{a_1} i \cdot da + \int_{a_2} i \cdot da = 0
\] \hspace{1cm} (3.1.19)

Mit \(I_1 = -\int_{a_1} i \cdot da \) und \(I_2 = \int_{a_2} ida \) folgt

\[
I_1 = I_2
\] \hspace{1cm} (3.1.20)

d.h. es scheint, als ob der Strom durch den Kondensator hindurch fließen würde.

Wenn wir die Kontinuitätsgleichung auf \(A_2 \) anwenden, bekommen wir

\[
\int_{a_3} i da = -I_1(t) = -\frac{dQ(t)}{dt}
\] \hspace{1cm} (3.1.21)

oder

\[
I(t) = \frac{dQ(t)}{dt}
\] \hspace{1cm} (3.1.22)

Die Einheit der Stromstärke ist Ampère \([I] = A\)

\[
1 \text{ A} = 1 \frac{C}{s}
\] \hspace{1cm} (3.1.23)
Das Ohmsche Gesetz

(Siehe Leisi, Klassische Physik II [Lei98, pp. 71]) (Siehe Tipler, Physik [TM04, pp. 751])

Versuch zur Vorlesung:
Strom-Spannungs-Kennlinie (Versuchskarte EM-83)

Allgemein gilt für einen Leiter, dass

\[i(E) = f(E) \quad (3.2.1) \]

eine beliebige Funktion des angelegten Feldes \(E \) ist. Im linearen Fall

\[i(E) = \sigma E \quad (3.2.2) \]

spricht man von einem **Ohmschen Leiter**.

Versuch zur Vorlesung:
Ohmscher Leiter (Versuchskarte EM-117)

\(\sigma \) ist die **Leitfähigkeit**. Ihre Einheit ist

\[[\sigma] = \frac{A}{m^2} \cdot \frac{1}{V} = \frac{A}{Vm} = \frac{1}{\Omega m} \]

Das Gesetz nach Gleichung (3.2.2) heisst das lokale Ohmsche Gesetz. Für homogene Medien ist \(\sigma \) eine Zahl. Für inhomogene Medien wie Graphit ist \(\sigma \) ein **Tensor**. Indem wir die differentielle Form des Ohmschen Gesetzes integrieren, erhalten wir

\[\int_A i da = I = \int_A \sigma E da = \int_A \sigma \frac{U}{d} da = \sigma \frac{A}{d} U \quad (3.2.3) \]

Dabei haben wir angenommen, dass \(i \) und \(\sigma \) konstant über \(A \) sind. Das integrale Ohmsche Gesetz kann auch als

\[I = G \cdot U \quad (3.2.4) \]

geschrieben werden. \(G \) ist der **Leitwert**. Die Einheit ist

\[[G] = \text{Siemens} = \text{S} = \frac{A}{Vm} \cdot \frac{m^2}{m} = \frac{A}{V} \]

Bekannter ist die Form

\[U = \frac{1}{G} \cdot I = R \cdot I \quad (3.2.5) \]

\(R = \frac{1}{G} \) ist der **Widerstand**. Seine Einheit ist das Ohm

\[[R] = \Omega = \frac{1}{S} = \frac{V}{A} = \frac{W}{A^2} \]
Die zu R gehörende mikroskopische Größe ist der spezifische Widerstand

$$\rho = \frac{1}{\sigma} \tag{3.2.6}$$

Die Einheiten sind

$$[\rho] = \frac{V}{m} \cdot \frac{m}{A} = \Omega \cdot m = \frac{m}{S}$$

sowie

$$[\sigma] = \frac{A}{Vm} \cdot \frac{S}{m} = \frac{1}{\Omega \cdot m}$$

Wir betrachten die Bewegung von Ionen ($\langle v \rangle \approx 100 \text{ m/s}$) in einer Umgebung von nicht ionisierten Molekülen

Abbildung 3.5.: Bahnkurven ohne und mit elektrischem Feld.

Die Masse eines Ions sei M, ihre Ladung q und die Gesamtzahl im betrachteten Volumenelement N.

Die Newtonsche Bewegungsgleichung lautet

$$F = qE = \frac{d\text{p}}{dt} \tag{3.2.7}$$

oder

$$\Delta \text{p} = qE\Delta t \tag{3.2.8}$$

wobei Δt die freie Flugzeit ist.

Der mittlere Impuls eines Ions ist

$$M \langle \text{v} \rangle = \frac{1}{N} \sum_{j=1}^{N} \left[Mv_{j}^{(k)} + qE \Delta t_{j} \right] \tag{3.2.9}$$

$\langle \text{v} \rangle$ ist die mittlere Driftgeschwindigkeit, $v_{j}^{(k)}$ die Geschwindigkeit nach dem letzten Stoss.

Sind die Geschwindigkeiten $v_{j}^{(k)}$ isotrop verteilt, mittelt sich der erste Summand zu null. Unter dieser Annahme ist

$$M \cdot \langle \text{v} \rangle_{i} = qE \left(\frac{1}{N} \sum \Delta t_{j} \right) = qE \cdot \langle \Delta t \rangle_{i} \tag{3.2.10}$$

wobei $\langle \Delta t \rangle_{i} = \tau$ die mittlere Zeit zwischen den Zusammenstößen ist. Mit $i = nq \langle \text{v} \rangle_{i}$ bekommen wir
\[\langle v \rangle_t = \frac{q}{M} \langle t \rangle E = \frac{q \tau}{M} E = \mu E. \] (3.2.11)

Hier ist \(\mu = \frac{q}{M} \langle t \rangle = \frac{q \tau}{M} \) die BESSELGLEICHER der Ladungsträger mit der Ladung \(q \) und der Masse \(M \). Die Einheit der Beweglichkeit ist

\[
[\mu] = \frac{m^2}{Vs} = \frac{Cs}{kg}
\]

Weiter ist

\[i = n \frac{q^2}{M} \langle t \rangle E = n \frac{q^2 \tau}{M} E = n q \mu E \] (3.2.12)

Dabei ist \(n \) die Dichte der LADUNGSTRÄGER.

Somit ist bei einer Mischung verschiedener LADUNGSTRÄGER

\[\sigma = \sum_k n_k \frac{q_k^2 \tau_k}{M_k} = \sum_k n_k q_k \mu_k \] (3.2.13)

Von Gleichung (3.2.11) an wurde \(\tau = \langle t \rangle \) gesetzt.

Das Ohmsche Gesetz gilt, wenn \(\tau_k, n_k \) und \(\mu_k \) unabhängig vom elektrischen Feld \(E \) sind.

Beispiel: Metall

Wir nehmen an, dass \(m_e \ll m_{Kern} \) ist. Dann sind die Geschwindigkeiten nach dem Stossen isotrop verteilt. Die mittlere Geschwindigkeit der Elektronen ist \(\langle v_e \rangle = 10^5 m/s \) (kinetische Gastheorie). Mit

\[\frac{1}{\rho_{exp}} = \sigma = n_e \frac{e^2 \tau}{m_e} \] (3.2.14)

bekommen wir

\[\tau = \frac{m_e}{\rho_{exp} n_e e^2} = 3.3 \cdot 10^{-14} \text{ s} \] (3.2.15)

(mit \(\rho_{exp} = 4.3 \times 10^{-8} \, \Omega \, m \) und \(n_e = 2.5 \cdot 10^{28} / m^3 \) für Na-Metall)

Die mittlere freie Weglänge ist dann

\[\lambda = \langle v_e \rangle \tau = 3.3 \text{ nm} \] (3.2.16)

im Widerspruch zum Ionenabstand von 0.1 nm \(\implies \) Lösung: Quantenmechanik

Versuch zur Vorlesung:
Leitfähigkeit (Versuchskarte EM-172)

Versuch zur Vorlesung:
Temperaturabhängigkeit der Leitfähigkeit (Versuchskarte TH-122)

Beim homogenen Ohmschen Leiter mit einer stationären Stromverteilung ist
Elektrische Ströme

$\rho_{el} = 0$ im Inneren. Dies folgt aus

1. **Ohmsches Gesetz** $i(x, y, z) = \sigma E(x, y, z)$

2. **Kontinuitätsgleichung** $\text{div } i = 0$, also $\text{div } (\sigma E) = 0$
 und damit $\text{div } E = 0$

3. das **Gaußsche Gesetz** sagt $\text{div } E = \frac{\rho_{el}}{\varepsilon_0}$

4. damit folgt die Behauptung, dass $\rho_{el} = 0$.

Aus der Eigenschaft

$$E = - \text{grad } \varphi = - \text{grad } U \quad (3.2.17)$$

erhalten wir im Inneren eines Leiters

$$\text{div } E = - \text{div } \text{grad } \varphi = - \Delta \varphi = 0 \quad (3.2.18)$$

Dies bedeutet, dass φ im Inneren eines homogenen Ohmschen Leiters das Potential eines Potentialfeldes ist. Die Lösung von

$$\Delta \varphi = 0 \quad (3.2.19)$$

ist durch die Randbedingungen

1. $U = \varphi = \text{const}$ an den Elektrodenflächen (bei den Anschlüssen nach aussen)

2. $i_{\perp} = 0$ sonst (entlang des Leiters, Drahtoberfläche!)

gegeben. Mit diesen Gleichungen kann man zum Beispiel den **Widerstand** eines homogenen Leiters berechnen. Bei inhomogenen Leitern müssen wir das Ohmsche Gesetz in seiner Differentialform verwenden. Aus der Kontinuitätsgleichung für stationäre Stromverteilungen Gleichung (3.1.17) und dem lokalen Ohmschen Gesetz Gleichung (3.2.2) bekommen wir

$$\text{div } i(x, y, z) = \text{div } [\sigma(x, y, z)E(x, y, z)] = 0 \quad (3.2.20)$$

Wir ersetzen nun E und erhalten

$$\text{div } [\sigma(x, y, z) \text{grad } U(x, y, z)] = 0 \quad (3.2.21)$$

Bei einem homogenen Leiter könnte $\sigma(x, y, z)$ vor die Divergenz gezogen werden.

2Im Gegensatz zum Kondensator ist hier $E \neq 0$ in einem endlichen Gebiet.
Das Ohmsche Gesetz

Abbildung 3.6.: Berechnung des Widerstandes bei einem inhomogenen Leiter

Wir verwenden die Definition des Stromes in Gleichung (3.1.8) und wenden Sie auf die Fläche A, beziehungsweise auf den Teil, der den Leiter durchschneidet a, an.

$$\int_A \sigma \mathbf{E} \cdot da = \int_a \sigma \mathbf{E} \cdot da = I$$ \hspace{1cm} (3.2.22)

wobei a die durch A aus dem Leiter herausgeschnittene Fläche ist. Die Spannungs- differenz ist

$$U_2 - U_1 = \int_s \mathbf{E} \cdot ds$$ \hspace{1cm} (3.2.23)

Wenn nun $\varphi_1 (x, y, z)$ eine Lösung von Gleichung (3.2.21) ist, dann ist aufgrund der Linearität dieser Gleichung auch

$$U_2 (x, y, z) = kU_1 (x, y, z)$$ \hspace{1cm} (3.2.24)

eine Lösung. Dabei kann k eine beliebige, auch komplexzahlige Zahl sein. Da $\mathbf{E} = -\mathbf{grad} \ U$ auch eine lineare Gleichung ist, muss also auch

$$\mathbf{E}_2 = -\mathbf{grad} \ U_2 = -k \mathbf{grad} \ U_1 = k \mathbf{E}_1$$ \hspace{1cm} (3.2.25)

eine Lösung sein. Nach Gleichung (3.2.22) ist dann auch

$$I_2 = \int_a \sigma \mathbf{E}_2 \cdot da = \int_a \sigma k \mathbf{E}_1 \cdot da = k \int_a \sigma \mathbf{E} \cdot da = kI_1$$ \hspace{1cm} (3.2.26)

Damit haben wir, dass bei einem beliebigen inhomogenen Leiter

$$\frac{U_2}{I_2} = \frac{U_1}{I_1} = \text{const} = R$$ \hspace{1cm} (3.2.27)

ist. Die Proportionalitätskonstante ist der WIDERSTAND R. Um den WIDERSTAND eines beliebigen Leiters zu berechnen, muss man $\mathbf{E} (x, y, z)$ im Inneren kennen. Dies kann man erreichen, indem man die Laplacegleichung löst.
Im statischen Falle ist \(\mathbf{E}(x, y, z) = 0 \) im Inneren eines Leiters. Bei einem stromdurchflossenen Leiter liefert die Batterie die notwendige Energie, um das elektrische Feld im Inneren des Leiters aufrecht zu erhalten.

3.3. Elektromotorische Kraft und Joulsche Wärme

(Siehe Leisi, Klassische Physik II [Lei98, pp. 85]) (Siehe Tipler, Physik [TM04, pp. 756])

Ein elektrisches Feld im Inneren eines Leiters bewirkt einen Strom. Wird dieses elektrische Feld durch Ladungen erzeugt, bewirkt der resultierende Strom einen Ausgleich dieser Ladung. Durch Influenz werden die Oberflächenladungen so umgeschichtet, dass der Strom abnimmt und schliesslich verschwindet.

Abbildung 3.7.: Ladungstransport in einem mit einem \textit{Widerstand} \(R \) kurzgeschlossenen \textit{van de Graaff-Generator}.

Nehmen wir an, dass im stationären Betrieb eine Spannung \(U \) zwischen der Kugel und dem Fuss des van-de-Graaff-Generators liegen. Das elektrische Feld entlang des Bandes ist dann, in erster Näherung,

\[
E = \frac{U}{\ell}
\]

(3.3.1)

Die Arbeit, eine Ladungseinheit \(dQ \) gegen dieses elektrische Feld zur Halbkugel zu bringen, ist\(^3\)

\[
dW_M = dQ \cdot U
\]

(3.3.2)

Die Leistung des Motors, der hier als Spannungsquelle wirkt, ist

\[
P_M = \frac{dW_M}{dt} = \frac{dQ}{dt} U = I \cdot U
\]

(3.3.3)

\(^3\)Wir vernachlässigen dabei die Gravitationsarbeit. Frage: Ist dies für das Problem wichtig (prinzipiell und praktisch)?
Das elektrische Feld leistet im **Widerstand** auf der anderen Seite in der Zeit dt die Arbeit

$$dW_E = E \cdot dQ \cdot \ell$$

oder, mit Gleichung (3.3.1),

$$dW_E = dQ \cdot U$$

Damit ist die Leistung des E-Feldes

$$P_E = \frac{dW_E}{dt} = \frac{dQ}{dt}U = I \cdot U = P_M$$

Die Energie des elektrischen Stromes wird im **Widerstand** in **Joulesche Wärme** umgesetzt, also ist die Leistung der Wärmequelle auch

$$P_J = P_M = P_E = I \cdot U$$

Bei einem Ohmschen Leiter erhalten wir

$$P = R \cdot I^2 = \frac{U^2}{R}$$

Wenn wir eine Probeladung q_0 langsam um den Stromkreis herumführen, ist die geleistete Arbeit größer als null. Diese Arbeit nennen wir **ELEKTROMOTORISCHE KRAFT** der Stromquelle. Wir definieren also

$$U_{EMK} = \frac{1}{q_0} \int \mathbf{F} \cdot ds$$

Diese elektromotorische Kraft\(^4\) ist die Arbeit, die beim Herumführen einer kleinen **LADUNG** q_0 von der Stromquelle geleistet wird. Beim van-de-Graaff-Generator besteht diese Arbeit aus zwei Teilen:

- Auf dem Band wird an jedem Punkt die Kraft des elektrostatischen Feldes durch die Kraft des Motors kompensiert. Auf diesem Zweig ist die Arbeit null.

- Die Arbeit, die im **Widerstand** in **Joulsche Wärme** umgewandelt wird.

Versuch zur Vorlesung:

EMK des Daniell-Elementes *(Versuchskarte TH-44)*

\(^4\)Die elektromotorische Kraft ist keine Kraft im Sinne der Mechanik!
3.4. RC-Stromkreise

(Siehe Leisi, Klassische Physik II [Lei98, pp. 88]) (Siehe Tipler, Physik [TM04, pp. 761]) (Siehe Tipler, Physik [TM04, pp. 790])

Versuch zur Vorlesung:
Entladen eines Kondensators (Versuchskarte EM-145)

- \(U = R \cdot I = R \cdot \frac{dQ}{dt} \) für Widerstände
- \(Q = \int I \, dt = U \cdot C \) für Kondensatoren

Wir betrachten die folgende Schaltung

Abbildung 3.8.: Aufladen und Entladen eines Kondensators über einen Widerstand.

Für die Zeit \(t < 0 \) soll der Schalter \(S \) in der gezeigten Stellung sein. Die Spannung am Kondensator ist \(U_C = 0 \). Damit ist auch \(Q = 0 \) und \(I(t) = 0 \). Für \(t \geq 0 \) wird der Kondensator \(C \) mit der Spannungsquelle \(U \) verbunden. Da Spannungen im quasistationären Falle sich wie potentielle Energien verhalten, kann man für

\[
U_R(t) = U - U_C(t) = I(t) \cdot R
\] (3.4.1)

schreiben. Ebenso gilt

\[
U_C(t) = \frac{Q(t)}{C} = \frac{\int_0^t I(\tau) \, d\tau}{C}
\] (3.4.2)

Zusammen erhalten wir die Differentialgleichung

\[
\dot{Q}(t) \cdot R + \frac{Q(t)}{C} = U
\] (3.4.3)

oder

\[
\dot{Q}(t) + \frac{Q(t)}{C \cdot R} = \frac{U}{R}
\] (3.4.4)
mit der Anfangsbedingung \(U_C(0) = 0 = Q(0) \).

Zur Lösung dieser Differentialgleichung machen wir den Ansatz

Partikuläre Lösung \(Q = C \cdot U \)

Allgemeine Lösung \(Q(t) = C \cdot U \cdot e^{-t/(RC)} \)

Die Lösung der Differentialgleichung ist

\[
Q(t) = U \cdot C \left(1 - e^{-t/(RC)}\right)
\]

(3.4.5)

für \(U_C(t) \) ist also

\[
U_C(t) = \frac{Q(t)}{C} = U \left(1 - e^{-t/(RC)}\right)
\]

(3.4.6)

und

\[
U_R(t) = I(t) \cdot R = \dot{Q}(t) \cdot R = U e^{-t/(RC)}
\]

(3.4.7)

Abbildung 3.9.: Ladekurven am Kondensator. Die verwendeten Werte sind \(U = 10 \) V und \(R \cdot C = 0.001 \) s.

Die Differentialgleichung für das Entladen lautet

\[
\dot{Q}(t) \cdot R + \frac{Q(t)}{C} = 0
\]

(3.4.8)

wobei die Anfangsbedingung nun \(U_C(0) = U \) oder \(Q(0) = C \cdot U \) ist. Die Lösung dieser Differentialgleichung ist

Partikuläre Lösung \(Q = 0 \)

Allgemeine Lösung \(Q(t) = C \cdot U \cdot e^{-t/(RC)} \)

Damit erhalten wir

\[
U_C(t) = \frac{Q(t)}{C} = U \cdot e^{-t/(RC)}
\]

(3.4.9)
und

\[U_R(t) = I(t) \cdot R = \dot{Q}(t) \cdot R = -U \cdot e^{-t/(RC)} \quad (3.4.10) \]

\[U \cdot I = R \cdot I^2 + \frac{d}{dt} \left(\frac{Q^2}{2C} \right) \quad (3.4.11) \]

oder

\[U \cdot \frac{dQ}{dt} = R \cdot \left(\frac{dQ}{dt} \right)^2 + \frac{1}{C} \cdot Q \cdot \frac{dQ}{dt} \quad (3.4.12) \]

und damit

\[U = R \cdot \frac{dQ}{dt} + \frac{1}{C} \cdot Q \quad (3.4.13) \]

\[I(U) = \frac{1}{R} U \]
Abbildung 3.11.: Kennlinie eines 1000Ω-Widerstands.

Diese Bauelemente sind sowohl linear wie nichtlinear. Wenn man die genaue physikalische Funktionsweise eines Bauelementes nicht kennt, dann helfen Kennlinien, trotzdem mit dem Bauelement Schaltungen zu berechnen.
Abbildung 3.13.: Messung der Kennlinie eines Widerstandes.

Abbildung 3.14.: Messschaltung zur Bestimmung der Kennlinie einer Diode vom Typ 1N4148.

Als Beispiel eines nichtlinearen Bauelementes zeigt Abbildung 3.14 die Messschal-
tung und Abbildung 3.15 die Kennlinie der Diode 1N4148. Für positive Spannungen \(U \) ist die Diode in DURCHLASSRICHTUNG gepolt. Deshalb sind die Ströme bei kleinen Spannungen sehr gross. In der SPERRRICHTUNG Sind die Ströme viel kleiner. Diese können an der rechten Skala abgelesen werden.

3.5.1. Grafische Methode zur Bestimmung von Arbeitspunkten

Abbildung 3.16 zeigt einen Spannungsteiler bestehend aus den Widerständen \(R_1 \) und \(R_2 \). Die SPANNUNG an \(R_1 \) und die SPANNUNG an \(R_2 \) sind in Serie. Es muss gelten

\[
U = U_{R_1} + U_{R_2}
\]

(3.5.1)

Andererseits fließt der gleiche STROM durch \(R_1 \) und \(R_2 \) und durch den Ersatzwiderstand \(R = R_1 + R_2 \). Also hat man

\[
I = \frac{U}{R} = \frac{U}{R_1 + R_2} = \frac{U_{R_2}}{R_2} = \frac{U_{R_1}}{R_1}
\]

(3.5.2)

und daraus

\[
U_{R_2} = \frac{R_2}{R_1 + R_2} U
\]

(3.5.3)

\[
U_{R_1} = \frac{R_1}{R_1 + R_2} U
\]

(3.5.4)

Die SPANNUNG an der Batterie \(U \) ist vorgegeben. Wenn die SPANNUNG \(U_{R_2} \) an \(R_2 \) steigt, muss die SPANNUNG \(U_{R_1} \) an \(R_1 \) um den gleichen Betrag sinken. Wenn \(U_{R_1} = 0 \) ist, ist \(U_{R_2} = U \), und umgekehrt. Dies bedeutet, dass

\[
U_{R_2} = U - U_{R_1}
\]

(3.5.5)

ist. Wir können also beide Kennlinien in einem Diagramm aufzeichnen.
Die beiden Kennlinien in Abbildung 3.17 schneiden sich bei $U_{R_1} = 2 \text{ V}$ und $U_{R_2} = 8 \text{ V}$. Nur an diesem Punkt stimmt an beiden Widerständen die Beziehung zwischen Strom und Spannung (Ohmsches Gesetz) und gleichzeitig ist die Summe der Spannungsabfälle gleich der Batteriespannung. Setzt man in Gleichung (3.5.3) und Gleichung (3.5.4) die Werte für U, R_1 und R_2 ein, erhält man das gleiche Ergebnis. Das Verfahren zur Bestimmung des Arbeitspunktes ist unabhängig von der Tatsache, dass Widerstände lineare Bauelemente sind. Es funktioniert auch mit Dioden und jeglichen anderen nichtlinearen Bauelementen.

Um grafisch die Spannungsabfälle an zwei in Serie geschalteten Bauelementen zu bestimmen, trägt man die Kennlinien einmal mit zunehmender und für das andere Bauelement mit abnehmender Spannung übereinander auf. Der Schnittpunkt ist der gesuchte Arbeitspunkt. Die Spannungen an den zwei Bauelementen können an der entsprechenden Skala direkt abgelesen werden.

Abbildung 3.17.: Gemeinsame Auftragung der Kennlinien zweier in Reihe geschalteter Widerstände $R_1 = 1 \text{ k}\Omega$ und $R_2 = 4 \text{ k}\Omega$ mit einer Batteriespannung $U = 10 \text{ V}$.

Abbildung 3.18.: Serieschaltung einer Diode D mit einem Widerstand R.
Abbildung 3.19.: Arbeitspunkt einer Diode vom Typ 1N4148 in Serie mit einem Widerstand $R_1 = 1 \, \text{k} \Omega$ (Schaltung nach Abbildung 3.18).

Aus der Abbildung 3.19 liest man ab, dass am Arbeitspunkt der Schaltung nach Abbildung 3.18 die Spannung $U_D = 0.376 \, \text{V}$ und an dem Widerstand die Spannung $U_{R_1} = 9.624 \, \text{V}$ abfällt. Durch beide Bauteile fließt der Strom $I = 9.57 \, \text{mA}$. Das Verfahren nach Abbildung 3.19 ist universell anwendbar.

3.5.2. Transistoren

Ein Transistor hat drei Anschlüsse, den Emitter (E), den Kollektor (C) und die Basis (B). Im Schaltschema ist der Anschluss mit dem Pfeil der Emitter, derjenige auf der gleichen Seite ohne Pfeile der Kollektor und derjenige auf der anderen Seite die Basis.

Die BASIS-EMITTER-KENNLINIE in Abbildung 3.20 ist die gewöhnliche Diodenkennlinie. Die rechte Seite von Abbildung 3.20 zeigt das KOLLEKTOR-KENNLINIENFELD des Transistors. Dieses Kennlinienfeld wird manchmal auch das Ausgangskennli-
nienfeld genannt. Beim Ausgangskennlinienfeld wird der Basisstrom I_B als Parameter verwendet. Die Abbildung 3.20 zeigt die Kennlinien bei festgehaltenem Basissstrom, wobei die Basisströme von $I_B = 0.5 \, \mu A$ bis $I_B = 4 \, \mu A$ in Schritten von $0.5 \, \mu A$ variieren.

Bei vorgegebener Kollektor-Emitter-Spannung U_{CE} kann man so den Ausgangsstrom am Kollektor bestimmen. Analog kann bei vorgegebenem Kollektorstrom die Spannung zwischen Emitter und Kollektor als Funktion des Basisstroms abgelesen werden. Dies ist wichtig, wenn der Transistor als Schalter verwendet werden soll.

Abbildung 3.21.: Schaltung zur Messung des Ausgangskennlinie des Transistors BC107 mit einem Kollektorwiderstand von $5k\Omega$.

Abbildung 3.22.: Arbeitskennlinie des Transistors BC107 mit einem Kollektorwiderstand von $5k\Omega$ gemessen mit der Schaltung nach Abbildung 3.21.

Widerstandes mit den verschiedenen, basisstromabhängigen Ausgangskennlinien des Transistors sind die Kurve, die die Storm- oder Spannungsverstärkung angibt.

Abbildung 3.23.: Verstärkung eines Transistors in der Emitterschaltung (Der Emitter wird sowohl vom Eingang wie vom Ausgang verwendet.)

Abbildung 3.23 zeigt sowohl die Kolektor-Emitterspannung $U_{CE}(I_B)$ wie auch den Kollektorstrom $I_C(I_B)$. Die Verstärkung ist für den Basisstrombereich $0.5 \mu A < I_B < 3 \mu A$ linear. Die Verstärkungswerte sind in Tabelle 3.1 angegeben.

| Stromverstärkung | $\frac{I_C}{I_B} = 0.252 \frac{mA}{\mu A}$ | $= 252 \frac{\mu A}{mA} = 252 \frac{A}{A}$ |
| Spannungsverstärkung | $\frac{U_{CE}}{I_B} = 1.28 \frac{V}{\mu A}$ |

Tabelle 3.1.: Verstärkungen der Schaltung 3.21.

Wenn das Eingangssignal nicht ein Strom, sondern eine Spannung sein soll, muss die Spannung mit einem Widerstand in einen Strom umgewandelt werden.

Wenn das Eingangssignal nicht ein Strom, sondern eine Spannung sein soll, muss die Spannung mit einem Widerstand in einen Strom umgewandelt werden.

Eine Spannung von 5 V über dem Arbeitswiderstand R (oder R_2 hier) und dem Transistor. Wir wollen dies beibehalten und gleichzeitig einen Spannungsabfall von 0.2 V über R_3 haben. Bei unseren vorherigen Berechnungen war $R_2 = 5 \, \text{k} \Omega$. Den Arbeitspunkt setzen wir in etwa in die Mitte des linearen Bereiches, bei $I_B = 2 \, \mu \text{A}$ und bei $I_C = 500 \, \mu \text{A}$. Damit ist

$$R_3 = \frac{U_{R_3}}{I_B + I_C} = \frac{0.2 \, \text{V}}{500 \, \mu \text{A} + 2 \, \mu \text{A}} = 398 \, \Omega \approx 400 \, \Omega$$

Die Grösse des Widerstandes R_1 finden wir, wenn wir aus Abbildung 3.20 ablesen $U_{BE}(2 \, \mu \text{A}) \approx 0.5 \, \text{V}$. Die Spannung über R_1 ist dann 4.5 V und wir haben

$$R_1 = \frac{4.5 \, \text{V}}{2 \, \mu \text{A}} = 2.25 \, \text{M} \Omega$$

Was ist die Funktion von R_3? R_3 stabilisiert die Schaltung gegen Temperaturänderungen und setzt gleichzeitig die Verstärkung fest. Wenn nämlich die Eingangsspannung U_e und damit die Basis-Spannung U_B steigt, steigt der Basisstrom I_B und der Kollektorstrom I_C und damit die Spannung über R_3. Dieser Spannungsanstieg verringert aber den Anstieg der Basis-Emitter-Spannung, da $U_{BE} = U_e - U_{R_3}$ ist. Die Spannungsverstärkung der Schaltung ist

$$A = \frac{R_2}{R_3} = 12$$

Die Kondensatoren werden so gewählt, dass die tiefsten Frequenzen der zu verstärkenden Signale noch kaum geschwächt werden. Für Signale zwischen 100 Hz und 4 kHz (Telefonbandbreite klassischer Telefone) würde man erhalten $C_1 > 0.7 \, \text{pF}$ und $C_2 > 320 \, \text{nF}$. Der so berechnete Wert für C_1 ist fälschlich, wir habe vergessen, dass auch der Widerstand Basis-Emitter-Diode (grob abgeschätzt aus der Steigung $r_{BE} = 1 \, \text{mV/}2 \, \mu \text{A} \approx 500 \, \text{Ω}$ wechselspannungsmässig parallel zu R_1 ist. Zu r_{BE} ist noch R_3 in Serie geschaltet. Die modifizierte Berechnung für C_1 ergibt dann $C_1 > 2 \, \text{nF}$. C_1 kann ohne Probleme 10 bis 100 mal größer gewählt werden.

<table>
<thead>
<tr>
<th>U</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>C_1</th>
<th>C_2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 V</td>
<td>2.25 MΩ</td>
<td>5 kΩ</td>
<td>400 Ω</td>
<td>1 µF</td>
<td>330 nF</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabelle 3.2.: Dimensionierung der Schaltung nach Abbildung 3.24

Weiterführende Informationen finden Sie im Skript Physikalische Elektronik und Messtechnik [Mar09].
3.6. Magnetfeld und Lorentzkraft

Versuch zur Vorlesung:
Kraft zweier stromdurchflossener Leiter (Versuchskarte EM-63)

Abbildung 3.25.: Strom in zwei parallelen Leitern. Die Leiter haben die Länge ℓ und sind im Abstand r. Sie sind von den Strömen I_1 und I_2 durchflossen.

Wenn in zwei parallelen Stromkreisen Ströme fließen, so gibt es eine Kraft zwischen den beiden Leitern.

$$F_M = \text{const} \cdot \frac{\ell \cdot I_1 \cdot I_2}{r} \quad (3.6.1)$$

Die beobachtete Kraft hat die in der Gleichung (3.6.1) angegebene Form. Sie wird grösser, wenn längere Leiterstücke parallel sind. Sie nimmt ab, wenn der Abstand zunimmt. Sie hängt vom Produkt der beiden Ströme ab und ist anziehend, wenn die beiden Ströme in die gleiche Richtung fließen.

Die Kraft F_M ist nicht eine elektrostatische Kraft, da eine geerdete Metallplatte die Kraft, anders als bei der Coulomb-Kraft, nicht abschirmt.

Die Kraft F_M wirkt auf bewegte Ladungen!

Die Kraft F_M wirkt auch auf Elektronenstrahlen.

Versuch zur Vorlesung:
Lorentzkraft auf stromdurchflossenen Leiter (Versuchskarte Applet)

3.7. Die magnetische Kraft

(Siehe Tipler, Physik [TM04, pp. 812]) (Siehe Leisi, Klassische Physik II [Lei98, pp. 91])
Um die Magnetische Kraft zu berechnen gehen wir in zwei Schritten vor:

1. Wir zeigen, dass elektrostatische Gesetze auch in bewegten Bezugssystemen gelten.

2. Wir berechnen mit den Gesetzen der Relativitätstheorie die magnetische Kraft.

3.7.1. Ladungsinvarianz bewegter Bezugssysteme

(Siehe Leisi, Klassische Physik II [Lei98, pp. 91])

![Abbildung 3.26.: Metallischer Gastank mit Ausströmöffnung.](image-url)

Mit zwei Gedankenexperimenten soll geklärt werden, ob die Ladung von der Geschwindigkeit abhängt. Zuerst schließen wir eine große Menge H_2-Gas in den metallischen Tank ein, entladen ihn, und lassen das Gas ausströmen. Die Ladung des leeren Tanks ist unmessbar klein. Daraus schließen man:

\[
q_{\text{Elektron}} = -q_{\text{Proton}} \quad (3.7.1)
\]

mit einer Genauigkeit von $|q_{\text{Elektron}}| / N = 10^{-20} q_{\text{Elektron}}$.

Dies folgt aus dem Gaußschen Gesetz Gleichung (2.3.3)

\[
\oint_A \mathbf{E} \cdot d\mathbf{a} = 0 \pm a |q_{\text{Elektron}}| = \frac{1}{\varepsilon_0} [NQ(H_2) + q] \quad (3.7.2)
\]

wobei q eine eventuell vor dem Ausströmen vorhandene Ladung, $Q(H_2)$ die Ladung eines Wasserstoffmoleküls und N die Anzahl der eingeschlossenen Wasserstoffmoleküle ist. a ist die Ungenauigkeit der Ladungsmessung. Aus der Tatsache, dass der Metallbehälter nach dem Ausströmen im Rahmen der Messgenauigkeit ungeladen ist, folgt, dass das H_2-Molekül ungeladen ist. Der Versuch wird mit He-Gas wiederholt. Das Resultat ist das gleiche. Nun bewegen sich aber die beiden Protonen im He-Atom mit sehr grosser Geschwindigkeit. Das bedeutet, dass die Ladung des Protons unabhängig von der Geschwindigkeit ist. Die Ladung muss insbesondere in jedem Inertialsystem gleich sein.
Wir betrachten zwei Inertialsysteme S und S'

\[
\iint_{A(t)} E \cdot da = \iint_{A'(t)} E' \cdot da'
\]

(3.7.3)

Diese Gleichung drückt die relativistische Ladungsinvarianz aus. Die Ladungsinvarianz ist nicht gleich der Ladungserhaltung. So ist zum Beispiel die Energie erhalten, zwischen zwei Inertialsystemen aber nicht invariant ($m_0c^2 \neq m(v)c^2$).

3.7.2. Relativistische Berechnung

(Siehe Leisi, Klassische Physik II [Lei98, pp. 94])

Den Strom I modellieren wir mit zwei Ketten aus Ladungsträgern, je eine positiv und negativ geladen. Ihre Linienladungsdichten λ sollen so sein, dass die beiden Ketten neutral sind. Im Ruhesystem S^+ der positiven Ladungen ist

\[
\lambda_0 = \frac{Q}{L_0}
\]

(3.7.4)

Im Inertialsystem S ist wegen der Ladungsinvarianz

\[
\lambda = \frac{Q}{L}
\]

(3.7.5)

Wegen der Längenkontraktion gilt

\[
L = \frac{L_0}{\gamma_0} = L_0 \sqrt{1 - \frac{v_0^2}{c^2}}
\]

(3.7.6)

Zusammengenommen erhalten wir

5 Die Inertialsysteme bewegen sich gegeneinander mit konstanter Geschwindigkeit!
\begin{align*}
\lambda_0 &= \frac{\lambda}{\gamma_0} \quad \text{(3.7.7)}
\end{align*}

Die gleiche Beziehung kann für die negativen LADUNGEN abgeleitet werden. Das heisst, wenn in S die Linienladungsdichten der positiven und negativen LADUNGEN gleich sind, dann auch in den jeweiligen Ruhesystemen. In den Ruhesystemen ist die Linienladungsdichte geringer als in bewegten Bezugsystemen. Da die beiden bewegten Ladungsketten die gleiche Linienladungsdichte im System S haben, ist \(E = 0 \).

Im Ruhesystem \(S' \), in dem das Teilchen mit der LADUNG \(q \) in Ruhe ist, sieht die Situation anders aus. Die Geschwindigkeit der positiven und der negativen Ladungsketten ist unterschiedlich. deshalb sind sie zusammen nicht mehr elektrisch neutral. Auf die LADUNG \(q \) wirkt eine elektrostatische Kraft. Da die Relativgeschwindigkeit der positiven LADUNGEN zu \(q \) kleiner ist als die der negativen LADUNGEN, liegen in \(S' \) die positiven LADUNGEN weniger dicht als die negativen\(^6\). Die beiden Ladungsketten sind insgesamt negativ geladen. Deshalb wird \(q \) angezogen, wenn \(q > 0 \) ist. Das \(E' \)-Feld in die \(z' \)-Richtung erzeugt in \(S' \) die Kraft

\begin{align*}
F'_z &= q \cdot E' \quad \text{(3.7.8)}
\end{align*}

Das \(E \)-Feld hängt vom Bezugsystem ab, ist also nicht relativistisch invariant!

Das elektrische Feld einer Linienladung im Abstand \(r \) ist

\begin{align*}
E(r) &= \frac{\lambda}{2\pi \varepsilon_0 \cdot r} \quad \text{(3.7.9)}
\end{align*}

Um das elektrische Feld \(E' \) berechnen wir die Geschwindigkeiten \(v'_+ \) und \(v'_- \) in \(S' \).

\begin{align*}
v'_+ &= \frac{v - v_0}{1 - \frac{v - v_0}{c^2}} \\
v'_- &= \frac{v + v_0}{1 + \frac{v + v_0}{c^2}} \quad \text{(3.7.10)}
\end{align*}

Mit den üblichen Abkürzungen

\begin{align*}
\beta &= \frac{v}{c} \quad \text{(3.7.11)} \\
\gamma &= \frac{1}{\sqrt{1 - \beta^2}}
\end{align*}

bekommen wir

\begin{align*}
\beta'_+ &= \frac{\beta - \beta_0}{1 - \beta_0 \beta} \\
\beta'_- &= \frac{\beta + \beta_0}{1 + \beta_0 \beta} \quad \text{(3.7.12)}
\end{align*}

\(^6\)In \(S \) sind die Ladungsdichten der positiven und negativen LADUNGEN gleich.
Mit $\gamma'_+ = \gamma(v'_+) \text{ und } \gamma'_- = \gamma(v'_-)$ und mit $\lambda_0 = \lambda'_+ / \gamma'_+$ erhalten wir aus $\lambda_0 = \frac{\lambda}{\gamma_0} = \frac{\lambda}{\gamma_i}$ ($i \in \{+, -\}$)

\[\begin{align*}
\lambda'_+ &= \gamma'_+ \frac{\lambda}{\gamma_0} \\
\lambda'_- &= \gamma'_- \frac{\lambda}{\gamma_0}
\end{align*} \tag{3.7.13} \]

Die Netto-Linienladung in S' ist dann

\[\lambda' = \lambda'_+ - \lambda'_- = \frac{\lambda}{\gamma_0} (\gamma'_+ - \gamma'_-) \tag{3.7.14} \]

Weiter erhalten wir

\[\gamma'_+ - \gamma'_- = \frac{1}{\sqrt{1 - \beta^2_+}} - \frac{1}{\sqrt{1 - \beta^2_-}} \tag{3.7.15} \]

\[= \frac{1}{\sqrt{1 - (\frac{\beta - \beta_0}{\sqrt{1 - \beta_0^2}})^2}} - \frac{1}{\sqrt{1 - (\frac{\beta + \beta_0}{\sqrt{1 + \beta_0^2}})^2}} \]

\[= \frac{1}{\sqrt{(1 - \beta_0^2)(1 - \beta^2)}} - \frac{1}{\sqrt{(1 - \beta_0^2)(1 + \beta^2)}} \]

\[= \frac{-2\beta_0 \beta}{\sqrt{(1 - \beta_0^2)(1 - \beta^2)}} = -2\beta_0 \beta \gamma \gamma_0 \gamma \]

Also ist

\[\lambda' = -2\lambda \beta \beta_0 \gamma = -\frac{2\lambda v v_0}{c^2} \gamma \tag{3.7.16} \]

Betrachten wir am Ort der Ladung q das von der Linienladung λ' hervorgerufene Feld E'_r. Für positives λ' zeigt dieses in die $-z'$-Richtung. Also ist das elektrische Feld

\[E'_r = \frac{\lambda'}{2\pi \varepsilon_0 r} = \frac{2\lambda v v_0 \gamma(v)}{2\pi \varepsilon_0 c^2} \cdot \frac{1}{r} \tag{3.7.17} \]

Die Kraft im Ruhesystem S' des Teilchens ist also

\[F'_z = q \cdot E'_r = \frac{2q \lambda v v_0 \gamma(v)}{2\pi \varepsilon_0 c^2} \cdot \frac{1}{r} \tag{3.7.18} \]
Wir verwenden die Lorentztransformation der Impulse p_i und der Energie E

\[
p'_x = p_x
\]

\[
p'_y = \gamma(v) \left(p_y - v \frac{E}{c^2} \right)
\]

\[
p'_z = p_z
\]

\[
E' = \gamma(v) \left(E - v \cdot p_y \right)
\]

Der VIERERVEKTOR $\left(p_x, p_y, p_z, \frac{E}{c^2} \right)$ transformiert sich wie der Vierervektor (x, y, z, ct). Die Kraft transformiert sich also wie

\[
F'_z = \frac{dp'_z}{dt'} = \frac{dp_z}{\sqrt{1 - \beta^2} \cdot dt} = \gamma(v) F_z
\]

Der STROM in S ist

\[
I = 2\lambda v_0
\]

Damit bekommen wir

\[
F_z(r) = \frac{q \cdot v \cdot I}{2\pi \varepsilon_0 \cdot c^2 \cdot \frac{1}{r}}
\]

Multipliziert man Gleichung (3.7.22) mit der Dichte der Ladungsträger n (Einheit $[n] = 1/m$), so erhält man die zu I_2 proportionale Kraft pro Länge $\mathcal{F}(r)$.

\[
\mathcal{F}(r) = n \cdot F_z(r) = \frac{n \cdot q \cdot v \cdot I}{2\pi \varepsilon_0 \cdot c^2} \cdot \frac{1}{r} = \frac{I_2 \cdot I}{2\pi \varepsilon_0 \cdot c^2} \cdot \frac{1}{r}
\]

Aus $\mathcal{F}(r)$ bekommt man die Kraft auf ein Leiterstück der Länge ℓ

\[
F(r, I, I_2, \ell) = \ell \cdot \mathcal{F}(r) = n \cdot \ell \cdot F_z(r) = \frac{n \cdot \ell \cdot q \cdot v \cdot I}{2\pi \varepsilon_0 \cdot c^2} \cdot \frac{1}{r} = \frac{I_2 \cdot I \cdot \ell}{2\pi \varepsilon_0 \cdot c^2} \cdot \frac{1}{r}
\]

Die magnetische Kraft F_m im Laborsystem S ist die relativistisch transformierte elektrostatische Kraft auf die Ladung q in deren Ruhesystem S'. Die magnetische Kraft kann als relativistische Effekt der elektrostatischen Kraft in einem bewegten Bezugssystem verstanden werden.

3.7.3. Magnetisches Feld

In der Gleichung (3.7.24) können wir die Terme so sortieren, dass ein Leiter als Ursache eines Feldes und der Rest als Wirkung dasteht, analog wie beim elektrischen Feld.
Wir haben den Vorfaktor zur Permeabilität des Vakuums zusammengefasst mit

\[\mu_0 = \frac{1}{\varepsilon_0 c^2} \quad [\mu_0] = \text{N A}^{-2} \] (3.7.26)

Der Zahlenwert der Permeabilität des Vakuums ist im SI-System zur Definition des Ampères vorgegeben

\[\mu_0 = 4\pi \cdot 10^{-7} \text{ N A}^{-2} \] (3.7.27)

Die Funktion

\[H(r) = \frac{I}{2\pi r} \quad [H(r)] = \text{Am}^{-1} \] (3.7.28)

ist das magnetische Feld. Es hat für den Magnetismus die gleiche Funktion wie das elektrische Feld.

3.8. Eigenschaften des magnetischen Feldes

3.8.1. Eigenschaften der magnetischen Induktion \(B \)

(Siehe Leisi, Klassische Physik II [Lei98, pp. 98])

Versuch zur Vorlesung:

Fadenstrahlrohr (Versuchskarte EM-11)

Um nicht immer die Lorentz-Transformation ausrechnen zu müssen, führen wir die magnetische Feldstärke oder die magnetische Induktion \(B \) ein. Ein magnetisches Feld lenkt Elektronen ab. Wie wir schon früher gesehen haben, ist eine Bewegung der Ladungsträger für die magnetische Kraft notwendig. Wird das Magnetfeld der Helmholzspulen so gedreht, dass es parallel zur Bewegungsrichtung der Elektronen liegt, verschwindet die Magnetkraft. Das folgende Kraftgesetz

\[F_L = q \cdot v \times B \] (3.8.1)

beschreibt die magnetischen Kräfte auf Elektronen. Die Kraft \(F_L \) heisst Lorentz-Kraft.
Durch den Vergleich von Gleichung (3.8.1) und Gleichung (3.7.22) kann man für die magnetische Feldstärke einer linienförmigen Stromverteilung schreiben

\[B(r) = \frac{I}{2\pi\varepsilon_0 c^2} \cdot \frac{1}{r} \]

(3.8.2)

Die **INDUKTIONSKONSTANTE**

\[\mu_0 = \frac{1}{\varepsilon_0 c^2} \]

(3.8.3)

ermöglicht es Gleichung (3.8.2) kompakter zu schreiben

\[B(r) = \frac{\mu_0}{2\pi} \cdot \frac{I}{r} \]

(3.8.4)

Abbildung 3.28.: Lage der magnetischen Induktion zum Strom und zur Geschwindigkeit der Ladung.

Die magnetische Induktion \(B \) bildet eine Rechtsschraube um den Strom \(I \) (Daumen in Stromrichtung, Finger zeigen in die Richtung der magnetischen Induktion).

Versuch zur Vorlesung:
Magnetische Feldlinien (Versuchskarte EM-50)

Die magnetische Induktion eines geraden, unendlich ausgedehnten Stromes bildet Feldlinien, die kreisförmig in einer Ebene senkrecht zum Strom liegen. Der Mittelpunkt der kreisförmigen Feldlinien ist der Strom.

Die Kraft zwischen zwei stromdurchflossenen Leitern kann neu berechnet werden. Mit

\[\mathbf{F}_L = q_2 \cdot \mathbf{v}_2 \times \mathbf{B}_1(r) \]

(3.8.5)
wobei q_2 eine Ladung im Leiter 2 ist, und mit n_2 der Ladungsträgerdichte im Leiter 2, ℓ die betrachtete Länge, A_2 der Querschnitt des Leiters und $\langle v_2 \rangle = |v_2|$, bekommt man

$$F_M = q_2 \cdot \langle v_2 \rangle \cdot B_1(r) \cdot n_2 \cdot \ell \cdot A_2 \quad (3.8.6)$$

Der Strom im Leiter 2 ist nun aber

$$I_2 = \langle v_2 \rangle \cdot q_2 \cdot n_2 \cdot A_2 \quad (3.8.7)$$

Damit ist

$$F_M = I_2 \cdot B_1(r) \cdot \ell \quad (3.8.8)$$

Wenn wir Gleichung (3.8.4) einsetzen, bekommen wir

$$F_M = \frac{\mu_0}{4\pi} \frac{2\ell \cdot I_1 \cdot I_2}{r} \quad (3.8.9)$$

Diese Gleichung wird zur Definition der Einheit der magnetischen Induktion im SI-System verwendet.

\[\frac{\mu_0}{4\pi} = 10^{-7} \frac{N}{A^2} \quad (3.8.10) \]

Die Einheit der magnetischen Induktion ist

$$[B] = \text{Tesla} = T = \frac{N \cdot s}{C \cdot m} = \frac{N}{A \cdot m} = \frac{V \cdot s}{m^2} \quad (3.8.11)$$

Manchmal wird die magnetische Induktion auch als magnetische Flussdichte bezeichnet.

Die magnetische Induktion wurde so definiert, dass in Gleichung (3.8.9) alle Faktoren bis auf den Strom I_2 und die Länge ℓ durch $B(r)$ symbolisiert werden. Diese Wahl ist willkürlich. Wir hätten genau so gut ein Feld durch

$$H(r) = \frac{I}{2\pi r} \quad (3.8.12)$$

definieren können. H heisst magnetisches Feld oder magnetische Feldstärke. Das magnetische Feld hat die Einheit

$$[H] = \frac{A}{m}$$
Das magnetische Feld H ist unabhängig von der Materie die den betrachteten Raum erfüllt. Die magnetische Induktion B hängt vom den Raum füllenden Material ab.

elektrisches Feld $E \Leftrightarrow$ dielektrische Verschiebung $D = \varepsilon \varepsilon_0 E$
magnetisches Feld $H \Leftrightarrow$ magnetische Induktion $B = \mu \mu_0 H$

- Die gesamte Kraft einer bewegten Ladung q in einer beliebigen Ladungs- und Stromverteilung ist

$$F = q \cdot E + q \cdot v \times B$$ \hspace{1cm} (3.8.13)

Dies ist das Kraftgesetz der Elektrodynamik

- Das magnetische Feld ist kein fundamentales Feld, sondern eine relativistische Korrektur zu dem elektrostatischen Feld.

3.8.2. Das Biot-Savart-Gesetz

Die Kraft auf einen stromdurchflossenen Leiter in einem beliebigen Magnetfeld kann mit dem Gesetz von Biot-Savart berechnet werden.
Der Betrag des Vektors \(d\mathbf{F} \), der senkrecht auf \(d\mathbf{\ell} \) und senkrecht auf \(d\mathbf{B} \) steht, ist

\[
dF = q \cdot \langle v \rangle \cdot \sin \phi \cdot B \cdot n \cdot d\mathbf{\ell} \cdot A
\]
(3.8.14)

wobei \(n \) die Dichte der Ladungsträger und \(\phi \) der Winkel zwischen \(\mathbf{B} \) und \(d\mathbf{\ell} \) ist. Mit der Stromdichte \(i = n \cdot \langle v \rangle \cdot q \) erhalten wir

\[
dF = i \cdot A \cdot d\mathbf{\ell} \cdot \sin \phi \cdot B = I \cdot d\mathbf{\ell} \cdot \sin \phi \cdot B
\]
(3.8.15)

Die vektorielle Schreibweise der Biot-Savart-Kraft ist demnach

\[
d\mathbf{F} = I \cdot d\mathbf{\ell} \times \mathbf{B}
\]
(3.8.16)

3.8.2.1 Kraft auf eine beliebig geformte geschlossene Leiterschlaufe in einem homogenen Magnetfeld

1. Die Kraft für eine beliebig geformte geschlossene Leiterschleife \(s \) in einem homogenen Magnetfeld ist

\[
\mathbf{F} = \oint_s d\mathbf{F} = \oint_s I \cdot d\mathbf{\ell} \times \mathbf{B} = I \cdot \left(\oint_s d\mathbf{\ell} \times \mathbf{B} \right)
\]
(3.8.17)

Das Linienintegral im homogenen \(\mathbf{B} \)-Feld kann wie folgt berechnet werden:
Vom Linienlement $d\ell$ aus Gleichung (3.8.17) trägt nur die Komponente $d\ell_{\perp}$ senkrecht zu B zum Integral bei (wegen dem Kreuzprodukt in der Gleichung). Abbildung 3.30 zeigt auf der rechten Seite die Leiterschlaufe projiziert auf die Ebene senkrecht zu B.

Also kann Gleichung (3.8.17) umgeschrieben werden:

$$F = \oint_s dF = I \oint_s d\ell_{\perp} \times B$$ \hspace{1cm} (3.8.18)

$d\ell_{\perp}$ über s summiert oder integriert ergibt null, da damit eine geschlossene Kurve beschrieben wird, bei der anfangs- und Endpunkt übereinstimmen, also durch einen Vektor der Länge Null verbunden sind.

dF steht immer senkrecht auf $d\ell_{\perp}$ (wieder wegen dem Kreuzprodukt). Die Länge von dF ist um den konstanten Faktor $I \cdot |B|$ gegenüber $d\ell_{\perp}$ geändert. Damit beschreibt dF einen geometrisch ähnlichen geschlossenen Weg, um $\pi/2$ gedreht und gedehnt. Damit ist für eine geschlossene Leiterschlaufe im homogenen magnetischen Feld

$$F = \oint_s dF = 0.$$ \hspace{1cm} (3.8.19)

2. Das Drehmoment auf eine Leiterschlaufe in einem homogenen Magnetfeld kann durch summieren der Kraftanteile auf die vier Segmente berechnet werden.

Link zur Vorlesung: (Elektromotor)

Versuch zur Vorlesung:

Lorentz-Kraft (Versuchskarte EM046)
Wir betrachten dazu die rechteckige Leiterschlaufe aus Abbildung 3.31. Bezüglich 0 ist die Situation symmetrisch. Die in der Zeichnung vertikalen Leiterelemente liefern kollineare sich aufhebende Kräfte. Die horizontalen Segmente ergeben das infinitesimale Drehmoment

\[dT = \left(r_1 + r_3 \right) \times dF_1 + \left(r_1 + r_4 \right) \times dF_1 + \left(r_2 + r_3 \right) \times dF_2 + \left(r_2 + r_4 \right) \times dF_2 \]

\[= 2 \cdot r_1 \times dF_1 + 2 \cdot r_2 \times dF_2 \quad \text{(3.8.20)} \]

In Gleichung (3.8.20) enthält das Differential die Beiträge der oberen linken Seite plus die Beiträge der oberen rechten Seite plus die Beiträge der unteren linken Seite plus die Beiträge der unteren rechten Seite. Das gesamte DREHMOMENT bekommt man, indem man über die halbe Seite \(a \) integriert.

\[
T = \frac{a}{2} \int_0^{a/2} \left(2 \cdot r_1 \times dF_1 + 2 \cdot r_2 \times dF_2 \right) ds
\]

\[
= \frac{a}{2} \int_0^{a/2} 2 \cdot r_1 \times \frac{dF_1}{ds} ds + \frac{a}{2} \int_0^{a/2} 2 \cdot r_2 \times \frac{dF_2}{ds} ds
\]

Wenn \(F_1 \) die Kraft auf die ganze obere Seite ist (und \(F_2 \) entsprechend für die untere Seite), ist

\[
\int_0^{a/2} 2 \cdot r_1 \times \frac{dF_1}{ds} ds = 2 \cdot r_1 \times \int_0^{a/2} \frac{dF_1}{ds} ds = 2 \cdot r_1 \times \frac{F_1}{2} = r_1 \times F_1
\]

\[
\text{(3.8.22)}
\]

Damit ist

\[
T = r_1 \times F_1 + r_2 \times F_2 = 2 \cdot r_1 \times F_1
\]

\[
\text{(3.8.23)}
\]

Das Drehmoment \(\mathbf{M} \) liegt in der Ebene der Leiterschlaufe. Wenn \(\phi \) der Winkel zwischen der Normalen auf die Ebene der Leiterschlaufe und \(\mathbf{B} \) ist,
gilt mit \(F_1 = a \cdot I \cdot B \):
\[
M = \frac{1}{2} b \sin \phi \cdot F_1 = a \cdot b \cdot I \cdot \sin \phi \cdot B \quad (3.8.24)
\]

Wir definieren das magnetische Moment \(m \) so, dass es senkrecht auf die Ebene der Leiterschlaufe steht und dass \(|m| = \text{Fläche} \cdot \text{Strom} = a \cdot b \cdot I \) ist. Damit ist
\[
M = m \times B \quad (3.8.25)
\]

Die Einheit des magnetischen Momentes ist
\[
[\text{m}] = \text{A}\text{m}^2
\]

Das Drehmoment auf eine Leiterschlaufe im homogenen Magnetfeld wird in DREHSPULINSTRUMENTEN, in MOTOREN oder bei der Sichtbarmachung von Magnetfeldern mit Eisenfeilspänen verwendet.

Bei einer beliebigen Leiterschlaufe kann das magnetische Moment berechnet werden, indem diese aus Einzelteilen zusammengesetzt wird.

Abbildung 3.32.: Links ist ein infinitesimaler magnetisches Moment aufgezeichnet. Rechts daneben ein quadratisches infinitesimales Moment. Da alle vom gleichen Strom \(I \) umrundet werden, und im gleichen Drehsinn, kann eine endliche Fläche aus den infinitesimalen Flächen zusammengesetzt werden. Daraus folgt die Vorschrift zur Berechnung von \(m \).

Die Ströme im Inneren heben sich dabei jeweils auf (Siehe auch Abbildung 3.32). Aus der differentiellen Gleichung
\[
dm = I \, da
\]

erhält man deshalb
\[
m = \iiint_{A(s)} I \, da = I \iiint_{A(s)} da \quad (3.8.27)
\]

3. Die potentielle Energie \(E_{pot} \) einer um den Winkel \(\phi \) gegenüber dem Magnetfeld verdrehten stromdurchflossenen Leiterschlaufe wird berechnet, indem man von \(\phi = 0 \) ausgeht und die Schlaufe langsam zum Winkel \(\phi \) dreht. Die
Arbeit, um von ϕ' nach $\phi' + d\phi'$ zu drehen ist

$$dE_{\text{pot}} = 2 \cdot F_1 \sin \phi' \cdot \frac{b}{2} \cdot d\phi' = a \cdot b \cdot I \cdot B \cdot \sin \phi' \cdot d\phi' \quad (3.8.28)$$

Damit erhalten wir

$$E_{\text{pot}}(\phi) = a \cdot b \cdot I \cdot B \cdot \int_0^{\phi} \sin \phi' \cdot d\phi' = -a \cdot b \cdot I \cdot B \cdot (\cos \phi - 1) \quad (3.8.29)$$

Wenn wir $E_{\text{pot}}(\phi = \pi/2) = 0$ wählen haben wir

$$E_{\text{pot}} = -m \cdot B \quad (3.8.30)$$

Ein weiteres Beispiel einer Kraftwirkung auf Ladungen ist das Barlowsche Rad. **Versuch zur Vorlesung:**

Barlowsches Rad (Versuchskarte EM004)

3.8.3. Das Ampèresche Durchflutungsgesetz

(Siehe Leisi, Klassische Physik II [Lei98, pp. 104])

Beim unendlich ausgedehnten geraden Leiter war das durch einen Strom I erzeugte Magnetfeld durch kreisförmige Magnetfeldlinien mit der Stärke $B = \frac{\mu_0}{2\pi r} I$ charakterisiert, wobei das B-Feld tangential zu den Kreisen liegt. Das Linienintegral entlang der Feldlinien, also entlang des Kreises S, ergibt

$$\oint_S B \cdot ds = \mu_0 I \oint_s \frac{r}{r} d\phi = \mu_0 I \quad (3.8.31)$$

Dieses Linienintegral ist unabhängig von r. Die Behauptung ist, das die obige Gleichung, ein einfacher Fall des Ampèreschen Durchflutungsgesetzes, allgemeingültig ist.

Ampèresches Durchflutungsgesetz

$$\oint_S B \cdot ds = \mu_0 \iint_{A(s)} i \cdot da \quad (3.8.32)$$

Der Beweis geht in mehreren Schritten:

Eine beliebige Kurve s' um einen geraden Leiter
ds' ist die Projektion des Weglängenelementes ds auf der Kurve s auf die in der xy-Ebene liegende Projektion der Kurve s'. Es ist

$$B \cdot ds = B \cdot ds' = B(r) \cdot r \cdot d\phi$$

da $B(r)$ keine Komponente in die z-Richtung hat. Es ist

$$B \cdot ds = \frac{\mu_0 I}{2\pi} \cdot d\phi$$

und damit

$$\oint_{s'} B \cdot ds = \frac{\mu_0 I}{2\pi} \int_0^{2\pi} d\phi = \mu_0 I$$

Eine beliebige Kurve s'', die den Leiter nicht umschließt Es ist

$$\oint_{s''} B \cdot ds = \oint_A B \cdot ds + \oint_B B \cdot ds = \frac{\mu_0 I}{2\pi} \int_A d\phi + \frac{\mu_0 I}{2\pi} \int_B d\phi = \frac{\mu_0 I}{2\pi} (\phi_B - \phi_A) + \frac{\mu_0 I}{2\pi} (\phi_A - \phi_B) = 0$$

Das bedeutet, dass Ströme durch Leiter, die nicht vom Integrationsweg s'' umschlossen werden, keinen Beitrag zum Integral geben.

Eine beliebige Kurve s um eine beliebige Stromverteilung Wir betrachten viele Ströme I_k, die von der Integrationskurve s umschlossen werden. Wegen der Linearität des Problems gilt

$$\oint_S B \cdot ds = \mu_0 \sum_k I_k$$

wobei diejenigen Ströme, die mit dem Umlaufssinn von s eine Rechtsschraube bilden, positiv zu zählen sind.

Eine kontinuierliche Stromverteilung Hier wird die Summe durch ein Integral ersetzt:

$$\oint_S B \cdot ds = \mu_0 \int_A \int_{A(s)} i \cdot da$$
3.8.3.1. Zylindrischer Leiter mit homogener Strom

Ein zylindrischer Leiter mit dem Radius \(R \) soll homogen vom Strom \(I \) durchflossen werden. Die Stromdichte \(i \) und der Strom \(I \) stehen dann betragsmäßig wie

\[I = i \left(\pi R^2 \right) \]

beziehungsweise \(I(r) = i \left(\pi r^2 \right) \) für \(r \leq R \)

in Beziehung. Aus Symmetriegründen sind die Magnetfeldlinien konzentrische Kreise um den Leiter. Wir betrachten einen zum Strom konzentrischen Integrationsweg \(s \). Außerhalb des Leiters (\(r > R \)) haben wir

\[\oint_s \mathbf{B}(r) \cdot ds = 2\pi r \cdot B(r) = \mu_0 \int_{A(s)} i \cdot da = \mu_0 \int_{\pi R^2} i \cdot da = \mu_0 \cdot I \]

und daraus

\[B(r) = \frac{\mu_0 I}{2\pi r} \]

Innerhalb des Leiters (\(r \leq R \)) gilt

\[\oint_s \mathbf{B}(r) \cdot ds = 2\pi r \cdot B(r) = \mu_0 \int_{A(s)} i \cdot da = \mu_0 \cdot i \cdot \pi r^2 = \mu_0 \cdot \frac{I}{\pi R^2} \cdot \pi r^2 = \mu_0 I \frac{r^2}{R^2} \]

und damit

\[B(r) = \frac{\mu_0 I}{2\pi} \frac{r}{R^2} \]

Abbildung 3.33.: Tangentiales Magnetfeld eines ausgedehnten, unendlich langen Linienstromes.

Mit dem Stokeschen Satz (Gleichung (C.11.1)) kann man die Integralform des Ampèreschen Gesetzes umschreiben

\[\oint_s \mathbf{B} \cdot ds = \int_{A(S)} \mathbf{rot} \mathbf{B} \cdot da = \mu_0 \int_{A(S)} i \cdot da \quad (3.8.33) \]
Da diese Gleichungen für alle Integrationsflächen $A(S)$ gelten müssen, muss auch die differentielle Form des Ampèreschen Gesetzes gelten

$$\text{rot } \mathbf{B} = \mu_0 \mathbf{i}$$

(3.8.34)

Beispiel: homogene Stromverteilung in einem unendlich ausgedehnten Leiter

Wir definieren eine *lineare Stromdichte* $j = \lim_{\Delta y \to 0} \frac{I(\Delta y)}{\Delta y}$ $([j] = \text{A/m}).$ In unserem Falle hängt j und i über

$$i(x, y, z) = j(y, z) \delta(x)$$

zusammen. Das Stromfeld können wir uns als Parallelschaltung vieler linearer Leiter vorstellen. Aus dem Superpositionsprinzip folgt, dass in der z-Richtung

$$B_z \equiv 0$$

(3.8.35)

Das resultierende Feld dieser Superposition muss in der xy-Ebene liegen. Auf den beiden Seiten senkrecht zur Platte finden sich immer zwei Stromfäden, die die x-Komponente kompensieren. Wenn wir später das Ampèresche Gesetz auf diese beiden Seiten anwenden, gibt es keine Komponente von \mathbf{B} parallel zur Seite: dieser Teil des Linienintegrals ist null.

Wir betrachten weiter die Komponenten $B_x(x)$ und $B_y(x)$ des Feldes \mathbf{B} im Abstand x von der Platte. Wir werden zwei Symmetrieeoperationen an:

- Wir drehen die Platte um π um die z-Achse. Die neue Situation (Ströme) ist identisch mit der Ursprungssituation. Deshalb muss

$$\mathbf{B}(x) = -\mathbf{B}(-x)$$
und damit

\[B_x(x) = -B_x(-x) \text{ und } B_y(x) = -B_y(-x) \]

sein.

- Wir drehen die Platte um \(\pi \) um die \(y \)-Achse und drehen gleichzeitig die Flussrichtung des Stromes um \(\mathbf{j} \rightarrow -\mathbf{j} \). Die Situation am Ende ist ununterscheidbar von der am Anfang. Also gilt auch

\[B_x(-x) = B_x(x) \text{ und } B_y(-x) = -B_y(x) \]

Mit den beiden Symmetrieüberlegungen folgt:

\[B_x(x) \equiv 0 \quad (3.8.36) \]

Um \(B_y \) zu bestimmen, nehmen wir an, dass unser Integrationspfad \(S \) symmetrisch bezüglich der Platte ist. Das Ampèresche Gesetz sagt

\[\oint_S \mathbf{B} \cdot d\mathbf{s} = 2B_y(x) \cdot b + 2 \cdot 0 = \mu_0 \int \mathbf{i} \cdot d\mathbf{a} = \mu_0 \int j dy = \mu_0 \cdot j \cdot b \]

Das Resultat ist unabhängig von \(x \) und homogen im Raum. Die Magnetfeldlinien sind parallel zur Platte und links und rechts antiparallel (siehe Abbildung 3.34, Mitte).

\[B_y = \frac{\mu_0}{2} j \quad (3.8.37) \]

Bei zwei antiparallel von STROM durchflossenen Platten ist das Magnetfeld auf den Raum zwischen den Platten beschränkt.

\[B = \mu_0 j \quad (3.8.38) \]

Die beiden Gleichungen sind einheitenmässig korrekt, da \([j] = \left[\frac{I}{\mathcal{L}} \right] = \text{A/m} \) ist.

Anwendungsbeispiele: Streifenleiter, Koaxialkabel, Modell für eine Spule

3.8.4. Quellenfreiheit

(Siehe Leisi, Klassische Physik II [Lei98, pp. 111])

In diesem Abschnitt soll gezeigt werden, dass das Magnetfeld QUELLENFREI ist.
Da überall auf der Integrationsfläche A gilt: $\mathbf{B} \cdot \mathbf{d}a = 0$, ist

$$\iint_A \mathbf{B} \cdot \mathbf{d}a = 0$$ (3.8.39)

Wir verallgemeinern das Resultat, indem wir einen Zylinder mit beliebiger Grund- und Deckfläche nehmen. Auf der Grund- und Deckfläche gilt das vorherige Argument, so dass

$$\iint_A \mathbf{B} \cdot \mathbf{d}a = \iint_{\text{Mantel}} \mathbf{B} \cdot \mathbf{d}a$$

ist.
Abbildung 3.36.: Integration über die Mantelfläche.

An der Mantelfläche gilt mit \(da = h \cdot ds \)

\[
B \cdot da = B(r) \cos \left(\alpha + \frac{\pi}{2} \right) h \cdot ds = -B(r) \sin (\alpha) h \cdot ds
\]

\[
= -B(r) \cdot dr \cdot h = -B(r) \cdot \frac{dr}{d\phi} d\phi \cdot h = -B(r) \cdot r'(\phi) \cdot d\phi \cdot h
\]

und damit

\[
\left\langle \left\langle _{\text{Mantel}} B \cdot da \right\rangle \right\rangle = -\frac{\mu_0 I h}{2\pi} \int_0^{2\pi} r'(\phi) d\phi = -\frac{\mu_0 I h}{2\pi} \ln \left(\frac{r(\phi)}{r(0)} \right) \bigg|_0^{2\pi} = 0
\]

Damit gilt auch für allgemeine Zylinderflächen

\[
\left\langle \left\langle _{A} B \cdot da \right\rangle \right\rangle = 0
\]

(3.8.40)

Mit diesem Resultat zeigt man, dass dieses Integral für beliebige Flächen um einen Leiter null ist. Schliesslich zeigt man, dass das Resultat auch für beliebige Stromverteilungen gilt. Mit dem Gaußschen Satz (Gleichung (C.9.1)) zeigt man

Quellenfreiheit des Magnetfeldes

\[
0 = \left\langle \left\langle _{A} B \cdot da \right\rangle \right\rangle = \left\langle \left\langle _{V(A)} \left(\left\langle \left\langle _{A} \left\langle \left\langle _{V} \div B \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle
\]

(3.8.41)

oder in differentieller Form

\[
\div B = 0
\]

(3.8.42)

Die Quellenfreiheit des magnetischen Feldes bedeutet, dass es keine MAGNETI-
schen Ladungen gibt und dass die Feldlinien im Endlichen geschlossen sind.

3.8.5. Das B-Feld einer beliebigen Stromverteilung: das Vektorpotential A

(Siehe Leisi, Klassische Physik II [Lei98, pp. 114])

Versuch zur Vorlesung:
Magnetfeld von Leitern (Versuchskarte Em021)

In diesem Abschnitt wollen wir die Frage lösen: wie konstruiere ich eine magnetische Induktion B möglichst bequem? Das Rezept stammt aus der Elektrizitätslehre (Siehe Abschnitt 2.5). Dort wurde gezeigt, dass aus einem beliebigen Potential $U(r)$ durch

$$E(r) = -\text{grad } U(r)$$

eindeutig ein elektrisches Feld $E(r)$ konstruiert werden kann, das dem Gesetz der Elektrostatischn

$$\text{rot } E(r) = 0$$
genügt. Grundlage war die Vektoridentität

$$\text{rot } (\text{grad } U(r)) \equiv 0$$

die für beliebige Funktionen $U(r)$ gilt (siehe Gleichung (C.8.29)). Es gibt unter den Rechenregeln für Vektorableitungen (siehe Abschnitt C.8.4) eine weitere Identität mit dem Nullvektor, nämlich Gleichung (C.8.30).

$$\text{div } (\text{rot } \mathbf{F}) = 0 \quad \forall \mathbf{F}$$

Jedes Magnetfeld muss das AMPÈRESCHE GESETZ $\text{rot } B = \mu_0 \mathbf{i}$ und die Quellenfreiheit $\text{div } B = 0$ erfüllen. Analog zur Poissongleichung Gleichung (2.6.4) soll auch für das Magnetfeld eine Potentialgleichung gelten. Wir müssen also nach Gleichung (C.8.30) ein beliebiges Vektorfeld A wählen und die magnetische Induktion B gleich der Rotation von A setzen: dann ist die Divergenzfreiheit von B gewährleistet. Mit dem VEKTORPOTENTIAL A

$$B(x, y, z) = \text{rot } A(x, y, z) \quad (3.8.43)$$

werden beide Gleichungen erfüllt. Wegen der Vektoridentität

$$\text{div } (\text{rot } A) = 0 \quad (3.8.44)$$

ist die Quellenfreiheit bei beliebiger Wahl von A garantiert. Mit der zweiten Vektoridentität $\text{rot } (\text{rot } A) = \text{grad } (\text{div } A) - \Delta A$ bekommen wir aus dem Ampèreschen Gesetz

$$\Delta A - \text{grad } (\text{div } A) = -\mu_0 \mathbf{i} \quad (3.8.45)$$
Die Einheit des Vektorpotentials ist

\[[A] = \frac{Vs}{m} = \frac{N}{\text{A}} \]

Das Vektorpotential \(A \) kann immer so gewählt werden, dass div \(A = 0 \) gilt. Das Vektorpotential ist nicht eindeutig bestimmt. Nehmen wir an, dass ein Vektorpotential mit \(\text{div} \, A = f \neq 0 \) existiert. Dann existiert auch ein Vektorfeld \(V = \text{grad} \, \phi \) mit

\[
\begin{align*}
\text{div} \, V &= f \\
\text{rot} \, V &= 0
\end{align*}
\]

mit einer eindeutigen Lösung, denn die obigen Gleichungen sind formal äquivalent zur Elektrostatik. Wir definieren ein Vektorpotential

\[A' = A - V \]

Wegen Gleichung (3.8.47) gilt dann

\[\text{rot} \, A' = \text{rot} \, A - \text{rot} \, V = \text{rot} \, A \]

Dies bedeutet, dass das neue Vektorpotential das gleiche \(B \)-Feld erzeugt wie das ursprüngliche. Wegen Gleichung (3.8.47) gilt auch

\[\text{div} \, A' = \text{div} \, A - \text{div} \, V = f - f = 0 \]

zu jedem Vektorpotential \(A \) kann ein Vektorpotential \(A' \) gefunden werden, so dass \(\text{div} \, A' = 0 \) ist.

Diese Eichung heisst Coulombeichung.

Das zu einer realen physikalischen Situation gehörende Vektorpotential \(A \) ist nicht eindeutig bestimmt. Die Wahl eines der zur gleichen Lösung von \(B \) gehörenden Potentiale nennt man Eichung.

In der Relativitätstheorie und in der Quantenmechanik rechnet man bevorzugt mit dem Vektorpotential.

Da \(\text{div} \, A = f \) eine beliebige zahlenwertige Funktion sein kann, kann diese zum Beispiel auch die zeitliche Ableitung des elektrischen Potentials sein, also auch

\[\text{div} \, A = -\frac{1}{c^2} \frac{\partial \varphi}{\partial t} \]

sein. Diese Lorentzeichung ist relativistisch invariant und wird deshalb gerne
in der Relativitätstheorie und der Quantenfeldtheorie verwendet.

Aus der Gleichung für das Vektorpotential einer Stromverteilung

\[\Delta A(x, y, z) = -\mu_0 i(x, y, z) \] \hspace{1cm} (3.8.48)

kann man die Umkehrfunktion berechnen und erhält, analog zur Elektrostatik,

\[A(r) = \mu_0 \frac{4}{4\pi} \iint \frac{i(r')}{|r - r'|} dV' \] \hspace{1cm} (3.8.49)

Aus der Beziehung \(\text{rot} \ A = B \) (Siehe Landau und Lifschitz, Klassische Feldtheorie [LL89, pp. 121]) bekommen wir

\[B(r) = \text{rot} \ \mu_0 \frac{4}{4\pi} \iint \frac{i(r')}{|r - r'|} dV' = \mu_0 \frac{4}{4\pi} \iint \frac{i(r')}{|r - r'|} dV' \] \hspace{1cm} (3.8.50)

Nun bezieht sich die Rotation nur auf \(r \), nicht aber auf \(r' \). Deshalb kann sie unter das Integral gezogen werden.

\[B(r) = \mu_0 \frac{4}{4\pi} \iint \left(\text{rot} \ \frac{i(r')}{|r - r'|} \right) dV' \] \hspace{1cm} (3.8.51)

Nun gilt für die Rotation eines Produktes (Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 468])

\[\text{rot} \ U B = U \text{rot} \ B + \text{grad} U \times B \]

Hier ist der Vektor \(i(r') \) bezüglich der Rotation eine Konstante, da er nur von \(r' \) und nicht von \(r \) abhängt. Weiter darf die Ableitung irgend eines Punktes nicht davon abhängen, dass das Koordinatensystem um einen konstanten Vektor verschoben wurde. Wir rechnen deshalb die Ableitungen in der Rotation, beziehungsweise im Gradienten, nicht bezüglich \(r \) sondern bezüglich des verschobenen Koordinatensystems \(\rho = r - r' \) aus. Es bleibt also

\[B(r) = \mu_0 \frac{4}{4\pi} \iint \left(\text{grad} \ \frac{1}{|r - r'|} \times i(r') \right) dV' \]

\[= \mu_0 \frac{4}{4\pi} \iint \left(\text{grad} \ \frac{1}{|\rho|} \times i(r') \right) dV' \]

\[= \mu_0 \frac{4}{4\pi} \iint \left(\frac{-\rho}{|\rho|^3} \times i(r') \right) dV' \]

\[= \mu_0 \frac{4}{4\pi} \iint \frac{i(\rho)}{|\rho|^3} \times \rho dV' \] \hspace{1cm} (3.8.52)

Die letzte Zeile ergibt sich, da für die Zwecke der Integration \(r \) eine Konstante ist. Auch hier muss das Resultat der Integration unabhängig davon sein, dass wir das Koordinatensystem verschoben oder das Vorzeichen geändert haben. Deshalb darf man \(i(r') = i(r - r') = i(\rho) \) setzen.

Wir betrachten nun einen infinitesimal dünnen Strom \(dI \) \(e_{\text{Draht}}(r') = i = I d\ell. \)

\(e_{\text{Draht}} \) ist ein Einheitsvektor entlang des Drahtes. Da \(i \) überall null ist ausser auf
dem eindimensionalen Draht, wird aus dem Volumenintegral ein eindimensionales Integral. Wieder ist es für die Integration egal, ob wir i von r' oder von ρ abhängen lassen.

$$B(r) = \frac{\mu_0 I}{4\pi} \oint_{\text{Leiter}} \frac{d\ell \times \rho}{\rho^3}$$ \hspace{1cm} (3.8.53)

Diese Gleichung ist bekannt als das GESETZ VON BIOT-SAVART. Mit ihm kann man das Feld einer beliebigen Leiteranordnung berechnen.

Auch wenn sie physikalisch keine Bedeutung hat, kann es sinnvoll sein in Zwischenschritten die differentielle Formulierung zu verwenden, nämlich die FORMEL VON LAPLACE.

$$dB = \frac{\mu_0 I}{4\pi} \cdot \frac{d\ell \times \rho}{\rho^3}$$ \hspace{1cm} (3.8.54)

Achtung: nur die integrale Form hat eine physikalische Bedeutung!

Beispiel:

Wir hatten in Abbildung 3.34 gesehen, dass ein homogener STROM in die $+z$-Richtung homogene magnetische Induktionen links und rechts erzeugt. Die Magnetfelder haben die Form

$$B_y(x, y, z) = \begin{cases} -B_0, & \text{wenn } x < 0; \\ B_0, & \text{wenn } x > 0. \end{cases}$$ \hspace{1cm} (3.8.55)

Für $x = 0$ ist B_y nicht definiert.
Abbildung 3.37.: Darstellung von \mathbf{B} in einer ($x = const$)-Ebene. Die Strom-Ebene liegt bei $x = 0$.

Das zu Gleichung (3.8.55) gehörige Vektorpotential ist

$$A_x(x, y, z) = 0$$
$$A_y(x, y, z) = 0$$
$$A_z(x, y, z) = \begin{cases}
 B_0 x, & \text{für } x < 0; \\
 -B_0 x, & \text{für } x > 0.
\end{cases} \quad (3.8.56)$$

Wieder ist \mathbf{A} für $x = 0$ nicht definiert. Aus $\mathbf{B} = \text{rot } \mathbf{A}$ bekommt man

$$B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = 0$$
$$B_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = \begin{cases}
 -B_0, & \text{für } x < 0; \\
 B_0, & \text{für } x > 0.
\end{cases}$$
$$B_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = 0 \quad (3.8.57)$$
Abbildung 3.38.: z-Komponente des Vektorpotentials einer unendlichen Stromdichte in z-Richtung in der $(x=0)$-Ebene.

Beispiel:

Das Vektorpotential

$$A(r) = \mu_0 I \frac{1}{2\pi} \begin{pmatrix} \frac{xz}{r} \\ \frac{yz}{r} \\ 0 \end{pmatrix}$$

ergibt das magnetische Feld für einen in der z-Richtung laufenden Strom I

$$H(r) = \frac{I}{2\pi} \begin{pmatrix} -\frac{y}{x^2+y^2} \\ \frac{x}{x^2+y^2} \\ 0 \end{pmatrix}$$

In Zylinderkoordinaten (r, θ, z) gehört zum Magnetfeld

$$H(r, \theta, z) = \frac{I}{2\pi} \begin{pmatrix} 0 \\ \frac{z}{r} \\ 0 \end{pmatrix}$$

das Vektorpotential

$$A(r, \theta, z) = \mu_0 I \frac{1}{2\pi} \begin{pmatrix} \frac{z}{r} \\ 0 \\ 0 \end{pmatrix}$$
3.9. Hall-Effekt

(Siehe Tipler, Physik [TM04, pp. 831]) (Siehe Leisi, Klassische Physik II [Lei98, pp. 126])

Versuch zur Vorlesung:
Halleffekt (Versuchskarte EM023)

Abbildung 3.39.: Hall-Effekt

Wenn Elektronen mit der Geschwindigkeit v durch ein Metall in einem Magnetfeld mit der magnetischen Induktion B fließen (in einer Geometrie wie im obigen Bild), werden sie von der Lorentzkraft

$$F_L = -e \cdot v \times B$$

nach unten abgelenkt. Man kann sich dies klar machen, indem man annimmt, der gesamte Metallstreifen werde mit der Geschwindigkeit v nach rechts bewegt. Da der Leiter eine begrenzte Ausdehnung hat, laden sich die Grenzflächen auf. Das elektrische Feld bewirkt eine Kraft $F_E = eE$ nach oben auf die Elektronen. Im Gleichgewicht gilt

$$F_L + F_E = 0,$$

also

$$-e \cdot v \cdot B = -eE \quad (3.9.1)$$

Eine Einheitsladung, die langsam von A nach B herumgeführt wird, erfährt vom elektrischen Feld eine Arbeit $h \cdot E$, so dass diese elektromotorische Kraft als SPANNUNG am Voltmeter abgelesen werden kann. Durch Kombination mit der Gleichung (3.9.1) bekommt man für die HALLSPANNNUNG

$$U_{Hall} = h \cdot v \cdot B \quad (3.9.2)$$

Die Hallspannung für ein einzelnes Teilchen ist unabhängig vom Material. Bei vielen Ladungsträgern muss die Geschwindigkeit v durch die Driftgeschwindigkeit $\langle v \rangle$ der Ladungsträger ersetzt werden. $\langle v \rangle$ ist materialabhängig. Strom I und Driftgeschwindigkeit $\langle v \rangle$ hängen über

$$I = q \cdot n \cdot h \cdot b \cdot \langle v \rangle$$

zusammen. b ist hier die Dicke des Leiters und n die Ladungsträgerdichte.
3.10 Die Lorentz-Transformation der Felder E und B

(Siehe Leisi, Klassische Physik II [Lei98, pp. 128])

Wir betrachten die Situation im Bild zum Halleffekt (Siehe Abschnitt 3.39), nun aber vom Ruhe-System der Platte aus. Hier haben die Elektronen keine Geschwindigkeit: es gibt keine Lorentzkraft.

Die obige Abbildung zeigt homogene Magnetfelder und elektrische Felder. Sie werden erzeugt, indem zwei parallele Platten positiv beziehungsweise negativ geladen sind. Wenn die Platten mit der Geschwindigkeit v_0 bewegt werden ergibt sich auch ein Magnetfeld.

Das elektrische Feld beider Platten im Bezugssystem S ist

$$E_z = \frac{\sigma}{\varepsilon_0}$$ \hspace{1cm} (3.10.1)

wenn σ die Ladungsdichte in diesem Bezugssystem ist. Das Magnetfeld ist

$$B_x = \mu_0 \cdot j = \mu_0 \cdot \sigma \cdot v_0 = \frac{v_0 \cdot \sigma}{\varepsilon_0 \cdot c^2}$$ \hspace{1cm} (3.10.2)

Die entsprechenden Felder im Bezugssystem S' müssen nun berechnet werden.

Die Hallspannung hängt dann wie

$$U_{Hall} \propto \frac{I \cdot B}{q \cdot b \cdot n}$$ \hspace{1cm} (3.9.3)

von Strom und Spannung ab. Für Elektronen ($q = -e$) erhalten wir dann

$$U_{Hall} = -\frac{I \cdot B}{e \cdot b \cdot n}$$

Bemerkung: Die Hallspannung kann zur Bestimmung der Ladungsträgerkonzentration verwendet werden.
Auch in \(S' \) sind die Platten homogen geladen. Also haben wir

\[
E'_z = \frac{\sigma'}{\varepsilon_0}
\]

und

\[
B'_x = \frac{v'_0 \cdot \sigma'}{\varepsilon_0 \cdot c^2}
\]

Wir brauchen die Transformationsgesetze für \(\sigma' \) und \(v_0 \)

\[
v'_0 = \frac{v_0 - v}{1 - \frac{v \cdot v}{c^2}}
\]

\[
\sigma_0 = \frac{\sigma}{\gamma_0}
\]

\[
\sigma_0 = \frac{\sigma'}{\gamma_0}
\]

wenn \(\sigma_0 \) das Ruhesystem der Ladungen und \(\gamma_0 = \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \) ist. Wir bekommen

\[
\sigma' = \sigma \cdot \frac{\gamma'_0}{\gamma_0} = \sigma \sqrt{\frac{1 - \frac{v^2}{c^2}}{1 - \frac{v'^2}{c^2}}}
\]

und damit

\[
\sigma' = \sigma \sqrt{1 - \frac{v^2}{c^2}} \left(1 - \frac{v \cdot v}{c^2}\right)
\]

\[
= \sigma \sqrt{1 - \frac{v^2}{c^2} \left(1 - \frac{v \cdot v}{c^2}\right)}
\]

\[
= \sigma \sqrt{1 - \frac{v^2}{c^2} \left(1 - \frac{v \cdot v}{c^2}\right)}
\]

\[
= \sigma \cdot \gamma_0 \cdot \left(1 - \frac{v \cdot v_0}{c^2}\right)
\]

Mit

\[
v'_0 = \frac{v_0 - v}{1 - \frac{v \cdot v}{c^2}}
\]

berechnet man

\[
v'_0 \cdot \sigma' = \sigma' \cdot \frac{\gamma_0}{\gamma_0} \left(1 - \frac{v \cdot v}{c^2}\right) v'_0
\]

\[
= \sigma' \cdot \gamma_0 \left(1 - \frac{v \cdot v_0}{c^2}\right) \frac{v_0 - v}{1 - \frac{v \cdot v}{c^2}}
\]

\[
= \sigma_0 (v_0 - v)
\]
Damit ist
\[E'_z = \frac{\sigma'}{\varepsilon_0} = \gamma_0 \left(\frac{\sigma}{\varepsilon_0} - \frac{\sigma v \cdot v_0}{\varepsilon_0 c^2} \right) = \gamma_0 (E_z - v \cdot B_x) \] (3.10.9)
und
\[B'_x = \frac{v'_0 \cdot \sigma'}{\varepsilon_0 c^2} = \gamma_0 \left(\frac{\sigma \cdot v_0}{\varepsilon_0 c^2} - \frac{\sigma \cdot v}{\varepsilon_0 c^2} \right) = \gamma_0 \left(B_x - \frac{v}{c^2} E_z \right) \] (3.10.10)
Damit sind die transversalen Felder \(B'_x \) und \(E'_z \) in \(S' \) Linearkombinationen der Felder \(B_x \) und \(E_z \) in \(S \).

Die Transformationseigenschaften von \(B_z \) und \(E_x \) erhält man, indem man die obige Anordnung um \(\pi/2 \) um die \(y \)-Achse dreht. Dann gehen
\[E_z \rightarrow E_x \] (3.10.11)
\[B_x \rightarrow -B_z \] (3.10.12)
über. Die Transformationsgleichungen sind dann
\[E'_x = \gamma_0 (E_x + v \cdot B_z) \] (3.10.13)
\[B'_z = \gamma_0 \left(B_z + \frac{v}{c^2} E_x \right) \] (3.10.14)

Abbildung 3.41.: Skizze zur Transformation eines longitudinalen \(E \)-Feldes (links) und des \(B \)-Feldes (rechts).

Die Transformation des longitudinalen \(E \)-Feldes ergibt sich aus der Erkenntnis, dass transversal zur Geschwindigkeit keine Längenkontraktion auftritt und dass das Elektrische Feld eines Plattenkondensators\(^7\) nicht vom Plattenabstand abhängt. Also ist
\[E_y = \frac{\sigma}{\varepsilon_0} \] (3.10.15)
\[E'_y = \frac{\sigma'}{\varepsilon_0} \]
\[\sigma = \sigma' \]

\(^7\) oder jeder anderen Anordnung von zwei parallelen, homogenen Flächenladungen
Also ist auch

\[E'_y = E_y \] \hfill (3.10.16)

Die Transformationseigenschaften des Magnetfeldes können mit der in der obigen Abbildung rechts angedeuteten Spule berechnet werden. Das Magnetfeld in der Spule ist

\[B_y = \mu_0 \frac{I \cdot N}{L} \] \hfill (3.10.17)

wobei \(N \) die Anzahl Windungen und \(L \) die Länge der Spule ist. Wir machen dabei die Annahme, dass die Spule sehr lang im Vergleich zum Durchmesser sei. Mit \(I = \dot{Q} \) ist

\[B_y = \mu_0 \frac{N \, dQ}{L \, dt} \] \hfill (3.10.18)

Die Anzahl Windungen \(N \) und die Ladung sind relativistisch invariant. Das transformierte Feld ist dann

\[B'_y = \mu_0 \frac{N \, dQ}{L' \, dt'} \] \hfill (3.10.19)

Mit der Längenkontraktion \(L' = \gamma L \) und der Zeitdilatation \(dt' = dt/\gamma \) folgt, dass sich die relativistischen Effekte kompensieren und damit

\[B'_y = B_y \] \hfill (3.10.20)

ist.

Bei einer Bewegung in die \(y \)-Richtung mit \(\mathbf{v} = (0, v_y, 0) \) \((\gamma = 1/\sqrt{1 - v_y^2/c^2}) \) werden die elektrischen und magnetische Induktion wie

\[E'_x = \gamma(v_y) \left(E_x + v_y \cdot B_z \right) \] \hfill (3.10.21)
\[E'_y = E_y \]
\[E'_z = \gamma(v_y) \left(E_z - v_y \cdot B_x \right) \]
\[B'_x = \gamma(v_y) \left(B_x - \frac{v_y}{c^2} E_z \right) \]
\[B'_y = B_y \]
\[B'_z = \gamma(v_y) \left(B_z + \frac{v_y}{c^2} E_x \right) \]

transformiert.

Im Vakuum gilt \(\mathbf{B} = \mu_0 \mathbf{H} = \frac{\mathbf{H}}{\varepsilon_0 c^2} \). Die Lorentztransformation für elektrische und magnetische Felder ist dann
3.11 Zusammenfassung: Ströme

Makroskopischer Strom

Gleichung (3.0.1)

\[
I = \frac{\Delta Q}{\Delta t} \bigg|_{\text{Fläche}}
\]

Mittlere Geschwindigkeit der Ladungsträger

Gleichung (3.1.5)

\[
\langle v \rangle = \frac{1}{n} \sum_j n_j \cdot v_j
\]
Stromdichte Vektorfeld Gleichung (3.1.6)

\[i = nq \langle v \rangle \]

Gesamtstrom Gleichung (3.1.8)

\[I(F) = \int_F i \cdot d\mathbf{a} \]

Strom bei mehreren Ladungsträgern Gleichung (3.1.9)

\[i = \sum_k n_k q_k \langle v_k \rangle \]

Kontinuitätsgleichung Integralform Gleichung (3.1.15)

\[\int_A i \cdot d\mathbf{a} = \int_V \text{div} \, i \, dV = \int_V \frac{\partial}{\partial t} \rho_{el} \, dV \]

Differentialform Gleichung (3.1.16)

\[\text{div} \, i (\mathbf{x}, t) = -\frac{\partial}{\partial t} \rho_{el} (\mathbf{x}, t) \]

Ohmsches Gesetz lokal Gleichung (3.2.2)

\[i(E) = \sigma E \]

integral Gleichung (3.2.4)

\[I = G \cdot U \]

Stromdichte und Relaxationszeit Gleichung (3.2.12)

\[i = n \frac{q^2}{M} \langle t \rangle E = n \frac{q^2 \tau}{M} E \]

Leitfähigkeit und Relaxationszeit Gleichung (3.2.13)

\[\sigma = \sum_k n_k \frac{q_k^2 \tau_k}{M_k} \]

Potential und Leitfähigkeit Gleichung (3.2.21)

\[\text{div} \left[\sigma (x, y, z) \, \text{grad} \, U (x, y, z) \right] = 0 \]

Leistung und Strom Gleichung (3.3.8)

\[P = R \cdot I^2 = \frac{U^2}{R} \]
Magnetische Kraft zweier paralleler Leiter \(\text{Gleichung (3.6.1)} \)

\[
F_M = \text{const} \cdot \frac{\ell \cdot I_1 \cdot I_2}{r}
\]

Magnetische Kraft auf eine sich parallel zu einem Strom bewegende Ladung \(\text{Gleichung (3.7.22)} \)

\[
F_z(r) = \frac{q \cdot v \cdot I}{2\pi \varepsilon_0 \cdot c^2} \cdot \frac{1}{r}
\]

Lorentz-Kraft \(\text{Gleichung (3.8.1)} \)

\[
F_L = q \, v \times B
\]

Induktionskonstante \(\text{Gleichung (3.8.3)} \)

\[
\mu_0 = \frac{1}{\varepsilon_0 c^2}
\]

Magnetfeld eines geraden Leiters mit dem Strom \(I \) \(\text{Gleichung (3.8.4)} \)

\[
B(r) = \frac{\mu_0}{2\pi} \cdot \frac{I}{r}
\]

Kraftgesetz der Elektrodynamik \(\text{Gleichung (3.8.13)} \)

\[
\mathbf{F} = q \cdot \mathbf{E} + q \cdot \mathbf{v} \times \mathbf{B}
\]

Biot-Savart-Kraft \(\text{Gleichung (3.8.16)} \)

\[
d\mathbf{F} = I \cdot d\mathbf{l} \times \mathbf{B}
\]

Ampèresches Durchflutungsgesetz, Integralform \(\text{Gleichung (3.8.32)} \)

\[
\oint_S \mathbf{B} \cdot d\mathbf{s} = \mu_0 \oint_{A(S)} i \cdot da
\]

Ampèresches Durchflutungsgesetz, differentielle Form \(\text{Gleichung (3.8.34)} \)

\[
\text{rot } \mathbf{B} = \mu_0 i
\]

Quellenfreiheit von \(\mathbf{B} \), Integralform \(\text{Gleichung (3.8.41)} \)

\[
0 = \oiint_A \mathbf{B} \cdot da = \iiint_{V(A)} \text{div } \mathbf{B} \, dV
\]

Quellenfreiheit von \(\mathbf{B} \), differentielle Form \(\text{Gleichung (3.8.42)} \)

\[
\text{div } \mathbf{B} = 0
\]
Elektrische Ströme

Ampèresches Durchflutungsgesetz und Quellenfreiheit (Vektorpotential)
Gleichung (3.8.48)

\[\Delta A(x, y, z) = -\mu_0 \mathbf{i}(x, y, z) \]

Berechnung des Vektorpotentials Gleichung (3.8.49)

\[A(r) = \frac{\mu_0 I}{4\pi} \int \int \int \frac{\mathbf{i}(r')}{|r - r'|} dV' \]

Integralform der Formel von Laplace Gleichung (3.8.53)

\[B(r) = \frac{\mu_0 I}{4\pi} \oint_{\text{Leiter}} \frac{d\mathbf{\ell} \times \mathbf{\rho}}{\rho^3} \]

Hall-Spannung Gleichung (3.9.3)

\[U_{\text{Hall}} = \frac{I \cdot B}{q \cdot b \cdot n} \]

Lorentztransformation der Felder Gleichung (3.10.21)

\[
\begin{align*}
E'_x &= \gamma(v_y) \left(E_x + v_y \cdot B_z \right) \\
E'_y &= E_y \\
E'_z &= \gamma(v_y) \left(E_z - v_y \cdot B_x \right) \\
B'_x &= \gamma(v_y) \left(B_x - \frac{v_y}{c^2} E_z \right) \\
B'_y &= B_y \\
B'_z &= \gamma \left(B_z + \frac{v_y}{c^2} E_x \right)
\end{align*}
\]

Lorentztransformation der Felder Gleichung (3.10.22)

\[
\begin{align*}
E'_x &= \gamma(v_y) \left(E_x + \frac{v_y}{c^2} \frac{1}{\varepsilon_0} \cdot H_z \right) \\
E'_y &= E_y \\
E'_z &= \gamma(v_y) \left(E_z - \frac{v_y}{c^2} \frac{1}{\varepsilon_0} H_x \right) \\
H'_x &= \gamma(v_y) \left(H_x - v_y \varepsilon_0 E_z \right) \\
H'_y &= H_y \\
H'_z &= \gamma(v_y) \left(H_z + v_y \varepsilon_0 E_x \right)
\end{align*}
\]
4. Elektrodynamik: zeitlich veränderliche Magnetfelder und magnetische Induktionen

Das allgemeine Kraftgesetz für statische Felder lautet

\[\mathbf{F} = q \cdot \mathbf{v} \times \mathbf{B} + q \cdot \mathbf{E} \] \hspace{1cm} (4.0.1)

Bei zeitlich sich ändernden Feldern kommen neue Effekte hinzu, der VERSCHIEBUNGSTROM und die INDIKTION.

4.1. Das Faradaysche Induktionsgesetz

4.1.1. Eine bewegte Leiterschleife in einem stationären \(B \)-Feld

Abbildung 4.1.: Induktion eines Stromes in einer in einer inhomogenen magnetischen Induktion bewegten Leiterschlaufe.

Wir bewegen eine Leiterschlaufe mit der Geschwindigkeit \(\mathbf{v} \) aus dem begrenzten Gebiet mit einer homogenen magnetischen Induktion heraus. Auf die beweglichen Ladungsträger, hier positiv angenommen, wirkt die Lorentzkraft \(\mathbf{F}_L \). Auf den horizontalen Teilen der Leiterschlaufe kennen wir den Effekt: eine Hallspannung (Siehe Abschnitt 3.39) auf. Im vertikalen Teil im Magnetfeld bewirkt die Hallspannung eine Beschleunigung der Ladungsträger. Nach der Definition der elektromotorischen Kraft (Siehe Gleichung (3.3.9)) haben wir

\[U_{EMK} = \frac{1}{q_0} \oint \mathbf{F} \cdot d\mathbf{s} = \frac{1}{q_0} \oint \mathbf{F}_L \cdot d\mathbf{s} = \frac{1}{q_0} \int_{P_1}^{P_2} \mathbf{F}_L \cdot ds = \frac{1}{q_0} (q_0 \cdot \mathbf{v} \cdot \mathbf{B}) \cdot \mathbf{b} = \mathbf{v} \cdot \mathbf{B} \cdot \mathbf{b} \] \hspace{1cm} (4.1.1)
Hat die Drahtschlaufe den Widerstand \(R \), so fließt der Strom

\[
I = \frac{U_{EMK}}{R}
\]
(4.1.2)

Versuch zur Vorlesung:
Induktion (Versuchskarte EM025)

Versuch zur Vorlesung:
Induktion im Erdfeld (Versuchskarte EM027)

4.1.2. Der magnetische Fluss

(Siehe Leisi, Klassische Physik II [Lei98, pp. 138]) (Siehe Tipler, Physik [TM04, pp. 876])

Im Zusammenhang mit den elektrischen Feldern \(E \) hatten wir den elektrischen Fluss \(\phi_E \) (Siehe Abschnitt 2.3) eingeführt. Hier bewegen wir die Leiterschleife mit der Geschwindigkeit \(v \), wir ändern damit die vom Magnetfeld durchflossene Fläche \(A \) um die Größe \(da = -d\ell \cdot b \). Da die Geschwindigkeit \(v = d\ell/dt \) ist, können wir auch schreiben

\[
U_{EMK} = v \cdot B \cdot b = \frac{d\ell}{dt} b \cdot B = -\frac{da}{dt} B = -B \cdot \frac{da}{dt}
\]
(4.1.3)

schreiben. Wir definieren den magnetischen Fluss

\[
\phi_B = \iint_{A(S)} B \cdot da
\]
(4.1.4)

durch die von der geschlossenen Kurve \(S \) berandete Fläche \(A \)

Damit ist die induzierte EMK

\[
U_{EMK} = -\frac{d\phi_B}{dt} = -\frac{d}{dt} \iint_{A(S)} B \cdot da
\]
(4.1.5)

Sie wird durch den zeitlich sich ändernden Fluss erzeugt.

Die Einheit des magnetischen Flusses ist **Weber**.

\[
1 \text{ Weber} = 1 \text{ Wb} = 1 \text{ T m}^2
\]
(4.1.6)

Das Minuszeichen in den Gleichungen für den magnetischen Fluss rührt daher, dass eine Geschwindigkeit in die positive \(x \)-Richtung eine Verkleinerung der Fläche \(A \) bewirkt.
Das durch den Strom erzeugte Magnetfeld ist so gerichtet, dass die Bewegung der Spule gebremst wird. Dieses Verhalten wird in der Lenzschen Regel zusammengefasst:

Die Induktionsspannung und der Strom, den sie bewirkt, sind stets so gerichtet, dass sie der Ursache entgegenwirken.

Abbildung 4.2.: Vergleich eines Stabmagneten mit einer Spule. Der magnetische Nordpol ist üblicherweise rot, der Südpol grün markiert.

Die Nord- und Südpole der Magnete sind so definiert: Die B-Feldlinien laufen vom Nordpol zum Südpol. Der Nordpol ist rot markiert, der Südpol grün.

Abbildung 4.3.: Induzierte Spannung

Bewegt man einen Magneten mit der Geschwindigkeit \(\mathbf{v} \) von einem Stabmagneten weg, so bewirkt die Lorentzkraft einen Strom \(I \), der ein Magnetfeld \(B_{\text{ind}} \) induziert. Dieses Magnetfeld ist so gerichtet, dass es gleichsinnig wie das Magnetfeld des Stabes ist. Der Metallring wird also vom Stabmagneten angezogen und in seiner Bewegung nach rechts gebremst (Lenzsche Regel).
Elektrodynamik: zeitlich veränderliche Magnetfelder und magnetische Induktionen

Abbildung 4.5.: Selbstinduktion

Wenn eine Spule von einem Strom durchflossen ist, wird dadurch ein Magnetfeld erzeugt. Wenn nun der Strom durch die Spule geändert wird, wird eine Spannung induziert, die wie im vorigen Falle so gerichtet ist, dass sie der Änderung des Magnetfeldes entgegenwirkt, so also auch der Änderung des durch die Spule fließenden Stromes. Im besonderen Falle, dass der Strom abgeschaltet wird, dass also der Widerstand im Stromkreis um viele Größenordnungen steigt, bildet sich eine sehr hohe Spannung.

Anwendungen

- Zündspule bei Benzinmotoren
- Erzeugung der Beschleunigungsspannung in Fernsehröhren
4.1.3. Induktionsgesetz von Faraday, Integral- und Differentialform

Wir betrachten die Situation in der Abbildung 4.1 im Ruhesystem S' der Schleife. Im Laborsystem S ist das Magnetfeld

$$B = (0, 0, B_z)$$

in die z-Richtung gerichtet. Die Geschwindigkeit zeigt in die y-Richtung. Mit der Lorentztransformation (3.10.21) berechnen wir die Felder im System S'. Wir erhalten

$$B' = (0, 0, B'_z) = (0, 0, \gamma(v_y) \cdot B_z)$$ \hspace{1cm} (4.1.7)

$$E' = (E'_x, 0, 0) = (v \cdot \gamma(v_y) \cdot B_z, 0, 0)$$

$$= (v_y \cdot B'_z, 0, 0)$$

Die Leiterschleife ist im System S' in Ruhe. Also muss die EMK durch das elektrische Feld erzeugt werden.

$$U'_{EMK} = E'_x \cdot b = v_y \cdot B'_z \cdot b$$ \hspace{1cm} (4.1.8)

Die Flussänderung ist

$$d\phi'_B = -B'_z \cdot v_y \cdot b \cdot dt'$$ \hspace{1cm} (4.1.9)

Somit lauten das Induktionsgesetz und das Ohmsche Gesetz

$$U'_{EMK} = -\frac{d\phi'_B}{dt'}$$ \hspace{1cm} (4.1.10)

$$U'_{EMK} = R \cdot I'$$

Somit gilt für die EMK die Transformation

$$U'_{EMK} = \gamma(v)U_{EMK}$$ \hspace{1cm} (4.1.11)

Die Gleichungen (4.1.11) gelten in jedem Falle. Wenn $v \ll c$ ist, kann man die Unterschiede im Strom I, in der EMK U_{EMK} und im Magnetfeld B vernachlässigen. Die Transformationseigenschaften zeigen, dass das Induktionsgesetz auch bei stationären Leiterschleifen und zeitlich ändernden Magnetfeldern gelten muss (wir begeben uns in das System S'). Die Wirkungen der Felder B und E sind unabhängig von ihrer Entstehung.

Versuch zur Vorlesung:

Magnetische Induktion (Versuchskarte EM051)
Für einen beliebig geformten ruhenden Leiter (gegeben durch die Kurve S) in einem zeitlich ändernden Magnetfeld gilt für die EMK

$$U_{EMK} = -\frac{d}{dt} \int_{A(S)} B \cdot da$$ \hspace{1cm} (4.1.12)

Da der Leiter in Ruhe ist, muss die EMK durch ein elektrisches Feld erzeugt sein.

$$U_{EMK} = \oint_S E \cdot ds$$ \hspace{1cm} (4.1.13)

und damit

$$\oint_S E \cdot ds = -\frac{d}{dt} \int_{A(S)} B \cdot da$$ \hspace{1cm} (4.1.14)

Bei einer bewegten Leiterschlaufe kann der magnetische Fluss sich ändern,

a) weil sich der Fluss mit der Zeit ändert und/oder

b) weil sich die Berandung bewegt, sich ihr Ort also ändert.

Für eine bewegte Leiterschlaufe muss das elektrische Feld E' im bewegten Bezugs- system und die magnetische Induktion B im Laborsystem berechnet werden [Jac75, p. 210]. ds' ist das Linienelement im Ruhesystem, in dem E' gemessen wird. Wir erhalten

$$\oint_S E' \cdot ds' = -\frac{d}{dt} \int_{A(S)} B \cdot da$$ \hspace{1cm} (4.1.15)

Mit der Gleichung (C.8.40) für die Beziehung zwischen zeitlichen Ableitungen in Ruhesystemen und mitgeführten Systemen und dem Satz von Stokes (Siehe Gleichung (C.11.1)) erhalten wir

$$U_{EMK}' = \oint_S E' \cdot ds' = -\frac{d}{dt} \int_{A(S)} B \cdot da$$

$$= - \int_{A(S)} \left[\frac{\partial}{\partial t} B + \text{rot} (B \times v) \right] \cdot da$$

$$= - \int_{A(S)} \frac{\partial}{\partial t} B \cdot da - \oint_S (B \times v) \cdot ds'$$ \hspace{1cm} (4.1.16)

Dies kann auch so geschrieben werden:

$$\oint_S [E' + (B \times v)] \cdot ds' = - \int_{A(S)} \frac{\partial}{\partial t} B \cdot da$$ \hspace{1cm} (4.1.17)

Wenn man sich nach Jackson [Jac75, p. 212] alternativ vorstellt, dass der Weg S zu einem Zeitpunkt fix im Raum ist, gilt auch

$$\oint_S E \cdot ds = - \int_{A(S)} \frac{\partial}{\partial t} B \cdot da$$ \hspace{1cm} (4.1.18)
Deshalb erhalten wir für das elektrische Feld \(E \) im Laborsystem

\[
\oint_S [E' + (B \times v)] \cdot ds' = \oint_S E \cdot ds
\]
(4.1.19)

Bei kleinen Geschwindigkeiten ist \(ds = ds' \).
Damit ist

\[
E' + (B \times v) = E \implies E' = (v \times B) + E
\]
(4.1.20)

Weiter kann man daraus die Lorentzkraft ableisen:

\[
F_L \approx F'_L = qE' = q(E + v \times B)
\]
(4.1.21)

Zurück zum Faradayschen Induktionsgesetz: Mit Gleichung (4.1.20) kann in Gleichung (4.1.17) \(E' \) eliminiert werden. Das universelle Induktionsgesetz von Faraday lautet

\[
\oint_S E \cdot ds = - \iint_{A(S)} \frac{\partial}{\partial t} B \cdot da
\]
(4.1.22)

Mit dem Satz von Stokes (Siehe Gleichung (C.11.1)) erhält man

\[
\oint_S E \cdot ds = \iint_{A(S(t))} \text{rot} E \cdot da = - \iint_{A(S(t))} \frac{\partial B}{\partial t} \cdot da
\]
(4.1.23)

Für zeitunabhängige Berandungen \(A(S) \) darf man Ableitung und Integral nicht vertauschen. Das Induktionsgesetz lautet dann

\[
\oint_S E \cdot ds = - \frac{d}{dt} \iint_{A(S)} B \cdot da
\]

Da diese Integralgleichung für beliebige Kurven \(S \) gelten muss, also auch für infinitesimal kleine, erhalten wir die differentielle Form des Faradayschen Induktionsgesetzes

\[
\text{rot} E = - \frac{\partial B}{\partial t}
\]
(4.1.24)

4.1.4. Wirbelströme

Versuch zur Vorlesung:
Fallrohre (Versuchskarte EM057)

Abbildung 4.6.: Wirbelströme in Metallen

Wenn sich ein Metallstück in einem inhomogenen Magnetfeld befindet, dann muss für jede Bahnkurve S das Faradaysche Induktionsgesetz gelten. Da der Leiter einen spezifischen Widerstand ρ_{el} hat, fließt bei einer Änderung des Flusses durch S, zum Beispiel, indem man den Leiter bewegt, ein durch die induzierte Spannung getriebener Strom. Die Richtung des Stromes ist so, dass er sich einer Änderung des magnetischen Flusses widersetzt. Bei einem perfekten Leiter, müssten enorm grosse Kräfte aufgebracht werden, um das Metallstück mit einer minimalen Geschwindigkeit bewegen zu können. Durch die Dissipation im Ohmschen Leiter wird der induzierte Strom geschwächt, so dass die der Bewegung entgegengesetzte Kraft umso kleiner ist, je schlechter die Leitfähigkeit des Metalls ist.

Um die Größenordnung des Wirbelstromes abzuschätzen betrachten wir lokal ein Stück Metall das mit der Geschwindigkeit v_y durch eine magnetische Induktion in die x-Richtung, B_x, gezogen wird. Wir betrachten die Felder im Ruhesystem der Platte. Aus den Lorentz-Transformationen erhalten wir

$$E_z' = -\frac{v_y B_x}{\sqrt{1 - v_y^2/c^2}} \approx -v_y B_x$$
$$B_x' = \frac{B_x}{\sqrt{1 - v_y^2/c^2}} \approx B_x$$ (4.1.25)

da $v^2/c^2 \ll 1$ ist. Lokal gilt der Zusammenhang

$$i = \sigma E$$ (4.1.26)

Weiter können wir aus $P = IU$ mit $i = I/A$ und $E_z' = U/d$ und der Bezeichnung für das Volumen $V = A d$ schreiben

$$\lim_{V \to 0} \frac{P}{V} = P_V = \lim_{V \to 0} \frac{i A \cdot E_z' d}{V} = i E_z' = \sigma E_z'^2$$ (4.1.27)

Andererseits hängt die dissipierte Leistung pro Volumen von der Volumenkraft F_V
und der Geschwindigkeit \(v_y\) ab.

\[
P_V = F_V \cdot v_y = \sigma E_z^2 = \sigma (v_y B_x')^2 = \sigma (v_y B_x)^2
\] (4.1.28)

Die Volumenkraft ist also

\[
F_V = \sigma v_y B_x^2
\] (4.1.29)

Abbildung 4.7.: Bewegung eines Leiters aus einem Magnetfeld.

In Transformatoren ist die magnetische Induktion parallel zum Eisen, die Wirbelströme transversal dazu. Die Wirbelströme können vermindert werden, indem das Metall geschlitzt wird oder in Lagen mit Isolatoren dazwischen gebündelt wird.

Anwendungen

- Wirbelstrombremse beim ICE
- Retarder in LKWs
• Dämpfung von Schwingungen in Rastertunnelmikroskopen
• In Transformatoren und Motoren verwendet man geschlitzte Bleche

Beispielswerte

<table>
<thead>
<tr>
<th>B/T → v/(m/s)</th>
<th>Cu</th>
<th>0.1</th>
<th>Al</th>
<th>0.1</th>
<th>Fe</th>
<th>0.1</th>
<th>Gd</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>5.8·10⁻⁵</td>
<td>5.8·10⁻³</td>
<td>3.7·10⁻⁵</td>
<td>3.7·10⁻³</td>
<td>0.00001</td>
<td>0.001</td>
<td>2.56·10⁻⁵</td>
<td>0.000256</td>
<td>7.40·10⁻⁷</td>
</tr>
<tr>
<td>0.1</td>
<td>5.8·10⁻⁵</td>
<td>5.8·10⁻³</td>
<td>3.7·10⁻⁵</td>
<td>3.7·10⁻³</td>
<td>0.00001</td>
<td>0.01</td>
<td>0.000256</td>
<td>0.00256</td>
<td>7.40·10⁻⁷</td>
</tr>
<tr>
<td>1</td>
<td>5.8·10⁻⁵</td>
<td>5.8·10⁻³</td>
<td>3.7·10⁻⁵</td>
<td>3.7·10⁻³</td>
<td>0.00001</td>
<td>0.1</td>
<td>0.000256</td>
<td>0.0256</td>
<td>7.40·10⁻⁷</td>
</tr>
</tbody>
</table>

| Tabelle 4.1.: Wirbelstromkräfte in N/m³ von Magneten mit 0.1 T und 1 T auf Platten mit der Geschwindigkeit v aus verschiedenen Materialien. |

4.1.5. Unendlich lange Spule

Eine unendlich lange Spule kann man sich aus kreisförmigen Leitern zusammengesetzt denken.

Abb. 4.8.: Die magnetische Induktion am Punkt 0 auf der z-Achse kann berechnet werden, indem man Gleichung (3.8.54) die magnetische Induktion eines Rings mit der Stromdichte \(I \cdot n \cdot dz \) berechnet und dann über alle Ringströme addiert wird.

Wir berechnen zuerst die magnetische Induktion eines Kreisringes mit dem Radius \(r \) im Abstand \(z \) vom Nullpunkt \((r' = (x, y, z)) \) am Nullpunkt \((r = (0, 0, 0)) \). Ausgehend von Gleichung (3.8.54) schreiben wir für einen Kreisring auf der Position \(z \) mit dem Radius \(r \) für \(\rho \).

\[
\rho = r - r' = (-x, -y, -z)
\]

Da \(r \) konstant ist, schreiben wir \(x \) und \(y \) als Funktion des Winkels \(\phi \)

\[
\rho = (-r \cos(\phi), -r \sin(\phi), -z)
\]
Der Strom I soll im Gegenuhrzeigersinn umlaufen, also in positiver Richtung. Ein Längenelement entlang des Kreisringes ist

$$d\ell = (-y, x, 0) \cdot \frac{d\ell}{r} = (-\sin(\phi), \cos(\phi), 0) r d\phi$$

Das Vektorprodukt $d\ell \times \rho$ ergibt

$$d\ell \times \rho = \left(-rz\cos(\phi), -rz\sin(\phi), r^2\right) d\phi$$

Mit dem Strom pro Windung I wird die magnetische Induktion am Punkte $(0, 0, 0)$

$$B = \frac{\mu_0 I}{4\pi} \oint \frac{d\ell \times \rho}{\rho^3}$$

Die x- und die y-Komponenten von $d\ell \times \rho$ enthalten eine Winkelfunktion zur ersten Potenz und ergeben bei einer Integration von 0 nach 2π null. Die z-Komponente der magnetischen Induktion ist

$$B_z = \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \frac{r^2 d\phi}{(r^2 + z^2)^{3/2}} = \frac{\mu_0 I r^2}{2 (r^2 + z^2)^{3/2}} \quad (4.1.30)$$

Die magnetische Induktion einer unendlich langen Spule bekommt man, indem wir den Strom I durch das Produkt aus Strom I, der Windungszahl pro Länge (Windungsdichte) n und dem Längenelement dz ersetzen und integrieren.

$$B_z(0) = \int_{-\infty}^{\infty} \frac{\mu_0 I r^2 dz}{2 (r^2 + z^2)^{3/2}} = \mu_0 I n \quad (4.1.31)$$

Wird die unendlich lange Spule bei $z = 0$ geteilt, tragen beide Spulenhälften gleichviel zur magnetischen Induktion bei $z = 0$ bei. Wird nun eine Hälfte entfernt, so ist die magnetische Induktion auf der Spulenachse

$$B_z(\text{Endfläche}) = \frac{B_z(0)}{2} = \frac{\mu_0 n I}{2} = \frac{\mu_0 N I}{2\ell} \quad (4.1.32)$$

Endlich lange Spulen der Länge $\ell \gg r$ verhalten sich wie unendlich lange Spulen. Wenn sich auf der Länge ℓ N Windungen befinden, haben wir

$$B_z(\text{innen}) = \frac{\mu_0 N}{\ell} I = \mu_0 n I \quad (4.1.33)$$

4.1.6. Transformator

Der magnetische Fluss in einer Spule entsteht durch Ströme in dieser Spule selber, oder in anderen Spulen. Nach dem Gesetz von Laplace oder Biot-Savart (Siehe Gleichung (3.8.54)) ist die magnetische Induktion proportional zum Strom. Somit ist auch der Fluss ϕ_B proportional zum Strom. Diese Proportionalität wird mit

$$\phi_B = L \cdot I \quad (4.1.34)$$
ausgedrückt, wobei L die Selbstinduktivität der Spule ist.

Die Einheit der Induktivität ist

$$1 \text{ H} = 1 \text{ Henry} = 1 \text{ Wb/A} = 1 \text{ Tm}^2/\text{A}$$

In den meisten Fällen ist es schwierig, die Selbstinduktivität einer Schaltung zu berechnen. Für eine lange, dicht gewickelte Spule ergibt Gleichung (4.1.33) die magnetische Induktion

$$B = \mu_0 \frac{N}{\ell} I$$

(4.1.35)

Dabei ist $N = n \cdot \ell$ die Anzahl Windungen auf der Länge ℓ. Die magnetische Induktion B hängt von der Dichte der Windungen ab, nicht aber von der Länge der Spule. Hat die Spule den Querschnitt A, so ist der Fluss

$$\phi_B = N \cdot B \cdot A = \mu_0 \frac{N^2}{\ell} I \cdot A = \mu_0 n^2 A \ell I$$

(4.1.36)

Damit ist die Induktivität der Spule

$$L = \frac{\phi_B}{I} = \mu_0 \frac{N^2}{\ell} A = \mu_0 n^2 A \ell$$

(4.1.37)

Die magnetische Permeabilität μ_0 kann also auch als

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ Henry/m}$$

(4.1.38)

Die Änderung der Stromstärke bedingt eine Änderung des magnetischen Flusses.

$$\frac{d\phi_B}{dt} = \frac{d(LI)}{dt} = L \frac{dI}{dt}$$

(4.1.39)

Somit wird mit Gleichung (4.1.5)

$$U = -\frac{d\phi_B}{dt} = -L \frac{dI}{dt}$$

(4.1.40)

Mit dieser Gleichung wird die Funktionsweise des Funkeninduktors klar.

Versuch zur Vorlesung:

Funkeninduktor (Versuchskarte EM017)
Das Faradaysche Induktionsgesetz

Abbildung 4.9.: Zwei gekoppelte Stromkreise

Der magnetische Fluss am Punkt P_2 hängt sowohl vom Strom I_2 wie auch vom Strom I_1 ab:

$$\phi_B(P_2) = L_2 \cdot I_2 + M_{12} \cdot I_1$$ \hspace{1cm} (4.1.41)

Ebenso hängt der magnetische Fluss am Punkt P_1 von beiden Strömen ab

$$\phi_B(P_1) = L_1 \cdot I_1 + M_{21} \cdot I_2$$ \hspace{1cm} (4.1.42)

Neben der Selbstinduktivität L_i müssen bei realen Systemen auch die Gegeninduktivitäten M_{ij} berücksichtigt werden. Wie bei den Induktivitäten hängt auch bei den Gegeninduktivitäten die Größe allein von der Geometrie ab.

Abbildung 4.10.: Symbolische Darstellung eines Transformators

Im allgemeinen ist es schwierig, die Gegeninduktivitäten zu berechnen. Bei zwei ineinander gewickelten Spulen, einem Beispiel für einen Transformator, gelingt dies. Wir wollen das Beispiel verwenden, um zu zeigen, dass $M_{12} = M_{21}$ ist. Durch die Spule 1 (Länge ℓ, Radius r_1, Windungsdichte $n_1 = N_1/\ell$) fließt der Strom I_1, durch die zweite Spule 2 (Länge ℓ, Radius r_2, Windungsdichte $n_2 = N_2/\ell$) soll der Strom I_2 fließen. Da wir lange Spulen betrachten, ist das Magnetfeld im Inneren der Spulen homogen. Also ist

$$B_1 = \mu_0 n_1 I_1$$ \hspace{1cm} (4.1.43)

Außerhalb der Spule 1 ist das Magnetfeld $B_1 = 0$ (Annahme einer langen Spule). Deshalb ist der Fluss durch den Strom I_1 für die Spule 2 gegeben durch

$$\phi_{B_2} = N_2 \cdot B_1(\pi r_1^2) = n_2 \ell B_1(\pi r_1^2) = \mu_0 n_1 n_2 \ell (\pi r_1^2) I_1$$ \hspace{1cm} (4.1.44)
Die Gegeninduktivität M_{12} ist also

$$M_{12} = \frac{\dot{\phi}_B}{I_1} = \mu_0 n_1 n_2 \ell (\pi r_1^2) \quad (4.1.45)$$

Im entgegengesetzten Falle beginnen wir mit

$$B_2 = \mu_0 n_2 I_2 \quad (4.1.46)$$

Der für die Spule 1 relevante Fluss ist durch die von der Spule 1 umschlossene Fläche, also $N_1(\pi r_1^2)$ gegeben.

$$\phi_{B_1} = N_1 \cdot B_2(\pi r_1^2) = n_1 \mu_0 n_2 I_2(\pi r_1^2) = \mu_0 n_1 n_2 \ell (\pi r_1^2) I_2 \quad (4.1.47)$$

Damit wird die Gegeninduktivität

$$M_{21} = \frac{\dot{\phi}_{B_1}}{I_2} = \mu_0 n_1 n_2 \ell (\pi r_1^2) = M_{12} \quad (4.1.48)$$

Diese Beziehung, die an einem Spezialfall gezeigt wurde, gilt auch allgemein (ohne Beweis).

Abbildung 4.11.: Schematischer Aufbau eines Transformators

Die in einem Transformator induzierte Spannung kann wie folgt berechnet werden. In der Spule 1 fällt die Spannung

$$U_{L,1} = N_1 \frac{d\phi_B}{dt} \quad (4.1.49)$$

ab. Diese Spannung muss durch die Wechselspannungsquelle U erzeugt werden, so dass

$$U = U_{L,1} = N_1 \frac{d\phi_B}{dt} \quad (4.1.50)$$

ist. Durch die Anordnung des Eisens wird erreicht, dass der gesamte durch die erste Spule erzeugte magnetische Fluss durch die zweite Spule fließt. Dort haben wir die induzierte Spannung

$$U_2 = -N_2 \frac{d\phi_B}{dt} \quad (4.1.51)$$
und somit

\[U_2 = -\frac{N_2}{N_1} U_1 \quad (4.1.52) \]

\(N_2/N_1 \) heisst der ÜBERTUNGSFAKTOR des Transformators.

Wird der Ausgang des Transformators mit dem OHMSCHEN WIDERSTAND \(R \) belastet, fliessst der STROM \(I_2 \), der zu \(U_2 \) in Phase ist. Dieser STROM erzeugt einen magnetischen Fluss \(\phi'_B \propto N_2 I_2 \), der den ursprünglichen Fluss \(\phi_B \) durch die Spule 2 schwächt. Da durch beide Spulen der gleiche magnetische Fluss fliessst, muss auch der Fluss durch die erste Spule geschwächt werden. Da die SPANNUNG durch die Spannungsquelle \(U \) vorgegeben ist, muss der STROM \(I_1 \) auf der Primärseit zusätzlic fließen, so dass \(\phi'_B \propto N_1 I_1 \) gilt. Da die Proportionalitätsfaktoren bis auf das Vorzeichen gleich sind, gilt dann auch

\[I_2 = -\frac{N_1}{N_2} I_1 \quad (4.1.53) \]

Wenn wir die Effektivwerte betrachten haben wir damit

\[U_2 I_2 = \left[-\frac{N_2}{N_1} U_1 \right] \left[-\frac{N_1}{N_2} I_1 \right] = U_1 I_1 \quad (4.1.54) \]

sofern man Verluste vernachlässigt. **Ideale Transformatoren übertragen also verlustfrei Leistung.**
4.1.7. Kirchhoffsche Gesetze

In einer komplizierten elektrischen Schaltung betrachtet man eine einzelne Masche. Nach der Definition der EMK muss eine Probeladung langsam um die Masche herumgeführt werden. Dies führt auf die Maschenregel

\[\sum_{\forall k \text{ Quellen}} U_k = \sum_{\forall j \text{ Verbraucher}} U_j \] (4.1.55)

wobei die Vorzeichen entsprechend dem Umlaufsinn einzusetzen sind. In unserem Beispiel bedeutet dies:

\[U_1 - U_2 = U_R + U_L \]

Die Knotenregel ist ein Ausdruck für die Ladungserhaltung. Wenn wir zum Beispiel alle zufliessenden Ströme positiv und alle wegfliessenden Ströme negativ zählen (oder umgekehrt), gilt an jedem Knoten

\[\sum_{\forall k \text{ eines Knotens}} I_k = 0 \] (4.1.56)

Mit diesen beiden Regeln sowie der Kenntnis der Charakteristika der Bauelemente kann jede statische oder quasistatische elektronische Schaltung berechnet werden.

4.1.8. Wechselstromkreise, Impedanzen

In diesem Abschnitt betrachten wir die Wirkung von cosinusförmigen Wechselspannungen

\[U \equiv U(t) = U_0 \cos (\omega t - \varphi) \] (4.1.57)

Die Zeitskala für die Wechselspannung wird so gewählt, dass \(\varphi = 0 \) ist. Weiter setzen wir voraus, dass die zeitliche Änderung aller Grössen so gering sind, dass
4.1 Das Faradaysche Induktionsgesetz

wir wie im stationären Falle rechnen können. Wir dies den quasistationären Fall.

Abbildung 4.13.: Definition von Strömen und Spannungen bei Wechselspannungen

Da bei Wechselspannungen a priori keine Stromrichtung vorgegeben ist, definiert man, zum Beispiel wie in der Abbildung oben, die Stromrichtung zu einem bestimmten Zeitpunkt, hier für \(t = 0 \). Zu jedem Zeitpunkt muss die Spannung im Stromkreis insgesamt null sein. Also ist

\[U - U_R = 0 \quad (4.1.58) \]

und mit dem Ohmschen Gesetz

\[U_0 \cos(\omega t) - I \cdot R = 0 \quad (4.1.59) \]

oder

\[I(t) = \frac{U_0}{R} \cos(\omega t) = I_0 \cos(\omega t) \quad (4.1.60) \]

Der Strom und die Spannung erreichen immer dann einen Extremwert, wenn \(\omega t \) ein ganzzahliges Vielfaches von \(\pi \) ist. Der durch einen Widerstand fließende Strom ist in Phase mit der Spannung.

Die momentane Leistung am Widerstand ist

\[P(t) = U(t) \cdot I(t) = U_0 \cos(\omega t) \cdot \frac{U_0}{R} \cos(\omega t) = \frac{U_0^2}{R} \cos^2(\omega t) = I_0^2 R \cos^2(\omega t) \quad (4.1.61) \]

Der Mittelwert der Leistung ist (\(\langle \cos^2 \omega t \rangle_t = 1/2 \))

\[\langle P(t) \rangle = \frac{1}{2} \frac{U_0^2}{R} = \frac{1}{2} I_0^2 R \quad (4.1.62) \]

Unter dem Effektivwert der Spannung (des Stromes) versteht man diejenige Gleichspannung, die an einem Ohmschen Widerstand die gleiche Verlustleistung erzeugt. Also ist für sinusförmige Spannungen

\[U_{eff} = \frac{1}{\sqrt{2}} U_0 \quad (4.1.63) \]

beziehungsweise

\[I_{eff} = \frac{1}{\sqrt{2}} I_0 \quad (4.1.64) \]

Für beliebige Spannungsverläufe (Stromverläufe) ist der Effektivwert (auch rms-
Wert von "Root Mean Square")

\[U_{\text{eff}} = U_{\text{rms}} = \sqrt{\frac{1}{T} \int_{t}^{t+T} U^2(\tau) d\tau} \quad (4.1.65) \]

wobei \(T \) eine Zeit ist, die bei periodischen Signalen der Periodendauer entspricht und bei zufälligen Signalen lang gegenüber der charakteristischen Zeitdauer der Schwankungen sein muss. Für Ströme gilt die analoge Formel

\[I_{\text{eff}} = I_{\text{rms}} = \sqrt{\frac{1}{T} \int_{t}^{t+T} I^2(\tau) d\tau} \quad (4.1.66) \]

Versuch zur Vorlesung:

Wechselstromwiderstand (Versuchskarte EM053)

![Spule mit Wechselspannung](image)

Abbildung 4.14.: Spule mit Wechselspannung

Wir verwenden Gleichung (4.1.40) um die Spannung über der Spule zu berechnen. Die induzierte Spannung ist der Flussänderung entgegengesetzt. Sie wirkt so, dass die Zunahme des Stromes bei zunehmender Anregungsspannung gebremst wird. Deshalb ist

\[U - U_L = 0 = U - L \frac{dI}{dt} \quad (4.1.67) \]

Setzen wir \(U = U_0 \cos(\omega t) \) ein, erhalten wir

\[\frac{dI}{dt} = \frac{U_0}{L} \cos(\omega t) \quad (4.1.68) \]

und damit

\[I(t) = \frac{U_0}{L} \int_{0}^{t} \cos(\omega \tau) d\tau = \frac{U_0}{L \omega} \sin(\omega t) = \frac{U_0}{L \omega} \cos(\omega t - \frac{\pi}{2}) \quad (4.1.69) \]

Der Strom hat also den Scheitelwert

\[I = \frac{U_0}{\omega L} = \frac{U_0}{X_L} \quad (4.1.70) \]
wobei $X_L = \omega L$ die Impedanz oder der induktive Widerstand der Spule ist. Die Einheit der Impedanz ist gleich wie die Einheit des Widerstandes, das Ohm. Der Strom folgt der Spannung mit einer Phasenverschiebung von $-\pi/2$. Für die Effektivwerte gilt $I_{\text{eff}} = U_{\text{eff}}/X_L$, da für sinusförmige Spannungen und Ströme der gleiche Faktor zur Umrechnung von Scheitelwerten zu Effektivwerten verwendet werden muss.

Die momentan dissipierte Leistung an einer Spule ist

$$P(t) = U(t) \cdot I(t) = U_0 \cos(\omega t) \cdot \frac{U_0}{\omega L} \cos(\omega t - \frac{\pi}{2}) = \frac{U_0^2}{\omega L} \cos(\omega t) \sin(\omega t) \quad (4.1.71)$$

Die dissipierte Leistung kann sowohl positiv wie auch negativ sein. Die mittlere dissipierte Leistung ist

$$\langle P \rangle_t = \frac{U_0^2}{\omega L} \langle \cos(\omega t) \sin(\omega t) \rangle_t = 0 \quad (4.1.72)$$

Im Mittel wird also keine Leistung an einer Spule dissipiert.

Abbildung 4.15.: Kondensator mit Wechselspannung

Beim Kondensator ist $U_C = q/C$. Diese Spannung muss gleich der treibenden Spannung sein.

$$U - U_C = 0 = U - \frac{q}{C} \quad (4.1.73)$$

Wir setzen U ein und erhalten

$$q = C \cdot U_0 \cos(\omega t) \quad (4.1.74)$$

Der Strom ist dann

$$I = \frac{dq}{dt} = \frac{d}{dt} C \cdot U_0 \cos(\omega t) = -C \omega \cdot U_0 \sin(\omega t) = C \omega \cdot U_0 \cos(\omega t + \frac{\pi}{2}) \quad (4.1.75)$$

Wir nennen

$$X_C = \frac{1}{\omega C} \quad (4.1.76)$$

die Impedanz des Kondensators. Der Scheitelwert des Stromes ist

$$I_0 = \omega C U_0 \quad (4.1.77)$$

Analog wie bei der Spule gilt die Gleichung $I_{\text{eff}} = U_{\text{eff}}/X_C$ mit der gleichen
Begründung auch für Kondensatoren. Die momentan dissipierte Leistung ist

\[P(t) = \omega CU_0^2 \cos(\omega t) \sin(\omega t) \]

(4.1.78)

Sie ist, analog wie bei der Spule, positiv oder negativ. Deshalb ist die mittlere dissipierte Leistung

\[\langle P(t) \rangle_t = \omega CU_0^2 \langle \cos(\omega t) \sin(\omega t) \rangle_t = 0 \]

(4.1.79)

Versuch zur Vorlesung:
Elektrischer Schwingkreis (Versuchskarte Em056)

Abbildung 4.16.: SCHWINGKREIS

Der Kondensator soll zur Zeit \(t = 0 \) auf die Spannung \(U_{C,0} \) aufgeladen sein. Zur Zeit \(t = 0 \) wird der Schalter geschlossen. Die Differentialgleichung dieser Schaltung lautet:

\[L \frac{dI}{dt} + \frac{Q}{C} = 0 \]

(4.1.80)

Wir differenzieren einmal und bekommen

\[\frac{d^2I}{dt^2} + \frac{1}{LC} I = 0 \]

(4.1.81)

Dies ist die aus der Mechanik bekannte Schwingungsdifferentialgleichung. Durch Analogieschluss sieht man, dass die Resonanzfrequenz

\[\omega_0 = \sqrt{\frac{1}{LC}} \]

(4.1.82)

ist.
Der **gedämpfte Schwingkreis** enthält neben dem Kondensator und der Spule auch einen **Widerstand**. Die Differentialgleichung des gedämpften **Schwingkreises** ist

\[L \frac{dI}{dt} + R \cdot I + \frac{Q}{C} = 0 \] \hspace{1cm} (4.1.83)

Wir differenzieren einmal und bekommen

\[\frac{d^2I}{dt^2} + \frac{R}{L} \frac{dI}{dt} + \frac{1}{LC} I = 0 \] \hspace{1cm} (4.1.84)

Analog zur Mechanik ist die \(\frac{R}{L} \) der Dämpfungsterm. Das in der Mechanik berechnete Verhalten eines schwingungsfähigen Systems gilt auch für den elektrischen **Schwingkreis**.

Wenn der **elektrische Schwingkreis** von einer **Wechselspannungsquelle** getrieben wird, ergeben sich die gleichen Phänomene wie bei einem getriebenen Pendel, also auch eine **Resonanz**.

Anwendungen

- Schwingkreise zur **Signalfilterung** in Radioempfängern

- Verhalten von langen Leitungen

- Verhalten elektrischer Maschinen
4.1.9. Elektromotoren

Versuch zur Vorlesung:
Elektromotor und -generator (Versuchskarte EM101)

4.1.9.1. Rotierende Leiterschlaufe als Generator

Wir betrachten zuerst den Elektromotor als Generator. Der Fluss durch die Leiterschlaufe mit N Windungen, einer Fläche A und einem Widerstand R ist

$$\phi_B(t) = N B \left(A \cos \left(\Theta(t)\right)\right) \quad (4.1.85)$$

wobei Θ der Winkel zwischen der Normalen der Fläche der Leiterschlaufe und der Richtung des Magnetfeldes ist. Mit $\Theta = \omega t + \delta$ wird der zeitabhängige Fluss durch eine sich mit ω drehende Leiterschlaufe

$$\phi_B(t) = NBA \cos(\omega t + \delta) \quad (4.1.86)$$
Durch Ableiten erhält man die Induktionsspannung
\[U_i(t) = -\frac{d\Phi_B(t)}{dt} = -NBA \frac{d}{dt} \cos(\omega t + \delta) = NBA \omega \sin(\omega t + \delta) \quad (4.1.87) \]

Die induzierte effektive Spannung ist
\[U_{eff,i} = \sqrt{\frac{1}{T} \int_{t-T}^{t} (NBA \omega \sin(\omega t + \delta))^2} = \frac{NBA \omega}{\sqrt{2}} \quad (4.1.88) \]

4.1.9.2. Rotierende Leiterschlaufe als Nebenschlussmotor

Wenn die Leiterschlaufe mit \(N \) Windungen mit Spannung versorgt wird, arbeitet sie als Motor. Die Leiterschlaufe habe, wie oben erwähnt, den Widerstand \(R \). Die angelegte Spannung sei \(U_0 \) und konstant. Für die folgende Rechnung setzen wir \(\delta = 0 \).

Durch den Strom \(I(t) \) wird nach Gleichung (3.8.24) mit dem magnetischen Moment \(m = N A I \) ein Drehmoment
\[M(t) = N A B \cdot I(t) \cdot \sin(\omega t) \quad (4.1.89) \]
erzeugt. Während in Gleichung (4.1.85) der Winkel \(\Theta(t) \) der Winkel zwischen der Flächennormale und der Richtung der magnetischen Induktion \(B \) ist, ist hier der gleiche Winkel der Winkel zwischen dem magnetischen Moment der Leiterschleife \(m(t) \) und der magnetischen Induktion \(B \). Das Drehmoment ist nach Gleichung (3.8.25) durch \(M = m \times B \) gegeben. Das momentane magnetische Moment hängt vom momentanen Strom ab, und damit auch das momentane Drehmoment. Beide hängen damit von der wirkenden Spannung \(U_r(t) = U_0 - U_i(t) \) ab
\[I(t) = \frac{U_r(t)}{R} = \frac{U_0 - U_i(t)}{R} = \frac{U_0}{R} - \frac{NBA}{R} \omega \sin(\omega t) \quad (4.1.90) \]

Unser Motor hat einen Kommutator, der nach einer halben Umdrehung das Vorzeichen der angelegten Spannung invertiert. Wir müssen also mit den Strömen
\[I_+(t) = \frac{U_r(t)}{R} = \frac{U_0 - U_i(t)}{R} = \frac{U_0}{R} - \frac{NBA}{R} \omega \sin(\omega t) \quad (4.1.91a) \]
\[I_-(t) = \frac{U_r(t)}{R} = \frac{-U_0 - U_i(t)}{R} = -\frac{U_0}{R} - \frac{NBA}{R} \omega \sin(\omega t) \quad (4.1.91b) \]
rechnen. Das Drehmoment wird dann
\[M(t) = N A B \cdot I(t) \cdot \sin(\omega t + \delta) = N A B \cdot \left(\frac{U_0}{R} - \frac{NBA}{R} \omega \sin(\omega t) \right) \cdot \sin(\omega t) \]

Dabei muss für \(I(t) \) die beiden Teilströme eingeteilt werden. Das Drehmoment als Funktion der Zeit ist dann
\[M(t) = N A B \cdot I(t) \cdot \sin(\omega t + \delta) = N A B \cdot \left(\frac{U_0}{R} - \frac{NBA}{R} \omega \sin(\omega t) \right) \cdot \sin(\omega t) \]

\[\text{Beachte die Phasenverschiebung zwischen magnetischem Fluss und Drehmoment!} \]
Elektrodynamik: zeitlich veränderliche Magnetfelder und magnetische Induktionen

\[M(t) = -\frac{N^2 A^2 B^2 \omega}{R} \sin^2(\omega t) \]
\[+ \frac{N A B}{R} \sin(\omega t) \begin{cases} U_0, & \text{wenn } 2j\pi \leq \omega t < (2j + 1)\pi; \\ -U_0, & \text{wenn } 2(j + 1)\pi \leq \omega t < 2(j + 1)\pi. \end{cases} \quad (4.1.93) \]

Das mittlere Drehmoment bei einem Motor, bei dem der Kommutator immer bei dem Winkel, bei dem das Drehmoment null wird, das Vorzeichen ändert, ist bei \(\omega = 2\pi/T \)

\[M_{\text{eff}} = \frac{1}{T} \int_0^T M(t) \, dt = \frac{4N A B U_0}{\pi R} - \frac{N^2 A^2 B^2 \omega}{R} \quad (4.1.94) \]

Im Mittel ist das Drehmoment des ruhenden Motors

\[M_{\text{eff}}(0) = M_{\text{max}} = \frac{4N A B U_0}{\pi R}. \quad (4.1.95) \]

Die maximale Drehzahl ist (wenn \(M_{\text{eff}}(\omega_{\text{max}}) = 0 \))

\[\omega_{\text{max}} = \frac{4U_0}{\pi N A B} \quad (4.1.96) \]

Diese Charakteristik (Nebenschlussmotor) hat man immer dann, wenn das erregende Feld \(B \) unabhängig von der Drehzahl ist, bei Permanentmagneten oder wenn die Spule für die Erregerwicklung parallel zum Anker angeschlossen ist. Will man die Drehzahl erhöhen, muss man das Feld \(B \) schwächen.

4.1.9.2.1. Gemittelte Betrachtung

Die vorherige Betrachtung kann auch gemittelt durchgeführt werden.

\[M = N A B \cdot I \cdot \sin(\omega t + \delta). \quad (4.1.97) \]

Das mittlere Drehmoment bei einem Motor, bei dem der Kommutator immer bei dem Winkel, bei dem das Drehmoment null wird, das Vorzeichen ändert, ist

\[M_{\text{eff}} = \frac{N A B}{\sqrt{2}} I = N A B I_{\text{eff}} \quad (4.1.98) \]

Mit dem Widerstand des Ankers \(R \) kann man den mittleren Strom aus der wirkenden Spannung \(U_0 - U_{\text{eff},i} \) berechnet werden

\[I_{\text{eff}} = \frac{U_0 - U_{\text{eff},i}}{R} = \frac{U_0}{R} \frac{N A B}{R \sqrt{2}} \omega \quad (4.1.99) \]

Die angelegte Spannung \(U_0 \) ist eine Gleichspannung, deshalb darf kein Effektivwert berechnet werden. Damit hängt das Drehmoment von der Drehzahl ab

\[M_{\text{eff}}(\omega) = N A B \left(\frac{U_0}{R} - \frac{N A B}{R \sqrt{2}} \omega \right) = \frac{N A B U_0}{R} - \frac{N^2 A^2 B^2}{\sqrt{2} R} \omega \quad (4.1.100) \]
Das Drehmoment des ruhenden Motors ist also

\[M_{\text{eff}}(0) = M_{\text{max}} = \frac{N A B U_0}{R} \]
(4.1.101)

und die maximale Drehzahl (mit \(M_{\text{eff}}(\omega_{\text{max}}) = 0 \)) ist

\[\omega_{\text{max}} = \frac{\sqrt{2} U_0}{N A B} \]
(4.1.102)

Verglichen mit Gleichung (4.1.96) hat sich nur der Vorfaktor geändert, von \(4/\pi \approx 1.273 \) zu \(\sqrt{2} \approx 1.414 \). Mit der gemittelten Betrachtung überschätzen wir die maximale Drehzahl!

4.1.9.3. Rotierende Leiterschlaufe als Hauptschlussmotor

Abbildung 4.20.: Links ist die Schaltung des Nebenschlussmotors, rechts die des Hauptschlussmotors gezeigt.

Ist wie beim HAUPTSCHLUSSMOTOR die Erregerwicklung in Serie zur Ankerwicklung geschaltet, gibt es keine maximale Drehzahl. Eine lange Zylinderspule (Länge \(\ell \), Windungszahl \(N \)) hat das Magnetfeld

\[B(t) = \mu_0 \frac{N}{\ell} I(t), \]
(4.1.103)

sofern der Einfluss der Induktivität vernachlässigt werden kann. Diese würde für eine Änderung der Amplitude und der Phase sorgen. Für andere Geometrien gilt das gleiche Gesetz, aber mit einem geometrieabhängigen Vorfaktor \(K' \).

Im statischen Falle ist der Strom nur vom Gleichstromwiderstand \(R_E \) der Erregerspule abhängig. Sonst müsste \(\bar{R} = R_E + Z_{L_E} \) verwendet werden.

\[B(I_E(t)) = K' \mu_0 \frac{N_E}{\ell_E} I_E(t) = K I_E(t) \]
(4.1.104)

wobei alle Vorfaktoren in den Faktor \(K \) zusammengezogen wurden. Spannung und Strom an der Feldspule oder Erregerspule hängen über

\[U_E(t) = I(t) R_E + L_E \frac{dI(t)}{dt} \]
(4.1.105)

zusammen.

Der durch den Anker fließende Strom ist mit

\[U_i(t) = -\frac{d}{dt} \left(N B(U_E(t)) A \sin(\omega t) \right) \]
und $I(t) = I_E(t)$ sowie dem Resultat von Gleichung (4.1.105) gegeben.

$$I(t) = \frac{U_0 - U_E(t) - U_i(t)}{R} = \frac{U_0}{R} - I(t) \frac{RE}{R} - \frac{LE}{RE} \frac{dI(t)}{dt} - \frac{1}{R} \left[-\frac{d}{dt} (NB(I(t)) A \sin(\omega t)) \right]$$ \hspace{1cm} (4.1.106)

Eingesetzt

$$RI(t) = U_0 - I(t) RE - \frac{dI(t)}{dt} + NAK \frac{d}{dt} (I(t) \sin(\omega t))$$ \hspace{1cm} (4.1.107)

und umgestellt

$$\frac{d}{dt} \left(I(t) \left(\sin(\omega t) - \frac{LE}{NAK} \right) \right) - \frac{R + RE}{NAK} I(t) = -\frac{U_0}{NAK}$$ \hspace{1cm} (4.1.108)

Wenn der Kommutator den Stromfluss im Anker umstellt, bekommt man

$$\frac{d}{dt} \left(I(t) \left(\sin(\omega t) - \frac{LE}{NAK} \right) \right) - \frac{R + RE}{NAK} I(t) = -\frac{U_0}{NAK} I(t)$$ \hspace{1cm} (4.1.109)

Die Lösungen dieser beiden Differentialgleichungen müssen beim Umschalten des Kommutators jeweils gleich sein. $I(t)$ kommt nur linear vor, das heisst, man kann die Gleichungen als komplexe Gleichungen schreiben, indem $\sin(\omega t) \rightarrow i \exp(i \omega t)$ gesetzt wird. Weiter kann

$$I(t) = \sum_{k=0}^{\infty} a_k \exp(ik\omega t)$$ \hspace{1cm} (4.1.110)

gesetzt werden. Dies führt zu einer Rekursion für die Koeffizienten a_k. Noch unbekannt ist der Phasenwinkel zwischen den beiden

Die weitere Rechnung ist kompliziert. Man müsste auch die Induktivität der Spulen berücksichtigen.

4.1.9.3.1. Gemittelte Betrachtung

Der durch den Anker fließende Strom ist mit $U_{eff,i} = N B(U_E) A \omega / \sqrt{2}$ durch

$$I_{eff} = \frac{U_0 - U_E - U_{eff,i}}{R} = \frac{U_0}{R} - \frac{U_E}{R} - \frac{NB(U_E) A}{R \sqrt{2}} \omega$$ \hspace{1cm} (4.1.111)

gegeben.

Da $I_{eff} = I_{E,eff}$ und $U_E = RE \cdot I_{E,eff}$ sind, gilt

$$I_{eff} = \frac{U_0}{R} - \frac{RE}{R} I_{eff} - \frac{KN A}{R \sqrt{2}} I_{eff} \omega$$ \hspace{1cm} (4.1.112)

oder

$$I_{eff} = \frac{U_0}{R + RE + \frac{KN A}{\sqrt{2}} \omega} = \frac{\sqrt{2} U}{\sqrt{2} R + \sqrt{2} RE + KN A \omega}$$ \hspace{1cm} (4.1.113)
Das Faradaysche Induktionsgesetz

Damit wird das Drehmoment

\[
M_{\text{eff}}(\omega) = N A B (I_{\text{eff}}) I_{\text{eff}} = N A K I_{\text{eff}}^2
\]

(4.1.114)

Eingesetzt bekommt man

\[
M_{\text{eff}}(\omega) = \frac{2 N A K U_0^2}{\left[\sqrt{2} R + \sqrt{2} R_E + K N A \omega\right]^2}
\]

(4.1.115)

\(M_{\text{eff}}(\omega)\) ist für alle \(\omega\) grösser als null. Dieser Motor hätte, ohne Lagerreibung, eine unendlich grosse maximale Drehzahl. Das Startdrehmoment für \(\omega = 0\) ist

\[
M_{\text{eff}}(0) = M_{\text{max}} = \frac{N A K U^2}{[R + R_E]^2}
\]

(4.1.116)

Abbildung 4.21.: Kennlinien von Nebenschluss- und Hauptschlussmotoren aus der gemittelten Betrachtung. Die Kurven wurden mit \(N = 1000\), \(A = 0.001\ \text{m}^2\), \(U = 5\ \text{V}\), \(R = 0.1\ \Omega\) und \(B = 0.1\ \text{T}\). Die beiden Motoren sind so berechnet, dass sie das gleiche Startdrehmoment und dass \(R_E = R/2\) ist (eine vernünftige Annahme).

Versuch zur Vorlesung:
Linearmotor (Versuchskarte EM113)
4.1.10. Betatron

Versuch zur Vorlesung:
Betatron (Versuchskarte EM167)

Die Idee hinter der Konstruktion des Betatrons ist, dass bei einem zeitabhängigen B-Feld nach $\text{rot} \ E = -\frac{\partial B}{\partial t}$ auch ein zeitabhängiges E-Feld existiert.

\begin{equation}
\text{rot} \ E = -\frac{\partial B}{\partial t}
\end{equation}

Nach dem Induktionsgesetz $\text{rot} \ E = -\frac{\partial B}{\partial t}$ hat das durch ein in die z-Richtung zeigende Magnetfeld induzierte elektrische Feld keine z-Komponente. Nehmen wir an, dass das E-Feld eine Radialkomponente hätte. Sie könnte zum Beispiel in die y-Richtung zeigen. Rotieren wir die ganze Anordnung um π um die y-Achse und kehren die Richtung des B-Feldes um, haben wir wieder die Ausgangsansordnung. Mit der Richtungsumkehr von B hat aber auch E die Richtung geändert (Induktionsgesetz). Dies ist aber im Widerspruch zur Ausgangssituation. Deshalb kann es kein radiales E-Feld geben: das E-Feld ist tangential und beschleunigt die geladenen Teilchen. Damit die Teilchen auf der Kreisbahn bleiben, muss

\begin{equation}
\frac{mv^2}{R} = e \cdot v \cdot B(t)
\end{equation}

oder

\begin{equation}
mv(t) = p(t) = e \cdot B \cdot R
\end{equation}

Das zweite Newtonsche Axiom in tangentialer Richtung angewandt bedeutet

\begin{equation}
\frac{dp(t)}{dt} = eE(t)
\end{equation}

Mit der Integralform des Induktionsgesetzes erhält man mit einer stationären
4.1 Das Faradaysche Induktionsgesetz

Kreisbahn \(S(R) \) mit dem Radius \(R \)

\[
\oint_{S(R)} \mathbf{E}(t) \cdot ds = E(t) \cdot 2\pi R = -\frac{d}{dt} \int_{A(R)} \mathbf{B}(t) \cdot d\mathbf{a} = \frac{d\bar{B}(t)}{dt} \cdot \pi R^2 \tag{4.1.120}
\]

wobei \(\bar{B} \) das über die Fläche des Kreises gemittelte \(\mathbf{B} \)-Feld ist. Durch Kombination der obigen Gleichungen und unter Berücksichtigung der Vorzeichen erhalten wir

\[
\frac{dp(t)}{dt} = e \cdot R \cdot \frac{d\bar{B}}{dt} \tag{4.1.121}
\]

Die Integration mit den Anfangsbedingungen \(p(0) = 0 \) und \(B(0) = 0 \) liefert

\[
p(t) = \frac{e \cdot R}{2} \cdot \bar{B}(t) \tag{4.1.122}
\]

Der Vergleich mit der Bedingung für die Zentripetalkraft liefert die WIDEROE-BEDINGUNG

\[
\bar{B}(t) = 2 \cdot B(t) \tag{4.1.123}
\]

Diese Bedingung kann durch eine geeignete Wahl der Form der Polschuhe erreicht werden.
4.1.11. Skineffekt

Bei Gleichstrom in einem zylindrischen Leiter ist das elektrische Feld konstant über dem Querschnitt. Nach dem Ampéreschen Durchflutungsgesetz (Siehe Gleichung (3.8.32)) ist das Magnetfeld proportional zum Abstand.

Für den Fall eines Wechselstroms mit niedriger Frequenz müssen wir das Induktionsgesetz berücksichtigen. Nach dem Induktionsgesetz gilt für die zeitunabhängige Kurve \(S \), die auf einer Ebene, in der auch die Zylinderachse liegt, liegt

\[
\oint_S \mathbf{E} \cdot d\mathbf{s} = -\frac{d}{dt} \int_{A(S)} \mathbf{B} \cdot d\mathbf{a} \quad (4.1.124)
\]

Für die eingezeichnete Schlaufe gilt (\(d\mathbf{a} \) ist antiparallel zu \(\mathbf{B} \))

\[
h [E(r) - E(r - \Delta r)] = \frac{d(-\bar{B})}{dt} \cdot (-\mathbf{h} \cdot \Delta \mathbf{r}) \quad (4.1.125)
\]

wobei wieder \(\bar{B} \) das über die Fläche \(\Delta r \cdot h \) gemittelte Magnetfeld ist. Als Zwischenresultat bekommen wir:

\[
\frac{[E(r) - E(r - \Delta r)]}{\Delta r} \cdot \frac{d(\bar{B})}{dt}
\]

Da der Strom zeitabhängig ist, muss auch das \(\mathbf{E} \)-Feld ortsabhängig sein. Eine homogene Stromverteilung bei Wechselstrom ist bei einem Ohmschen Leiter nicht vereinbar mit dem Induktionsgesetz. Die Taylorentwicklung von Glei-
Das Faradaysche Induktionsgesetz

(4.1.124) liefert die betragsmäßige Bedingung

\[
\frac{\partial E(r,t)}{\partial r} = \frac{\partial B(r,t)}{\partial t}
\]

(4.1.126)

Das elektrische Feld muss also bei Wechselstrom mit zunehmendem Abstand vom Radius zunehmen. Da der Gesamtstrom gegeben ist, ist die Stromdichte an der Oberfläche konzentriert. Dies ist der \textbf{Skieneffekt}.

Anwendung

- Bei Überlandleitungen wird um ein Stahlseil Kupfer (Luxusausführung) oder Aluminium (das Übliche) gewickelt. Dies erhöht den \textbf{Widerstand} kaum, da der Skin-Effekt die Stromleitung bei 50 Hz auf etwa 1 cm Tiefe beschränkt.

Die Berechnung der Skintiefe kann nach Jackson [Jac75, pp. 334-338]² aus dem Ampèreschen Gesetz Gleichung (3.8.32), dem Faraday'schen Gesetz Gleichung (4.1.24) und dem mikroskopischen Ohm'schen Gesetz (3.2.2) abgeleitet werden.

Wir beginnen mit den drei Gleichungen

\[
\text{rot } B = \nabla \times B = \mu_0 \mathbf{i}
\]

(4.1.127)

\[
\text{rot } E = \nabla \times E = -\frac{\partial B}{\partial t}
\]

(4.1.128)

\[
i = \sigma E
\]

(4.1.129)

und damit

\[
\nabla \times B = \mu_0 \sigma E
\]

(4.1.130)

Wir nehmen mit Jackson eine harmonische Welle an, also \(B = B_0 \exp(\mathbf{i}\omega t) \) und \(E = E_0 \exp(\mathbf{i}\omega t) \). Damit können die obigen Gleichungen umgeschrieben werden

\[
\nabla \times B_0 = \mu_0 \sigma E_0
\]

(4.1.131)

\[
\nabla \times E = -i\omega B_0
\]

(4.1.132)

Wenn \(\mathbf{n} \) der nach aussen zeigende Normalenvektor auf die Grenzfläche Vakuum-Metall ist und \(\xi \) die nach innen zeigende Koordinate ist, kann in der Nähe der Oberfläche der Nabla-Operator als

\[
\nabla \simeq -\mathbf{n} \frac{\partial}{\partial \xi}
\]

(4.1.133)

geschrieben werden. Gleichungen (4.1.131) und (4.1.132) lauten dann

\[
-\frac{\partial}{\partial \xi} (\mathbf{n} \times B_0) = \mu_0 \sigma E_0
\]

(4.1.134)

\[
-\frac{\partial}{\partial \xi} (\mathbf{n} \times E_0) = -i\omega B_0
\]

(4.1.135)

²Jackson rechnet im cgs-System!
Um die beiden Gleichungen zu kombinieren, multiplizieren wir mit dem Kreuzprodukt oder Vektorprodukt von links mit $-\mathbf{n} \frac{\partial}{\partial \xi}$ und verwenden weiter, dass nach (C.8.1) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$ ist.

\[
\frac{\partial^2}{\partial \xi^2} (\mathbf{n} \times (\mathbf{n} \times \mathbf{B}_0)) = \frac{\partial^2}{\partial \xi^2} \left((\mathbf{n} \cdot \mathbf{B}_0) \mathbf{n} - (\mathbf{n} \cdot \mathbf{n}) \mathbf{B}_0 \right)
= -\mu_0 \sigma \frac{\partial}{\partial \xi} (\mathbf{n} \times \mathbf{E}_0) = i\mu_0 \sigma \omega \mathbf{B}_0
\]

(4.1.136)

Diese Gleichung hat zwei Komponenten. Es gibt Summanden, die in die Richtung von \mathbf{B}_0 zeigen und Summanden, die in die Richtung von \mathbf{n} zeigen. Die Summanden für die beiden Richtungen ergeben die folgenden zwei Gleichungen, da das Resultat ja unabhängig von den einzelnen Vektoren sein muss.

\[
\frac{\partial^2}{\partial \xi^2} \mathbf{B}_0 + i\mu_0 \sigma \omega \mathbf{B}_0 = 0
\]

(4.1.137)

\[
\mathbf{n} \cdot \mathbf{B}_0 = 0
\]

(4.1.138)

Gleichung (4.1.137) ist eine Differentialgleichung zweiter Ordnung. Deshalb machen wir den Lösungsansatz $\mathbf{B}_0(\xi) = \mathbf{B}_{0,0} \exp (a\xi)$ und setzen

\[
2i \frac{\delta^2}{\delta^2} = 2i \frac{\mu_0 \sigma \omega}{\delta^2} \implies \delta = \sqrt{- \frac{2}{\mu_0 \sigma \omega}}
\]

(4.1.139)

und erhalten über

\[
\frac{\partial^2}{\partial \xi^2} \mathbf{B}_0 + \frac{2i}{\delta^2} \mathbf{B}_0 = 0
\]

(4.1.140)

die charakteristische Gleichung

\[
a^2 + \frac{2i}{\delta^2} = 0
\]

(4.1.141)

die Lösungen

\[
a = \pm \sqrt{- \frac{2i}{\delta}} = \pm \frac{i}{\delta}
\]

(4.1.142)

Das Vorzeichen $+$ ist physikalisch sinnvoll (es gibt keine zunehmende Amplitude). Damit ist besteht die Lösung aus einem exponentiellen Abfall mit der Abfalllänge δ und einem örtlich oszillierenden Teil, also

\[
\mathbf{B}(\xi, t) = \mathbf{B}_{0,0} \exp \left(-\frac{\xi}{\delta} \right) \exp \left(i \left(\omega t - \frac{\xi}{\delta} \right) \right)
\]

(4.1.143)

Damit ist

\[
\delta = \sqrt{\frac{2}{\mu_0 \sigma \omega}} = \frac{1}{\sqrt{\pi \mu_0 \sigma \nu}}
\]

(4.1.144)

die Skintiefe bei der Frequenz ω eines Metalls mit der relativen Permeabilität μ.
und der Leitfähigkeit σ. Aus Gleichung (4.1.144) kann abgelesen werden, dass

- die Skintiefe mit zunehmender LEITFÄHIGKEIT abnimmt,
- mit zunehmender relativer PERMEABILITÄT abnimmt und
- mit zunehmender FREQUENZ abnimmt.

<table>
<thead>
<tr>
<th>Material</th>
<th>1 Hz</th>
<th>16,67 Hz</th>
<th>50 Hz</th>
<th>100 Hz</th>
<th>1 kHz</th>
<th>10 kHz</th>
<th>100 kHz</th>
<th>1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupfer</td>
<td>0.6 mm</td>
<td>1.6 mm</td>
<td>9.3 mm</td>
<td>6.6 mm</td>
<td>2.1 mm</td>
<td>660 µm</td>
<td>21 µm</td>
<td>66 µm</td>
</tr>
<tr>
<td>Aluminium</td>
<td>83 mm</td>
<td>20 mm</td>
<td>12 mm</td>
<td>8.3 mm</td>
<td>2.6 mm</td>
<td>830 µm</td>
<td>26 µm</td>
<td>83 µm</td>
</tr>
<tr>
<td>Eisen ($\mu = 10^4$)</td>
<td>1.6 mm</td>
<td>390 µm</td>
<td>230 µm</td>
<td>160 µm</td>
<td>50 µm</td>
<td>16 µm</td>
<td>5.0 µm</td>
<td>1.6 µm</td>
</tr>
<tr>
<td>Edelstahl ($\mu = 300$)</td>
<td>25 mm</td>
<td>6.0 mm</td>
<td>3.5 mm</td>
<td>2.5 mm</td>
<td>780 µm</td>
<td>250 µm</td>
<td>78 µm</td>
<td>25 µm</td>
</tr>
<tr>
<td>Meerwasser</td>
<td>230 m</td>
<td>55 m</td>
<td>32 m</td>
<td>23 m</td>
<td>7.1 m</td>
<td>2.3 m</td>
<td>710 mm</td>
<td>23 mm</td>
</tr>
<tr>
<td>Leitungswasser</td>
<td>7.1 km</td>
<td>1.7 km</td>
<td>1.0 km</td>
<td>712 m</td>
<td>230 m</td>
<td>71 m</td>
<td>23 m</td>
<td>7.1 m</td>
</tr>
</tbody>
</table>

Tabelle 4.2.: Skintiefen verschiedener Materialien (nach [Wik16a, Wik16b])

4.2. Energie des Magnetfeldes

Wir betrachten eine mit einer Wechselstromquelle $U(t) = U_0 \sin(\omega t)$ verbundene reale Spule. Diese Spule wird modelliert durch einen WIDERSTAND R und eine ideale Spule L. Die Differentialgleichung dieses Kreises lautet

$$U(t) = L \cdot \dot{I}(t) + R \cdot I(t)$$ (4.2.1)

Die stationäre Lösung dieser Gleichung hat die Form

$$I_S(t) = I_0 \cos(\omega t - \delta)$$ (4.2.2)

Für den Fall, dass $R \ll \omega L$ ist, bekommt man

$$I_S(t) = -\frac{U_0}{\omega L} \cdot \cos \omega t$$ (4.2.3)
Die momentane Leistung der Spannungsquelle ist

\[P_U(t) = U(t) \cdot I(t) = -\frac{U_0^2}{\omega L} \cdot \sin \omega t \cdot \cos \omega t = -\frac{U_0^2}{\omega L} \cdot \frac{1}{2} \sin(2\omega t) \quad (4.2.4) \]

Die Leistung der Spannungsquelle kann nur die Energie des \(B \)-Feldes ändern, da wir keine dissipativen Elemente haben (\(R = 0 \)). Wenn man die Differentialgleichung für den Fall mit \(I(t) \) multipliziert, bekommt man

\[P_U = U(t) \cdot I(t) = L \cdot I \cdot \dot{I} = \frac{d}{dt} \left(\frac{L}{2} I^2 \right) \quad (4.2.5) \]

Nun ist aber \(P = dE/dt \). Damit ist die Energie des Magnetfeldes

\[E_L = \frac{L}{2} I^2 \quad (4.2.6) \]

Um die Energiedichte eines Magnetfeldes zu berechnen betrachten wir eine Spule

\[B = \mu_0 n I \quad (4.2.7) \]

mit der Selbstinduktivität

\[L = \mu_0 n^2 A \ell \quad (4.2.8) \]

wobei \(A \) der Querschnitt der Spule und \(\ell \) ihre Länge ist. Eingesetzt in die Gleichung für die Energie \(E_L \) bekommt man

\[E_L = \frac{1}{2} \cdot \mu_0 n^2 A \ell \cdot \left(\frac{B}{\mu_0 n} \right)^2 = \frac{B^2}{2\mu_0} A \ell \quad (4.2.9) \]

Deshalb ist die Energiedichte des \(B \)-Feldes

\[w_B = \frac{B^2}{2\mu_0} \quad (4.2.10) \]
4.3. Magnetische Eigenschaften der Materie

4.3.1. Kugeln im inhomogenen Magnetfeld

Abbildung 4.25.: Diamagnetische (Bi), paramagnetische (Al) und ferromagnetische (Fe) Materialien im inhomogenen Magnetfeld.

Versuch zur Vorlesung:
Dia- und Paramagnetismus (Versuchskarte EM177)

Materie im inhomogenen Magnetfeld zeigt drei verschiedene Verhalten:

diamagnetisches Verhalten Die Materie wird aus dem starken magnetischen Feld herausgedrückt.

paramagnetisches Verhalten Die Materie wird in das starke Feld hineingezogen.

ferromagnetisches Verhalten Die Materie wird in das starke Feld hineingezogen, aber sehr viel stärker als bei paramagnetischen Substanzen. Zudem zeigen diese Substanzen ein remanentes Magnetfeld, auch wenn das äussere Magnetfeld wieder verschwunden ist.

Abbildung 4.26.: Kreisströme als Ursache des Dia- und des Paramagnetismus

Die Materie im inhomogenen Magnetfeld verhält sich wie wenn die Materie aus einem Kreisstrom bestünde. Auf diesen Kreisstrom wirkt, je nach Umlaufsinn eine Kraft zum hohen oder zum niedrigen Feld. Das magnetische Moment der Kreisströme ist beim DIAMAGNETISMUS antiparallel zu \(B \). Beim PARAMAGNETISMUS und beim FERROMAGNETISMUS zeigt das magnetische Moment in die Richtung
von B. Der Kreisstrom ist induziert, das heisst, dass seine Richtung von der von B abhängt. Die resultierende Kraft ist die Biot-Savart-Kraft (Siehe Gleichung (3.8.16)). Sie ist proportional zum Produkt $B \times d\ell$. Wenn man die Richtung des Magnetfeldes umkehrt, wird auch $d\ell$ umgekehrt. Die Richtung der Kraft ist als unabhängig von der Richtung von B.

Wenn der Kreisstrom (die Materie) sich auf der Symmetrieachse eines rotations-symmetrischen inhomogenen Magnetfeldes befindet, ist

$$F_z = m_z \cdot \frac{\partial B_z(z,0)}{\partial z}$$

wobei m_z das induzierte magnetische Moment des Kreisstromes ist.

4.3.2. Der Satz von Larmor

(Siehe Leisi, Klassische Physik II [Lei98, pp. 162])

Wir hatten postuliert, dass das Verhalten der Materie in einem Gradienten eines Magnetfeldes durch atomare Kreisströme gegeben ist. Wenn wir ein Modell (nach der Quantenphysik nicht realistisch) eines Atoms betrachten, bei dem ein einzelnes Elektron auf einer Bahn mit dem Radius r sich um den positiv geladenen Kern bewegt, ist der resultierende Strom

$$I = -e \frac{v}{2\pi r}$$

(4.3.2)

Der Betrag des magnetischen Momentes ist dann

$$|m| = \pi r^2 I = \frac{1}{2} e \cdot v \cdot r$$

(4.3.3)

Die Wirkung eines äusseren Magnetfeldes wird berechnet, indem man betrachtet, wie ein einzelnes Atom auf ein von null anwachsendes äusseres Feld reagiert.
Abbildung 4.28.: Langsames Einschalten eines Magnetfeldes für ein Elektron in einem Atom. Im linken Schaubild sind die positiven Richtungen definiert.

Im Ausgangszustand ist die Zentripetalkraft $F_0 = -m_e v^2 / r$ die Coulombanziehung zwischen dem Elektron und dem Kern sowie durch die gemittelte Coulombabstossung durch die anderen Elektronen gegeben. Das anwachsende Magnetfeld hat die gleiche Wirkung wie beim Betatron: es entsteht ein tangentes E-Feld, das das Elektron beschleunigt. Wir setzen die z-Achse nach oben an. In einem rechtshändigen System ist dann

- das Magnetfeld: $-B$, Betrag: B
- die Geschwindigkeit: $-v$, Betrag: v
- die Zentripetalkraft: $-F_0$, Betrag: F_0
- das induzierte elektrische Feld: E, Betrag: E

Wir setzen diese Größen ein, um vorzeichenrichtig zu rechnen. Aus dem Induktionsgesetz (Siehe Gleichung (4.1.22)) folgt

$$
\oint_{S(r)} \mathbf{E} \cdot d\mathbf{r} = 2\pi \cdot r \cdot E(t) = -\frac{\partial \phi_B}{\partial t} = -\pi r^2 \cdot \frac{d(-B(t))}{dt} = \pi r^2 \cdot \frac{dB(t)}{dt}
$$

(4.3.4)

Dabei ist $\phi_B = (-B) \cdot A$. Wir erhalten also

$$
E(t) = \frac{r}{2} \cdot \frac{dB(t)}{dt}
$$

(4.3.5)

Die Beschleunigung des Elektrons (nicht-relativistisch) ist durch das zweite Newtonsche Gesetz gegeben

$$
\frac{m_e}{dt} \frac{dv}{dt} = -e \cdot E = -\frac{e \cdot r}{2} \cdot \frac{dB(t)}{dt}
$$

(4.3.6)

Hier ist m_e die Ruhemasse des Elektrons. Die Geschwindigkeitsänderung hängt also mit der Magnetfeldänderung wie folgt zusammen

$$
\frac{dv}{dt} = -\frac{e \cdot r}{2m_e} \cdot dB
$$

(4.3.7)

Der gesamte Geschwindigkeitszuwachs des Elektrons ist also

$$
\Delta v = -\frac{e \cdot r}{2m_e} \cdot B
$$

(4.3.8)
wenn \mathbf{B} das Feld im Endzustand ist. Der Betrag der Geschwindigkeit hat also zugenommen. Nun bewirkt das äussere \mathbf{B}-Feld die Lorentzkraft

$$\mathbf{F}_L = -e \cdot (-v) \cdot (-\mathbf{B})\mathbf{e}_r$$

(4.3.9)

die, nach der rechten Hand-Regel, zum Kreiszentrum zeigt. Die Zentripetalkraft ist im Endzustand durch

$$F = -m_e \frac{(-v + \Delta v)^2}{r}$$

(4.3.10)

Da $v \gg \Delta v$ ist, können wir nach Taylor entwickeln

$$F \approx -m_e \left(v^2 - 2v \cdot \Delta v \right)$$

(4.3.11)

$$= -m_e \left(v^2 + 2v \cdot \frac{e \cdot r}{2m_e} \cdot B \right)$$

$$= -m_e v^2 - e \cdot v \cdot B$$

$$= F_0 + F_L$$

Die Lorentz-Kraft bewirkt also, dass die Elektronenbahnen für kleine Geschwindigkeitsänderungen sich nicht ändern. Die LARMORWINKELGESCHWINDIGKEIT in Abhängigkeit der Zunahme der Bahngeschwindigkeit und der magnetischen Induktion ist

$$\Omega \equiv \frac{\Delta v}{r} = \frac{e \cdot B}{2m_e}$$

(4.3.12)

und vektoriell geschrieben

\[\text{Larmorwinkelgeschwindigkeit} \]

$$\Omega = \frac{e}{2m_e} \mathbf{B}$$

(4.3.13)

In einem mit der Winkelgeschwindigkeit Ω rotierenden System sind die Elektronenbahnen im Atom unverändert.

Der SATZ VON LARMOR gilt allgemein, auch bei beliebiger Orientierung von Magnetfeld und Bahnebene des Elektrons. Der Satz von Larmor bildet die Grundlage des Verständnisses des Diamagnetismus.
Abbildung 4.29.: Berechnung der Larmorfrequenz mit einem Kreisel

Man kann den SATZ VON LARMOR aus der Kreiseltheorie ableiten. Das Elektron ist, bei einer Bahn mit konstantem Radius, ein starrer Körper. Dieser Kreisel hat den Drehimpuls

\[L = m_e \cdot (r \times v) \]

(4.3.14)

Das magnetische Moment des Kreisstromes ist nach Gleichung (4.3.3)

\[m = -\frac{e}{2m_e} L \]

(4.3.15)

Der Kreisel erfährt ein mechanisches Drehmoment (siehe Gleichung (3.8.25))

\[M = m \times B \]

(4.3.16)

Der Drehimpulssatz bedeutet, dass

\[\frac{dL}{dt} = M = -\frac{e}{2m_e} L \times B = \frac{e}{2m_e} B \times L \]

(4.3.17)

Wir erhalten also eine Präzessionsbewegung des Drehimpulsvektors \(L \) um \(B \) mit der Winkelgeschwindigkeit \(\Omega \) (siehe auch [Mar14, Seite 190, Gleichung (6.3.30)])

\[\frac{dL}{dt} = \Omega \times L \]

(4.3.18)

Wir erhalten die

vektorielle Schreibweise der LARMORFREQUENZ

\[\Omega = \frac{e}{2m_e} B \]

(4.3.19)
4.3.3. Diamagnetismus

Im diamagnetischen Atom ist die Summe aller magnetischer Momente der Elektronen exakt null.

\[m_A = \sum_j m_j = 0 \quad (4.3.20) \]

Man kann sich dies vereinfacht so vorstellen, dass jede Elektronenbahn von zwei gegenläufigen Elektronen besetzt ist. Ein diamagnetisches Atom hat deshalb, ohne äußeres \(B \)-Feld eine kugelsymmetrische Ladungsverteilung. Diese entsteht, weil sich die einzelnen Elektronenbewegungen über die Zeit ausmitten.

Wenn ein \(B \)-Feld eingeschaltet wird, beginnt diese kugelsymmetrische Ladungsverteilung mit der Larmorfrequenz zu präzidieren. Durch diese Präzession im Magnetfeld entsteht ein von null verschiedenes magnetisches Moment \(m_A \), das zum Diamagnetismus führt. Zur vereinfachten Berechnung nimmt man an, dass das Atom eine homogen geladene Kugel ist mit der Ladungsdichte

\[\rho_{el} = -\frac{Ze}{(4/3)\pi R^3} \quad (4.3.21) \]

wobei \(Z \) die Kernladungszahl und \(R \) der Radius der Elektronenwolke ist.
Diese homogen geladene Kugel rotiert im äusseren Magnetfeld mit

\[\Omega = \frac{e}{2m_e} B \]

(4.3.22)

Durch ein raumfestes Flächenelement fliesst der Strom

\[\delta I = \rho_{el} \cdot r \cdot dr \cdot d\varphi \cdot v(r, \varphi) \]

(4.3.23)

mit

\[v(r, \varphi) = \Omega \cdot r \cdot \sin \varphi \]

(4.3.24)

Da die Ladungen negativ sind, ist das magnetische Moment \(m_A \) entgegengesetzt zu \(\Omega \) und entgegengesetzt zu \(B \), hier also nach unten, gerichtet. Dieses magnetische Moment ist

\[\delta m_A (r, \varphi) = \text{Fläche} \cdot \text{Strom} = \pi r^2 \sin^2 \varphi \cdot \delta I \]

(4.3.25)

oder

\[\delta m_A (r, \varphi) = \pi r^2 \sin^2 \varphi \cdot \rho_{el} \cdot r \cdot dr \cdot d\varphi \cdot v(r, \varphi) \]

(4.3.26)

\[= \pi r^2 \sin^2 \varphi \cdot \rho_{el} \cdot r \cdot dr \cdot d\varphi \cdot \Omega \cdot r \cdot \sin \varphi \]

\[= \pi r^4 \sin^3 \varphi \cdot \rho_{el} \cdot \Omega \cdot dr \cdot d\varphi \]

Der Betrag des gesamten magnetischen Momentes erhält man durch Integration
über r und φ. Er ist

$$|\mathbf{m}_A| = \int_0^R \int_0^\pi \delta m_A(r, \varphi) \, dr \, d\varphi \tag{4.3.27}$$

$$= \pi \cdot \rho_{el} \cdot \Omega \cdot \int_0^R r^4 \cdot dr \cdot \int_0^\pi \sin^3 \varphi \cdot d\varphi$$

$$= \pi \cdot \rho_{el} \cdot \Omega \cdot \int_0^R r^4 \cdot dr \cdot \frac{4}{3}$$

$$= \pi \cdot \rho_{el} \cdot \Omega \cdot \frac{R^5}{5} \cdot \frac{4}{3}$$

$$= \pi \cdot \frac{Z \cdot e}{\frac{4 \pi}{3} R^3} \cdot \Omega \cdot \frac{R^5}{5} \cdot \frac{4}{3}$$

$$= \pi \cdot \frac{Z \cdot e \cdot eB}{\frac{4 \pi}{3} R^3} \cdot \frac{R^5}{5} \cdot \frac{4}{3}$$

$$= \frac{Z \cdot e^2 \cdot B \cdot R^2}{10 m_e}$$

Vektoriell geschrieben erhalten wir für das diamagnetische Moment

$$\mathbf{m}_A = -\frac{Z \cdot e^2 \cdot R^2}{10 m_e} \mathbf{B} \tag{4.3.28}$$

Diese diamagnetische Moment ist in allen Atomen vorhanden. Bei paramagnetischen und ferromagnetischen Substanzen wird es unterdrückt.

4.3.4. Magnetisierung

(Siehe Leisi, Klassische Physik II [Lei98, pp. 170])

Die gesamte makroskopische Magnetisierung ist das mittlere magnetische Moment pro Volumeneinheit

$$M(R) = \frac{\sum_{\Delta V} \mathbf{m}_A}{\Delta V} \tag{4.3.29}$$
Dabei ist \(m_A \), das magnetische Moment eines Atoms oder einer Atomgruppe, wobei \(\Delta V \) ein geeignetes Volumenelement ist. Eine Probe heisst homogen magnetisiert, wenn \(M(r) \) unabhängig vom Probenort ist.

Das externe Magnetfeld soll senkrecht zur Bildebene des obigen Bildes sein. Die atomaren Kreisströme müssen dann in der Bildebene liegen. Betrachten wir ein Flächenelement \(da \), das senkrecht zur Bildebene liegt, dann stellen wir fest, dass alle Kreisströme zweimal durch dieses Ebenenelement gehen, einmal in positiver und einmal in negativer Richtung. Bis auf die Ströme an den Rändern heben sich alle Ströme auf. Das heisst, dass das mittlere Stromdichtefeld

\[
i = 0
\]

ist, da \(dI(a) = i \cdot da \). Nur die Ströme am Rand, die Oberflächenströme mit der Stromdichte \(j \), können deshalb die Quelle der beobachteten makroskopischen Magnetisierung sein. Für eine Probe der Höhe \(\Delta z \) ist der gesamte Strom an der Oberfläche

\[
\Delta I = \Delta z \cdot j
\]

Diese makroskopischen Oberflächenströme erklären die experimentellen Beobachtungen. Da für ein diamagnetisches Atom \(m \) entgegengesetzt zum Magnetfeld gerichtet ist, und da damit auch die makroskopische Magnetisierung \(M \) entgegengesetzt zum Magnetfeld gerichtet ist, wird diese Probe wie beobachtet vom Magnetfeldgradienten abgestossen.

Das magnetische Feld aller Kreisströme muss identisch mit dem externen Feld \(B \) sein. Nun ist aber das magnetische Moment eines Kreisstromes in genügender Entfernung nicht von der Fläche dieses Stromes abhängig. Deshalb muss die Summe aller einzelner atomarer magnetischer Momente dem magnetischen Moment des Oberflächenstromes gleich sein.

\[
m_a \cdot n \cdot A \cdot \Delta z = A \cdot I = A \cdot j \cdot \Delta z
\]

wobei \(n \) die Volumendichte der Atome ist. Die Oberflächenstromdichte

\[
j = m_a \cdot n = M
\]

ist gleich der Magnetisierung.

4.3.5. Das magnetische Moment des Elektrons: Spin

Neben den von der Bahnbewegung herrührenden magnetischen Momenten hat zum Beispiel das Elektron ein magnetisches Moment, das von seinem Drehimpuls \(s \) (Spin) herrührt.
Zu diesem Drehimpuls oder Spin gehört ein entsprechendes magnetisches Moment m_s. Aus der Quantenmechanik weiß man, dass die Projektion des Spins auf eine raumfeste Achse einen festen Betragswert

$$s_z = \frac{1}{2} \frac{\hbar}{2\pi} = \frac{1}{2} \hbar$$

(4.3.34)

hat, wobei das Plancksche Wirkungsquantum durch

$$\hbar = 6.63 \times 10^{-34} \text{ Js}$$

(4.3.35)

oder mit $2\pi\hbar = \hbar$

$$\hbar \approx 10^{-34} \text{ Js}$$

ist. Nach der Quantenmechanik gilt

$$m_s = -\frac{e}{m_e} s$$

(4.3.36)

Nach der klassischen Mechanik (rotierende homogen geladene Kugel) wäre $m_{s,klass} = -(1/2)\frac{e}{m_e} s$. Die Größe des magnetischen Momentes eines Elektrons ist

$$|m_{s,z,klass}| = \frac{e}{2m_e} \hbar \equiv 1\mu_B = 0.927 \times 10^{-23} \text{ A m}^2$$

(4.3.37)

auch bekannt unter dem Namen BOHRSCHES MAGNETON. Das magnetische Moment des Elektrons ist dann

$$m_s = g\mu_B e_s$$

(4.3.38)

Hier ist g der LANDÉ-FAKTOR, der für die klassische Quantenmechanik und das Elektron $g = -2$ und gemessen $g = -2.00231930436182(52)$ ist.[Cod17a]. (52) ist die Unsicherheit der letzten zwei Stellen. Dieser Wert ist in Übereinstimmung mit der QUANTENELEKTRODYNAMIK. g-Faktoren können auch für Atome und andere Objekte definiert werde. Für das Proton erhält man $g_p = 5.585694702(17)$ [Cod17b].

4.3.6. Paramagnetismus

(Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 262])
Bei paramagnetischen Atomen hebt sich das magnetische Bahnmoment der einzelnen Elektronen eines Atoms sowie deren von den Spins herrührendes magnetisches Moment nicht vollständig auf.

\[\mathbf{m}_A \neq 0 \] \hspace{1cm} (4.3.39)

Das magnetische Moment eines paramagnetischen Atoms hat die Größenordnung eines Bohrschen Magnets 1\(\mu_B\). Ohne äußeres Magnetfeld verschwindet die makroskopische Magnetisierung, da die einzelnen atomaren magnetischen Momente ungeordnet sind. Im äußeren Magnetfeld ordnen sich die magnetischen Momente teilweise, da die thermische Brownsche Bewegung, temperaturabhängig, für Unordnung sorgt.

Die Magnetisierung kann mit der folgenden Überlegung berechnet werden. Wir setzen an

\[\mathbf{H} = (0, 0, H) \] \hspace{1cm} (4.3.40)

\[\mathbf{m} = (m \sin \Theta \cos \phi, m \sin \Theta \sin \phi, m \cos \Theta) \]

\[d\Omega = \sin \Theta d\Theta d\phi = -d(\cos \Theta) d\phi \]

Die Energie des magnetischen Dipols \(\mathbf{m}\) im Magnetfeld \(\mathbf{H}\) hängt nur von \(\Theta\) ab. Wir machen eine Koordinatentransformation auf \(u = \cos \Theta\). Die Energie ist dann

\[E_{\text{pot}} = -\mathbf{m}_A \cdot \mathbf{B} = -\mathbf{m}_A \cdot (\mu_0 \mathbf{H}) = -\mu_0 m_A H \cos \Theta = -\mu_0 m_A H u \] \hspace{1cm} (4.3.41)

Die Magnetisierung \(M_z\) in der \(z\)-Richtung, der Richtung des Magnetfeldes \(\mathbf{H}\), ist

\[M_z = \frac{1}{V} \left(\sum \mathbf{m}_A \right)_z = N m_A \langle \cos \Theta \rangle = N m_A \langle u \rangle \] \hspace{1cm} (4.3.42)

Bei endlichen Temperaturen müssen die potentiellen Energien \(E_{\text{pot}}\) nach der BOLTZMANNSTATISTIK verteilt sein, also

\[\langle \cos \Theta \rangle = \frac{\int_0^\Omega \cos \Theta e^{-E_{\text{pot}}/k_B T} d\Omega}{\int_0^\Omega e^{-E_{\text{pot}}/k_B T} d\Omega} = \frac{\int_0^{2\pi} \int_0^\pi \cos \Theta e^{x \cos \Theta} \sin \Theta d\Theta d\phi}{\int_0^{2\pi} \int_0^\pi e^{x \cos \Theta} \sin \Theta d\Theta d\phi} \] \hspace{1cm} (4.3.43)

mit \(x = \mu_0 m H/k_B T\). In der Koordinate \(u\) und nach Ausführen der trivialen Integration über \(\phi\) lautet die Gleichung

\[\langle u \rangle = \frac{\int_{-1}^1 u e^{xu} du}{\int_{-1}^1 e^{xu} du} \] \hspace{1cm} (4.3.44)

Wir wechseln auf \(\hat{u} = -u\) und erhalten

\[\langle u \rangle = -\frac{\int_{-1}^1 \hat{u} e^{-x \hat{u}} d\hat{u}}{\int_{-1}^1 e^{-x \hat{u}} d\hat{u}} = \coth x - \frac{1}{x} = L(x) \] \hspace{1cm} (4.3.45)
wobei $L(x)$ die \textit{LANGEVIN-FUNKTION} ist. Also ist

$$
M_z = n m_A L \left(\frac{\mu_0 m_A H}{kT} \right) \quad (4.3.46)
$$

$$
= n m_A L \left(\frac{m_A B}{k_B T} \right)
$$

$$
= n m_A \left[\coth \left(\frac{m_A B}{k_B T} \right) - \frac{k_B T}{m_A B} \right]
$$

wobei n die Zählendichte der Spins ist.

Diese klassisch berechnete Magnetisierung ist für kleine Magnetfelder, also $kT \gg m_A B$ verifizierbar. Da für $x \ll 1$ die Reihe

entwicklung $L(x) = x/3 + O(x^2)$ gilt, bekommen wir das \textit{CURIE-GESETZ}

$$
M = \frac{1}{3} n m_A^2 B = \chi H = \frac{C}{T} H \quad (4.3.47)
$$

Hier ist C die \textit{volumenbezogene CURIE-KONSTANTE}

$$
C = \mu_0 n m_A^2 \quad (4.3.48)
$$

Alternativ kann die Curie-Konstante auch mit molaren Größen ausgedrückt werden, indem wir $m_{mol} = N_A m_A$ setzen.

$$
C_{mol} = \mu_0 \frac{m_{mol}^2}{3 R} \quad (4.3.49)
$$

\begin{figure}[h]
 \centering
 \includegraphics[width=0.5\textwidth]{magnetisierung.png}
 \caption{Schematischer Verlauf der Magnetisierung (\textit{CURIE-GESETZ} für kleine B). M_S ist die Sättigungsmagnetisierung.}
 \label{fig:magnetisierung}
\end{figure}

\section*{4.3.7. Ferromagnetismus}

\textbf{Versuch zur Vorlesung:}
\textbf{Ferromagnetismus - Modellversuch (Versuchskarte EM175)}
Ferromagnetische Atome haben genau so wie paramagnetische Atome ein per-
manentes magnetisches Moment \(m_A \). Im Gegensatz zu den Paramagneten bleibt
jedoch auch ohne äusseres Magnetfeld ein magnetisches Moment übrig. Die Magne-
tisierung als Funktion des Magnetfeldes kann mit der unten stehenden Apparatur
gemessen werden.

Abbildung 4.35.: Messung der Hysterese eines Ferromagneten. Rot ist der Pri-
märkreis, grün der Sekundärkreis.

Versuch zur Vorlesung:
Ferromagnetismus - Modellversuch (Versuchskarte EM205)

Unter Vernachlässigung der Selbstinduktion ist die Differentialgleichung für den
Sekundärkreis

\[
-A \cdot \frac{dB(t)}{dt} - \frac{Q(t)}{C} = R_2 \cdot I_2(t)
\] (4.3.50)

Dabei ist \(Q(t) \) die LADUNG am Kondensator. Wir schreiben den STROM als zeit-
liche Ableitung der LADUNG.

\[
-A \cdot \frac{dB(t)}{dt} = \frac{Q(t)}{R_2 C} + \frac{dQ(t)}{dt}
\] (4.3.51)

Die Anregung in dieser Schaltung ist ein STROM \(I_1(t) \), der die Frequenz \(\omega \) hat.
Also ist auch \(Q(t) \) eine periodische Funktion mit der gleichen Frequenz. Bei
harmonischen Funktionen gilt, dass \(dQ(t)/dt \approx \omega Q(t) \) ist. Wenn \(1/RC \ll \omega \) ist, kann
der erste Term auf der rechten Seite vernachlässigt werden. Dann gilt

\[
Q(t) = \text{const} \cdot B(t)
\] (4.3.52)

und damit für die SPANNUNG am Kondensator

\[
U_C(t) = \frac{Q(t)}{C} \propto B(t)
\] (4.3.53)
Der Ausgangstrom $I(t)$ selber erzeugt das anregende Feld.

\[H \]

Abbildung 4.36.: Hysteresekurve eines Ferromagneten

Diese Abbildung zeigt das skizzierte Resultat des obigen Versuches. Interessant ist, dass bei $I = 0$, also ohne anregendes Magnetfeld, trotzdem ein Feld $B \neq 0$ gemessen wird. Diese Feld kann nur von einer nichtverschwindenden Magnetisierung ohne äusseres Feld herrühren. Diese nichtverschwindende Magnetisierung $M \neq 0$ ist das Kennzeichen eines Ferromagneten.

Andererseits gibt es zwei Punkte, bei denen das resultierende Magnetfeld null ist, obwohl ein äusseres Magnetfeld angelegt wurde. Dies kann nur sein, wenn die Magnetisierung im Material das äussere Feld gerade kompensiert.

Weiter nimmt für sehr grosse anregende Felder das resultierende Magnetfeld kaum mehr zu. Man spricht von einer Sättigung der Magnetisierung.

Versuch zur Vorlesung:
Magnetische Bezirke (Versuchskarte EM178)
Abbildung 4.37.: Ferromagnetische Domänen

Das beobachtete Verhalten kann mit ferromagnetischen Domänen, auch Weissche Bezirke genannt, erklärt werden. Das Material besteht, wie oben skizziert, aus einer grossen Zahl kleiner Bereiche, die jeder seine eigene Orientierung der Magnetisierung haben. Die gemittelte Magnetisierung hängt davon ab, wie zufällig die Domänen verteilt sind.

Abbildung 4.38.: Änderung der Domänenstruktur bei stärker werdendem äusserem Magnetfeld

Wird ein äusseres Magnetfeld angelegt, beginnen die Domänen, die bezüglich des externen Feldes richtig orientiert sind, zu wachsen, die anderen schrumpfen. Die makroskopische Magnetisierung wächst, hinkt aber hinter der Anregung zurück.

Domänen ändern die Richtung ihrer Magnetisierung nicht, sie ändern nur ihre Grösse.

Bei der Änderung der Grösse der Domänen müssen Domänenwände verschoben werden. Dies kostet Energie und zeigt sich als Hysterese. Dieser Energieverlust
bei der Grössenänderung stabilisiert aber auch die Domänen.

Abbildung 4.39.: Löschen des remanenten Magnetismus

Um die makroskopische Orientierung der Domänen zum Verschwinden zu bringen, muss man die ferromagnetische Substanz langsam aus einem Wechselfeld entfernen. Das Bild oben zeigt die resultierenden Hysteresekurven. Die Hystereseschleife wird so quasikontinuierlich auf einen Punkt, den Ursprung des Koordinatensystems zusammengezogen.

4.4. Zusammenfassung: Elektrodynamik: zeitlich veränderliche Magnetfelder

Magnetischer Fluss Gleichung (4.1.4)

\[\phi_B = \iiint_A B \cdot da \]

Lorentztransformation der EMK Gleichung (4.1.11)

\[U'_{EMK} = \gamma(v)U_{EMK} \]

Induktionsgesetz von Faraday Gleichung (4.1.22)

\[\oint_S E \cdot ds = -\iiint_{A(S)} \frac{\partial}{\partial t} B \cdot da \]

Differentielle Form des Induktionsgesetzes von Faraday Gleichung (4.1.24)

\[\text{rot } E = -\frac{\partial B}{\partial t} \]
Magnetfeld einer langen Spule Gleichung (4.1.35)

\[B = \mu_0 \frac{N}{\ell} I \]

Fluss einer langen Spule Gleichung (4.1.36)

\[\phi_B = N \cdot B \cdot A = \mu_0 \frac{N^2}{\ell} I \cdot A = \mu_0 n^2 A \ell I \]

Selbstinduktivität einer langen Spule Gleichung (4.1.37)

\[L = \frac{\phi_B}{I} = \mu_0 \frac{N^2}{\ell} A = \mu_0 n^2 A \ell \]

Selbstinduktionsspannung Gleichung (4.1.40)

\[U = -\frac{d\phi_m}{dt} = -L \frac{dI}{dt} \]

Übersetzungsverhältnis eines Transformators Gleichung (4.1.52)

\[U_2 = -\frac{N_2}{N_1} U_1 \]

Übersetzungsverhältnis eines Transformators Gleichung (4.1.53)

\[I_2 = -\frac{N_1}{N_2} I_1 \]

Übersetzungsverhältnis eines Transformators für Leistungen Gleichung (4.1.54)

\[U_2 I_2 = U_1 I_1 \]

Maschenregel Gleichung (4.1.55)

\[\sum_{\forall k \text{ Quellen}} U_k = \sum_{\forall j \text{ Verbraucher}} U_j \]

Knotenregel Gleichung (4.1.56)

\[\sum_{\forall k \text{ eines Knotens}} I_k = 0 \]

Effektivspannung Gleichung (4.1.65)

\[U_{\text{eff}} = U_{\text{rms}} = \sqrt{\frac{1}{T} \int_{t}^{t+T} U^2(\tau) d\tau} \]
Impedanz einer Spule Gleichung (4.1.69)

\[X_L = \omega L \]

Impedanz eines Kondensators Gleichung (4.1.76)

\[X_C = \frac{1}{\omega C} \]

Schwingkreis Gleichung (4.1.84)

\[\frac{d^2I}{dt^2} + \frac{R}{L} \frac{dI}{dt} + \frac{1}{LC} I = 0 \]

Induzierte Spannung in Generator Gleichung (4.1.88)

\[U_{eff,i} = \frac{NBA\omega}{\sqrt{2}} \]

Drehmomentkurve eines Nebenschlussmotors Gleichung (4.1.94)

\[M_{eff}(\omega) = \frac{NAB}{\sqrt{2}} \left(\frac{U}{R} - \frac{NBA}{R \sqrt{2}}\right) = \frac{NABU}{R \sqrt{2}} - \frac{N^2 A^2 B^2}{2R} \omega \]

Drehmomentkurve eines Hauptschlussmotors Gleichung (??)

\[M_{eff} = N A \mu_0 \frac{N_E}{E} \left[\frac{U}{R + R_E + \frac{\mu_0}{\mu_0} \frac{K \cdot N \cdot N_E \cdot A}{\ell E \sqrt{2}}} \right]^2 \]

Wideroe-Beziehung für das Betatron Gleichung (4.1.123)

\[\dot{B}(t) = 2 \cdot B(t) \]

Energiedichte des Magnetfeldes Gleichung (4.2.10)

\[w_B = \frac{B^2}{2\mu_0} \]

Larmorfrequenz Gleichung (4.3.19)

\[\Omega = \frac{e}{2m} B \]

Diamagnetisches Moment Gleichung (4.3.28)

\[m_A = -\frac{Z \cdot e^2 \cdot R^2}{10m_e} B \]
Magnetisches Moment des Elektrons Gleichung (4.3.36)

\[m_s = \frac{-e}{m_e} s \]
5. Die Maxwellschen Gleichungen

5.1. Was wissen wir?

(Siehe Leisi, Klassische Physik II [Lei98, pp. 251])

Maxwellgleichungen werden gebraucht, um die Funktionsweise von
- Radiowellen
- Mikrowellen
- Mobiltelefonen
zu erklären.

Bis jetzt kennen wir die folgenden Gleichungen um die elektrischen Phänomene zu beschreiben:

Gaussches Gesetz (2.3.8)
\[\text{div } D = \rho_{el} \] I

Induktionsgesetz (4.1.24)
\[\text{rot } E = -\frac{\partial B}{\partial t} \] II

Quellenfreiheit (3.8.42)
\[\text{div } B = 0 \] III

Durchflutungsgesetz (3.8.34)
\[\text{rot } H = i \] IV

5.2. Auflösung des Widerspruchs zur Kontinuitätsgleichung, Maxwellgleichungen

Zusätzlich zu den obigen Gleichungen muss die Kontinuitätsgleichung für Ladungen gelten

\[\text{div } i = -\frac{\partial \rho_{el}}{\partial t} \] (5.2.1)

Diese Kontinuitätsgleichung ist im Widerspruch zum Durchflutungsgesetz. Dies sieht man, indem man die Divergenz auf das Durchflutungsgesetz anwendet.

\[\text{div } (i) = -\frac{\partial \rho_{el}}{\partial t} = \text{div } \text{rot } H \equiv 0 \] (5.2.2)

im Widerspruch zur Kontinuitätsgleichung. Dieser Widerspruch wurde von Maxwell aufgelöst, indem er das Durchflutungsgesetz ergänzt hat.

\[\text{rot } H = i + \frac{\partial D}{\partial t} \] (5.2.3)

Die Größe \(\frac{\partial D}{\partial t} \) hat die Dimension einer Stromdichte. Diese MAXWELLSCHE VERSCHIEBUNGSSTROMDICHTE macht das Durchflutungsgesetz mit der Kontinuitäts-
gleichung kompatibel. Der Strom ist bei dem modifizierten Durchflutungsgesetz durch

\[i = \text{rot} \, H - \frac{\partial D}{\partial t} \] (5.2.4)

Die Divergenz davon ist (mit \(\text{div} \, \text{rot} \, X \equiv 0 \))

\[\text{div} \, i = - \text{div} \left(\frac{\partial D}{\partial t} \right) = - \frac{\partial}{\partial t} \left(\text{div} \, D \right) = - \frac{\partial \rho_{el}}{\partial t} \] (5.2.5)

Damit ist gezeigt, dass die Gleichungen I-III zusammen mit dem modifizierten Durchflutungsgesetz auch die Kontinuitätsgleichung beinhalten.

5.3. Maxwellgleichungen

Dieser Satz Gleichungen wird die

Maxwell-Gleichungen

\[
\begin{align*}
\text{div} \, D &= \rho_{el} \quad \text{I} \\
\text{rot} \, E &= - \frac{\partial B}{\partial t} \quad \text{II} \\
\text{div} \, B &= 0 \quad \text{III} \\
\text{rot} \, H &= i + \frac{\partial D}{\partial t} \quad \text{IV}
\end{align*}
\]

genannt. (Ursprüngliche Ableitung der Gleichungen: (2.3.8), (4.1.24), (3.8.42) und (5.2.3))

Zusammen mit dem Kraftgesetz (siehe (4.1.21))

\[F = q \cdot (E + v \times B) \] (5.3.2)

hat man eine vollständige Charakterisierung der Elektrodynamik für isotrope Materialien.

Die Maxwellsche Verschiebungsstromdichte, die eingeführt wurde um die Maxwellgleichungen mit der Kontinuitätsgleichung kompatibel zu machen, führt dazu, dass man aus den Maxwellgleichungen elektromagnetische Wellen vorhersagen kann.

Die Integralform des modifizierten Durchflutungsgesetzes ist
\[\int \int_{A(S)} \text{rot} \ H \cdot \, da = \int \int_{A(S)} \left(\textbf{i} + \frac{\partial \textbf{D}}{\partial t} \right) \cdot \, da = \oint_{S} H \cdot \, ds \quad (5.3.3) \]

wenn man den Satz von Stokes (Siehe Gleichung (C.11.1)) anwendet. \(S \) ist eine beliebige Kurve und \(A(S) \) die durch sie berandete Fläche.

Das Gaussche Gesetz liefert
\[\frac{\partial \rho_{el}}{\partial t} = \frac{\partial}{\partial t} \left(\text{div} \ \textbf{D} \right) = \text{div} \left(\frac{\partial \textbf{D}}{\partial t} \right) \quad (5.3.4) \]

Damit wird die Kontinuitätsgleichung
\[\text{div} \ \textbf{i} + \frac{\partial \rho_{el}}{\partial t} = 0 = \text{div} \ \textbf{i} + \text{div} \left(\frac{\partial \textbf{D}}{\partial t} \right) = \text{div} \left(\textbf{i} + \frac{\partial \textbf{D}}{\partial t} \right) \quad (5.3.5) \]

Damit ist das Integral über die Fläche in Gleichung (5.3.4) unabhängig von \(S \).

Die Integralformeln der Maxwellgleichungen lauten (ursprüngliche Ableitungen: (2.3.6), (4.1.22), (3.8.41) und (5.3.3))

\[
\begin{align*}
\int \int_{A(V)} \textbf{D} \cdot \, da &= \int \int \int_{V} \rho_{el}(\textbf{r}) dV & \text{I} \\
\oint_{S} \textbf{E} \cdot \, ds &= -\frac{\partial}{\partial t} \int \int_{A(S)} \textbf{B} \cdot \, da & \text{II} \\
\int \int_{A(V)} \textbf{B} \cdot \, da &= 0 & \text{III} \\
\oint_{S} \textbf{H} \cdot \, ds &= \int \int_{A(S)} \left(\textbf{i} + \frac{\partial \textbf{D}}{\partial t} \right) \cdot \, da & \text{IV}
\end{align*}
\]

Der Unterschied zwischen der zweiten und der dritten Maxwellgleichung ist, dass in der zweiten Gleichung über eine einfache, von der Kurve \(S \) aufgespannte Fläche \(A(S) \) integriert wird, während in der dritten Gleichung über die das Volumen \(V \) einschliessende Fläche \(A(V) \) integriert wird.

Die angegebenen Maxwellgleichungen gelten für alle Medien, auch mit tensoriellen
Die Maxwellschen Gleichungen

Eigenschaften. Dort benötigt man die beiden Materialgleichungen

\[
\begin{align*}
D &= \varepsilon \varepsilon_0 E \\
B &= \mu \mu_0 H \\
E &= \varepsilon^{-1} \frac{1}{\varepsilon_0} D \\
H &= \mu^{-1} \frac{1}{\mu_0} B
\end{align*}
\]

um das elektrische Feld und die dielektrische Verschiebung, bzw. das magnetische Feld und die magnetische Induktion miteinander zu verknüpfen, wobei \(\varepsilon \) und \(\mu \) Tensoren sind.

Die Maxwellgesetze mit explizit eingesetzten Materialgesetzen lauten für beliebige Materialien

\[
\begin{align*}
\varepsilon_0 \text{div} \left(\varepsilon E \right) &= \rho_{el} \quad \text{I} \\
\text{rot} E &= -\frac{\partial B}{\partial t} \quad \text{II} \\
\text{div} B &= 0 \quad \text{III} \\
\text{rot} \left(\mu^{-1} \frac{B}{\mu_0} \right) &= \left(\mathbf{i} + \varepsilon_0 \frac{\partial (\varepsilon E)}{\partial t} \right) \quad \text{IV}
\end{align*}
\]

in der differentiellen Schreibweise und

\[
\begin{align*}
\oint_{A(V)} \varepsilon \varepsilon_0 \mathbf{E} \cdot d\mathbf{a} &= \iiint_V \rho_{el}(r) dV \quad \text{I} \\
\int_S \mathbf{E} \cdot d\mathbf{s} &= -\frac{\partial}{\partial t} \int_{A(S)} \mathbf{B} \cdot d\mathbf{a} \quad \text{II} \\
\int_{A(V)} \mathbf{B} \cdot d\mathbf{a} &= 0 \quad \text{III} \\
\oint_S \left(\mu^{-1} \frac{B}{\mu_0} \right) \cdot d\mathbf{s} &= \iiint_{A(S)} \left(\mathbf{i} + \varepsilon_0 \frac{\partial (\varepsilon E)}{\partial t} \right) \cdot d\mathbf{a} \quad \text{IV}
\end{align*}
\]

in der Integralschreibweise. Beachten Sie, dass sowohl \(\varepsilon \) wie auch \(\mu \) sowohl von der Zeit wie auch vom Ort abhängen können!

5.4. Maxwellgleichungen in isotropen zeitunabhängigen Medien

Die Maxwellgesetze beliebige isotrope und zeitunabhängige Materialien
5.5 Anwendung der Maxwellgleichungen

Beispiel: Anwendung

Wir betrachten einen langen kreiszyllindrischen Leiter mit dem Durchmesser \(R \), aus dem eine Scheibe mit der Dicke \(d \ll R \) herausgeschnitten wurde. Dieser Leiter werde an eine Gleichstromquelle mit \(I(t) = I_0 \) angeschlossen. Die Endflächen beim herausgeschnittenen Stück wirken wie ein Kondensator. Also ist

\[
Q(t) = I_0 \cdot t \tag{5.5.1}
\]

Da wir eine zeitlich konstante Situation haben, sind alle zeitlichen Ableitungen null. Mit der Integralform des Gaußschen Gesetzes bekommt man mit einer geschlossenen Fläche \(A \), die eine Kondensatorplatte beinhaltet

\[
\varepsilon_0 \int_A E \cdot da = \iiint_{V(A)} \rho_{el} dV \tag{5.5.2}
\]

\[
\varepsilon_0 E(t) \pi R^2 = Q(t)
\]

wobei wir berücksichtigt haben, dass innerhalb des Leiters sowie ausserhalb des
Die Maxwellschen Gleichungen

herausgeschnittenen Stückes $\mathbf{E} = 0$ gilt. Damit erhalten wir

$$E(t) = \frac{Q(t)}{\varepsilon_0 \pi R^2} = \frac{I_0(t)}{\varepsilon_0 \pi R^2} t = \frac{i_0}{\varepsilon_0} t$$ \hspace{1cm} (5.5.3)

Dabei ist i_0 die Stromdichte im Draht, nicht in der Lücke. Das Vektorfeld

$$\left(\mathbf{i} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

ist homogen im ganzen Zylinder, einschliesslich des herausgeschnittenen Stückes. Im Leiter ist $\mathbf{E} = 0$, also

$$i_0 = \frac{I_0}{\pi R^2}$$ \hspace{1cm} (5.5.4)

Im herausgeschnittenen Stück ist $i = 0$ und damit

$$i' = \varepsilon_0 \frac{\partial}{\partial t} \frac{I_0(t)}{\varepsilon_0 \pi R^2} t = \frac{I_0}{\pi R^2} = i_0$$ \hspace{1cm} (5.5.5)

Deshalb muss \mathbf{B} über den ganzen Leiter, inklusive des herausgeschnittenen Stückes, tangential und translationsinvariant entlang des Leiters sein.

$$B(r) = \frac{\mu_0 I_0}{2 \pi} \cdot \frac{r}{R^2} \quad \text{für} \quad r < R$$ \hspace{1cm} (5.5.6)

sowie

$$B(r) = \frac{\mu_0 I_0}{2 \pi} \cdot \frac{1}{r} \quad \text{für} \quad r \geq R$$ \hspace{1cm} (5.5.7)

Der Maxwellsche Verschiebungsstrom bewirkt also, dass die Stromverteilung im Leiter in den Zwischenraum verschoben wird. Das modifizierte Ampèresche Durchflutungsgesetz ist die physikalische Rechtfertigung für den umgangssprachlichen Ausdruck der **Strom fliesst durch den Kondensator**.
6. Elektromagnetische Wellen

6.1. Die Wellengleichung im Vakuum

Im Vakuum gibt es keine Teilchen, also auch keine geladenen Teilchen. Wir können also setzen:

\[\rho_{el}(r) = 0 \]
\[i(r) = 0 \]

Damit lauten die Maxwellgleichungen [Max73] in der Integralform

\[
\int \int_{A(V)} D \cdot da = 0 \quad \text{I}
\]
\[
\oint_{S} E \cdot ds = \int_{A(S)} B \cdot da \quad \text{II}
\]
\[
\int \int_{A(V)} B \cdot da = 0 \quad \text{III}
\]
\[
\oint_{S} H \cdot ds = \varepsilon \varepsilon_{0} \int_{A(S)} \frac{\partial}{\partial t} E \cdot da \quad \text{IV}
\]

oder in der differentiellen Form

\[
\text{div } D = 0 \quad \text{I} \tag{6.1.2}
\]
\[
\text{rot } E = -\frac{\partial B}{\partial t} \quad \text{II}
\]
\[
\text{div } B = 0 \quad \text{III}
\]
\[
\text{rot } H = \frac{\partial D}{\partial t} \quad \text{IV}
\]

Im Vakuum ist \(B = \mu_{0} H \) sowie \(D = \varepsilon_{0} E \) sowie \(\mu = 1 \) und \(\varepsilon = 1 \). Zur Ableitung der Wellengleichung sind die differentiellen Maxwellgleichungen besser als die integralen geeignet. Wir verwenden \(\mu_{0}\varepsilon_{0} = 1/c^{2} \) und erhalten also

\[
\text{div } E = 0 \quad \text{I} \tag{6.1.3}
\]
\[
\text{rot } E = -\frac{\partial B}{\partial t} \quad \text{II}
\]
\[
\text{div } B = 0 \quad \text{III}
\]
\[
\text{rot } B = \mu_{0}\varepsilon_{0} \frac{\partial E}{\partial t} = \frac{1}{c^{2}} \frac{\partial E}{\partial t} \quad \text{IV}
\]

Die Maxwellgleichungen im VAKUUM sind symmetrisch bezüglich \(E \) und \(B \). Wir nehmen die Rotation der zweiten Maxwellgleichung.

\[
\text{rot } \text{rot } E = -\text{rot } \frac{\partial B}{\partial t} = -\frac{\partial}{\partial t} \text{rot } B \tag{6.1.4}
\]
Indem wir die Austauschbarkeit von Ableitungen verwenden. Nun setzt man die vierte Maxwellgleichung in die zweite Gleichung ein. Wir erhalten eine Differentialgleichung für E allein.

$$\text{rot rot } E = - \frac{\partial}{\partial t} \frac{1}{c^2} \frac{\partial E}{\partial t} = - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$$ \hspace{1cm} (6.1.5)

Nun gilt die Vektoridentität

$$\text{rot rot } E = \text{grad div } E - \text{div grad } E = \text{grad div } E - \Delta E$$ \hspace{1cm} (6.1.6)

Wegen der ersten Maxwellgleichung verschwindet der erste Term auf der rechten Seite. Also lauten die WELLENGLEICHUNGEN

$$\frac{\partial^2 E}{\partial t^2} = c^2 \Delta E$$ \hspace{1cm} (6.1.7)

sowie nach einer analogen Ableitung für B

$$\frac{\partial^2 B}{\partial t^2} = c^2 \Delta B$$ \hspace{1cm} (6.1.8)

Die nicht-trivialen Lösungen der WELLENGLEICHUNGEN heissen ELEKTROMAGNETISCHE WELLEN. Dieses Phänomen ist implizit in den Maxwellgleichungen enthalten, die aus makroskopischen Experimenten abgeleitet wurden. Die WELLENGLEICHUNG beschreibt alle Wellenphänomene aus der Kommunikationstechnik, der OPTIK und der Wechselwirkung von Atomen und Molekülen untereinander, für Abstände von 1nm oder mehr. Die Maxwellgleichungen sind invariant unter der LORENTZ-Transformation, nicht aber unter der GALILEI-TRANSFORMATION. In jedem Inertialsystem im Vakuum ist die Ausbreitungsgeschwindigkeit

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \text{ m/s}$$ \hspace{1cm} (6.1.9)

Damit haben die Maxwellgleichungen implizit schon 1864 die spezielle Relativitätstheorie vorweggenommen.

In Medien ist die Ausbreitungsgeschwindigkeit entsprechend

$$c_m = \frac{1}{\sqrt{\mu \mu_0 \varepsilon \varepsilon_0}} = \frac{1}{\sqrt{\mu \varepsilon}} \cdot c$$ \hspace{1cm} (6.1.10)

wobei μ die relative Permeabilität und ε die relative Permittivität ist.
6.2. Allgemeine Lösung der Wellengleichung

Es gibt eine grosse Klasse von Funktionen (skalar oder vektoriell), die die Wellenleitergleichung lösen. Im Folgenden besprechen wir skalare Funktionen, die aber auch als eine Vektorkomponente aufgefasst werden können. Alle Funktionen, die nur von einer skalaren Variable

\[u = k \cdot r - \omega t \quad (6.2.1) \]

abhängen lösen die Wellengleichung, wenn sie genügend oft stetig differenzierbar sind. Wir betrachten die Funktion \(f(u) = f(u(r, t)) \), und setzen sie in \(c^2 \Delta f(u(r, t)) = (\partial^2 / \partial t^2) f(u(r, t)) \) ein. Die Kettenregel der Differentiation ergibt für

\[
\begin{align*}
\frac{\partial}{\partial t} f(u(x, y, z, t)) &= \frac{\partial f(u)}{\partial u} \cdot \frac{\partial u}{\partial t} \\
\frac{\partial^2}{\partial t^2} f(u(x, y, z, t)) &= \frac{\partial}{\partial t} \left[\frac{\partial f(u(x, y, z, t))}{\partial u} \cdot \frac{\partial u}{\partial t} \right] \\
&= \frac{\partial^2 f(u)}{\partial u^2} \cdot \frac{\partial u}{\partial t} \cdot \frac{\partial u}{\partial t} + \frac{\partial f(u(x, y, z, t))}{\partial u} \cdot \frac{\partial^2 u}{\partial t^2} \\
&= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(\frac{\partial u}{\partial t} \right)^2
\end{align*}
\]

(6.2.2)

Die letzte Umformung in Gleichung (6.2.3) beruht auf

\[\frac{\partial^2}{\partial t^2} u(r, t) = \frac{\partial^2}{\partial t^2} (k_x x + k_y y + k_z z - \omega t) = 0 \]

Da \((\partial/\partial t)u = -\omega \) ist, ist auch

\[\frac{\partial^2}{\partial t^2} f(u(x, y, z, t)) = \frac{\partial^2 f(u)}{\partial u^2} \cdot \omega^2 \quad (6.2.4) \]

(6.2.4)

Analog erhalten wir für die Raumkomponente \(x \)

\[
\begin{align*}
\frac{\partial}{\partial x} f(u(x, y, z, t)) &= \frac{\partial f(u)}{\partial u} \cdot \frac{\partial u}{\partial x} \\
\frac{\partial^2}{\partial x^2} f(u(x, y, z, t)) &= \frac{\partial}{\partial x} \left[\frac{\partial f(u(x, y, z, t))}{\partial u} \cdot \frac{\partial u}{\partial x} \right] \\
&= \frac{\partial^2 f(u)}{\partial u^2} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial x} + \frac{\partial f(u(x, y, z, t))}{\partial u} \cdot \frac{\partial^2 u}{\partial x^2} \\
&= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(\frac{\partial u}{\partial x} \right)^2
\end{align*}
\]

(6.2.6)

Also ist wieder mit \(\frac{\partial^2 u}{\partial x^2} = 0 \) und zyklisch für \(x, y, z \).
\[\Delta f(r, t) = \Delta f(u(r, t)) \]
\[= \left(\frac{\partial^2}{\partial x^2} f(u(x, y, z, t)) \right) + \left(\frac{\partial^2}{\partial y^2} f(u(x, y, z, t)) \right) + \left(\frac{\partial^2}{\partial z^2} f(u(x, y, z, t)) \right) \]
\[= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(\left(\frac{\partial}{\partial x} u \right)^2 + \left(\frac{\partial}{\partial y} u \right)^2 + \left(\frac{\partial}{\partial z} u \right)^2 \right) \]
\[= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(k_x^2 + k_y^2 + k_z^2 \right) \]
\[= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(k^2 \right) \quad (6.2.7) \]

Damit lautet die Wellengleichung mit Gleichung (6.2.3), Gleichung (6.2.6), Gleichung (6.2.4) und Gleichung (6.2.7)

\[c^2 \Delta f(r, t) = c^2 \Delta f(k \cdot r - \omega t) = \frac{\partial^2}{\partial t^2} f(k \cdot r - \omega t) = \frac{\partial^2}{\partial t^2} f(r, t) \]
\[c^2 \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(k^2 \right) = \frac{\partial^2 f(u)}{\partial u^2} \cdot \omega^2 \]
\[c^2 k^2 = c^2 |k|^2 = \omega^2 \quad (6.2.8) \]

Damit können wir sagen:

Jede Funktion \(E(u) \) mit \(u = k \cdot r - \omega t \) ist eine Lösung der Wellengleichung

\[c^2 \Delta E(u(r, t)) = \frac{\partial^2}{\partial t^2} E(u(r, t)), \quad (6.2.9) \]

sofern

\[c = \frac{\omega}{|k|} \quad (6.2.10) \]

gilt.

Aus den Gleichungen (6.1.3) kann die ORIENTIERUNG VON \(k, E \) UND \(B \) berechnet werden. Wir verwenden die Gleichungen (6.2.9) und (6.2.10) und schreiben alle Ableitungen nach \(x, y, z \) und \(t \) als Kettenableitungen zuerst nach \(u \). Wenn \(E(u) \) aus der Wellengleichung bekannt ist, verwenden wir die II. Maxwellgleichung aus (6.1.3) und erhalten

\[\text{rot} \ E(u) = \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right) \times E(u) = \left(\frac{\partial u}{\partial x} \frac{d}{du} \frac{\partial u}{\partial y} \frac{d}{du} \frac{\partial u}{\partial z} \frac{d}{du} \right) \times E(u) = k \times \frac{d}{du} E(u) \]
\[= -\frac{\partial}{\partial t} B(u) = \frac{\partial u}{\partial t} \frac{d}{du} B(u) = \omega \frac{d}{du} B(u) \]
\[k \times \frac{d}{du} E(u) = \omega \frac{d}{du} B(u) \quad (6.2.11) \]

Wir haben dabei verwendet, dass \(\frac{du}{dx} = k_x, \frac{du}{dy} = k_y, \frac{du}{dz} = k_z \) und \(\frac{du}{dt} = -\omega \). Damit ist auch \((\frac{du}{dx}, \frac{du}{dz}, \frac{du}{dz})^T = (k_x, k_y, k_z)^T = k \). Integrieren wir die Gleichung (6.2.11) nach \(u \) erhalten wir

\[k \times E = \omega B \quad (6.2.12) \]

\(k, E \) und \(B \) bilden in dieser Reihenfolge ein RECHTSHÄNDIGES DREIBEIN. Die drei Vektoren stehen paarweise rechtwinklig aufeinander.

Hätten wir die Wellengleichung für \(B \) gelöst, hätten wir die Beziehung

\[k \times B = -\frac{\omega}{c^2} E \quad (6.2.13) \]

bekommen. Diese Beziehung (6.2.13) ist aber unter Verwendung von (6.2.10) identisch mit (6.2.12).

Betragsmässig haben wir im Vakuum weiter die Beziehung

\[|E| = c |B| . \quad (6.2.14) \]

6.3. Elektromagnetische Wellen im Doppelleitersystem

Wir untersuchen die Wellenphänomene an 3 Testsystemen,

A. Doppelleitung oder LECHER-LEITUNG, die besonders einfach auszumessen ist

B. Der Doppelleitung aus parallelen Ebenen, die wichtig für die Printplatten-technologie ist und besonders einfach zu berechnen ist

C. dem Koaxialkabel, der technisch wichtigen Anwendung für Verbindungen.

Versuch zur Vorlesung:
Lecherleitung (Versuchskarte SW025)

Versuch zur Vorlesung:
Koaxialleitung (Versuchskarte SW085)
Elektromagnetische Wellen

Abbildung 6.1.: 3 mögliche DOPPELLEITERSYSTEME. Links die Lecherleitung, in der Mitte eine Doppelleiterleitung, wie sie bei Printplatten üblich ist und rechts ein Koaxialkabel

Wenn man das Doppelleitsystem mit elektromagnetischen Wellen mit einer Wellenlänge von etwa $\lambda = 1m$ speist, beobachtet man folgendes

3. Wenn das Doppelleitsystem mit einem WIDERSTAND von etwa 400Ω abgeschlossen ist, verschwinden die Maxima. Es gibt keine stehenden Wellen.

Abbildung 6.2.: 800 MHz-Breitbandverstärker für Fernsehsignale. Auf der Unterseite sind die Wellenleiterstrukturen sichtbar (Mittlere Struktur in Abbildung 6.1)

Wir setzen für die E-Welle in der Geometrie der obigen Zeichnung an

$$E_x(z,t) = -E_0 \cos (k z - \omega t) \quad (6.3.1)$$
$$E_y(z,t) = 0$$
$$E_z(z,t) = 0$$

Dieses Feld erfüllt die Wellengleichung. Wir behaupten, dass das B-Feld durch

$$B_x(z,t) = 0 \quad (6.3.2)$$
$$B_y(z,t) = -\frac{E_0}{c} \cos (k z - \omega t)$$
$$B_z(z,t) = 0$$

gegeben ist. Auch diese Gleichung erfüllt sie Wellengleichung. Wir verwenden die zweite Maxwellgleichung, um zu zeigen, dass die Kopplung richtig ist. Wir schreiben $\text{rot } E = -(\partial / \partial t) B$ in Komponenten

$$\left(\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial z} \right) \cdot \left(\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial y} \right) = - \left(\frac{\partial B_x}{\partial t} \right) \cdot \left(\frac{\partial B_y}{\partial t} \right) \cdot \left(\frac{\partial B_z}{\partial t} \right) \quad (6.3.3)$$

Die x- und die z-Komponenten sind null, nach der Voraussetzung. Die y-Komponen-
Elektromagnetische Wellen 186

te lautet

\[\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t} \] (6.3.4)

Mit \(c = \omega/k \) ist diese Kopplungsgleichung, die zweite Maxwellgleichung erfüllt. Die vierte Maxwellgleichung ist ebenfalls erfüllt. Aus ihr erhält man

\[\frac{\partial E_x}{\partial t} = -c^2 \frac{\partial B_y}{\partial z} \] (6.3.5)

Abbildung 6.5.: Ausbreitung von elektromagnetischen Wellen

Diese elektromagnetischen Wellen im Innenraum zwischen den beiden Leitern müssen auch in den angrenzenden Leitern Ladungswellen und Stromwellen erzeugen, die mit den Maxwellgleichungen kompatibel sind. Für die LADUNGEN gilt mit der ersten Maxwellschen Gleichung für die Oberflächenladungsdichte

\[\sigma(z,t) = -\varepsilon_0 E_x(z,t) = \varepsilon_0 E_0 \cdot \cos(kz - \omega t) \] (6.3.6)

Die Oberflächenladungsdichte ist eine fortlaufende Welle. Die Erhaltung der elektrischen Ladung bedingt für die Oberflächenladungsdichte in einem Abschnitt der Breite \(b \)

\[b \cdot [j(z + dz, t) - j(z, t)] = -\frac{\partial \sigma(z, t)}{\partial t} \cdot b \cdot dz \] (6.3.7)

und damit

\[\frac{\partial j(z, t)}{\partial z} = -\frac{\partial \sigma(z, t)}{\partial t} = \varepsilon_0 E_0 \cdot \omega \cdot \sin(kz - \omega t) \] (6.3.8)

Die Integration über \(z \) und die Verwendung von \(c = \omega/k \) ergibt

\[j(z,t) = \varepsilon_0 E_0 \cdot c \cdot \cos(kz - \omega t) \] (6.3.9)
6.3 Elektromagnetische Wellen im Doppelleitersystem

Abbildung 6.6.: Integrationspfad zur Anwendung des vierten Maxwellschen Gesetzes

Mit dem vierten Maxwellschen Gesetz \[\int_B \mathbf{B} \cdot d\mathbf{s} = \int_A \mu_0 \left(i + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \cdot d\mathbf{a} \]
erhalten wir mit dem eingezeichneten Integrationsweg, da der Term mit \(\mathbf{E} \) keinen Beitrag gibt (er liegt in der Integrationsebene)

\[- B_y(z,t) \cdot h = \mu_0 \cdot h \cdot j(z,t) = \mu_0 \cdot h \cdot \varepsilon_0 \cdot E_0 \cdot c \cdot \cos(kz - \omega t) \quad (6.3.10) \]

Mit \(\varepsilon_0 \cdot \mu_0 = 1/c^2 \) folgt

\[B_y(z,t) = - \frac{E_0}{c} \cdot \cos(kz - \omega t) \quad (6.3.11) \]

eine identische Gleichung zu der im Zwischenraum abgeleiteten. Die Lösung für die auf dem Zweileitersystem transportierten Wellen ist also kompatibel mit den Maxwellgleichungen. Ladungen und Ströme bewegen sich als Wellen auf der Innenseite der Leiter.

6.3.1. Wellenwiderstand

Durch die in Abschnitt 6.3 abgeleiteten Gleichungen sind an jedem Ort \(z \) entlang des Doppelleitersystems und zu jeder Zeit \(t \) die lokal fließenden Ströme \(I(z,t) \) und die elektromotorische Kraft (Spannung) \(U_{EMK}(z,t) \) gegeben. Wenn wir nun an einer festen Stelle \(z \) in Gedanken einen ohmschen Widerstand zwischen den beiden Leitern einfügen, so muss dieser WIDERSTAND einen vom Wellenleitersystem gegeben Wert haben, dass die elektromotorische Kraft \(U_{EMK}(z,t) \) genau den Strom \(I(z,t) \) durch den WIDERSTAND treibt. \(U_{EMK} \) und \(I \) sind dabei von der Wellengleichung gegeben. Nur wenn der WIDERSTAND angepasst ist, also wenn

\[U_{emk}(z,t) = \int_{\text{oben}}^\text{unten} \mathbf{E} \cdot d\mathbf{s} = -d \cdot E_x(z,t) = d \cdot E_0 \cdot \cos(kz - \omega t) \quad (6.3.12) \]

gilt, wird aller Strom verbraucht. In allen anderen Fällen bleibt Strom übrig, der an der Stelle reflektiert werden kann, oder die elektromotorische Kraft treibt zusätzlichen Strom durch den WIDERSTAND: dieser wird mit umgekehrtem Vorzeichen
reflektiert. Der gesamte Oberflächenstrom auf der oberen Platte an der Stelle \(z \) ist

\[
I(z,t) = b \cdot j(z,t) = b \cdot \varepsilon_0 \cdot E_0 \cdot c \cdot \cos(kz - \omega t)
\] (6.3.13)

Wenn man an einer beliebigen Stelle das Doppelleitersystem entzweischneidet und dort den WIDERSTAND

\[
R^* = \frac{U_{emk}(z,t)}{I(z,t)} = \frac{d}{b} \sqrt{\frac{\mu_0}{\varepsilon_0}}
\] (6.3.14)

den WELLENWIDERSTAND, anschliesst, gibt es einen reflexionsfreien Abschluss, wir haben eine reine fortlaufende Welle. Das gleiche gilt für jede beliebige fortlaufende Welle, auch wenn sie nicht harmonisch ist. Das Zweidraht-Doppelleitersystem hat den Wellenwiderstand

\[
R^* = \frac{1}{\pi} \ln \left(\frac{4a}{d} \right) \sqrt{\frac{\mu_0}{\varepsilon_0}}
\] (6.3.15)

Die Grösse

\[
R_0^* = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \ \Omega
\] (6.3.16)

ist der Wellenwiderstand des Vakuums. Der Wellenwiderstand ist wichtig für das korrekte Arbeiten von Hoch- und Höchstfrequenzschaltungen.

Wellenleiter (KOAXIALKABEL, LECHERLEITUNGEN, HOHLEITER) erzeugen nur dann keine Reflexionen, wenn sie mit einem Abschlusswiderstand mit dem Wert ihres Wellenwiderstandes abgeschlossen werden (Siehe Abbildung 6.7).
6.3.2. Stehende Wellen

Stehende Wellen werden aus zwei fortlaufenden Wellen mit entgegengesetztem Wellenvektor k zusammengesetzt. Dabei müssen E, B und k in dieser Reihenfolge ein Rechtssystem bilden\(^1\). Die nach rechts laufende Welle wurde schon berechnet (hier sind nur die von null verschiedenen Komponenten angegeben)

\[
E_x(z, t) = -E_0 \cos(kz - \omega t) \quad (6.3.17)
\]
\[
B_y(z, t) = -\frac{E_0}{c} \cos(kz - \omega t)
\]

Die nach links laufende Welle ist dann gegeben durch (Rechtssystem!)

\[
E'_x(z, t) = -E_0 \cos(kz + \omega t) \quad (6.3.18)
\]
\[
B'_y(z, t) = \frac{E_0}{c} \cos(kz + \omega t)
\]

Die Superposition der beiden Wellen ergibt die folgenden nicht verschwindenden Komponenten

\[
\hat{E}_x(z, t) = -2E_0 \cos(kz) \cos(\omega t) \quad (6.3.19)
\]
\[
\hat{B}_y(z, t) = -2 \frac{E_0}{c} \sin(kz) \sin(\omega t)
\]

Im Gegensatz zu laufenden Wellen sind bei stehenden Wellen die Maxima der E-Felder und der B-Felder gegeneinander um $\lambda/4$ verschoben.

6.4. Poynting-Vektor und Energiefluss

Abbildung 6.8.: Berechnung des Poynting-Vektors

Wir hatten gesehen, dass das elektrische wie das magnetische Feld eine Energiedichte haben. Da sich bei Wellen diese Felder mit der Geschwindigkeit c ausbreiten,

\(^1\)Wegen der Rotation in den Maxwellgleichungen!
muss es einen Energiefluss geben. Wir betrachten einen Rechteckpuls auf einem Zweileitersystem. Der Energiefluss durch eine raumfeste Fläche \(A = b \cdot d \) bezeichnen wir mit \(S_z \), dem Energiefluss pro Flächen- und Zeiteinheit. Die in der Zeit \(dt \) transportierte Energie ist

\[
S_z \cdot A \cdot dt = \left(\frac{\varepsilon_0}{2} E_x^2 + \frac{1}{2\mu_0} B_y^2 \right) \cdot A \cdot dt \cdot c
\]

(6.4.1)

Für beliebige fortlaufende Wellen im Vakuum gilt

\[
B_y (z,t) = \frac{1}{c} E_x (z,t)
\]

(6.4.2)

Wir können damit die Gleichung (6.4.1) symmetrisch schreiben

\[
S_z = \left(\frac{\varepsilon_0}{2} E_x \cdot B_y + \frac{1}{2\mu_0} E_x \cdot B_y \right) \cdot c
\]

\[
= \frac{1}{2\mu_0} E_x \cdot B_y + \frac{1}{2\mu_0} E_x \cdot B_y
\]

\[
= \frac{1}{\mu_0} E_x \cdot B_y
\]

(6.4.3)

Mit \(H = \frac{1}{\mu_0} B = \frac{1}{c\mu_0} E = \sqrt{\varepsilon_0\mu_0} E \) bekommen wir

\[
S = \sqrt{\varepsilon_0 \mu_0} E^2
\]

(6.4.4)

Damit ist auch klar, dass das \(E \)-Feld und das \(B \)-Feld je zur Hälfte zum Energiefluss beitragen.

Die allgemeine Form des Energieflusses im Vakuum ist

\[
S (r,t) = \frac{1}{\mu_0} E (r,t) \times B (r,t)
\]

(6.4.5)

In Medien muss der Energiefluss wie

\[
S (r,t) = E (r,t) \times H (r,t)
\]

(6.4.6)

geschrieben werden. \(|S| \) gibt die in Richtung \(S \) fließende Energie pro Flächen- und Zeit wieder. Die Einheit von \(S \) ist \(J/(m^2 \cdot s) \). Da \(H \) und \(B \) über einen Tensor verbunden sein können, muss der Energiefluss nicht unbedingt in die Richtung des Wellenvektors zeigen. Dieses Verhalten ist die Grundlage von optisch doppelbrechenden Materialien.

Ein ähnliches Verhalten zeigen Wasserwellen am Strand. Die Energie der Wellen fließt zum Strand, aber die Wellen können sich durchaus schräg dazu bewegen.
6.5. Elektromagnetische Wellen im Raum

Hier soll mit einer beschleunigten Ladung erklärt werden, wie Wellen im Raum entstehen.

Versuch zur Vorlesung:
Hertzscher Dipol (Versuchskarte SW099)

Versuch zur Vorlesung:
Stehende Wellen (Versuchskarte SW032)

Abbildung 6.9.: Wellenausbreitung

Wir betrachten eine Ladung q, die die folgende Geschwindigkeit hat

$$v = \begin{cases}
0 & \text{für } -\infty < t < 0 \\
\mathbf{a} \cdot t & \text{für } 0 \leq t < \Delta t \\
\mathbf{a} \cdot \Delta t & \text{für } t \geq \Delta t
\end{cases}$$

die Beschleunigungszeit Δt sowie die Beschleunigung \mathbf{a} sollen so gewählt sein, dass

$$a \cdot \Delta t = v \ll c$$

gilt. Die Behauptung ist, dass das elektrische Feld \mathbf{E} für $t \gg \Delta t$ wie in der Zeichnung oben aussieht. In der Beschleunigungsphase soll eine elektromagnetische Welle erzeugt worden sein. Ausserhalb der Kugel mit dem Radius

$$r = c \cdot t$$
muss das elektrische Feld das Feld einer im Ursprung ruhenden **Ladung** sein, da nach der **RELATIVITÄTSTHEORIE** die Information über die Beschleunigung diesen Raum noch nicht erreicht haben kann.

Innerhalb der Kugel mit

\[r \leq c(t - \Delta t) \]

haben wir das Feld der **Ladung** \(q \), die sich mit der konstanten Geschwindigkeit \(v \) bewegt, denn in diesem Bereich ist die noch unbekannte Welle erzeugt durch die Beschleunigung einer Ladung schon wieder vorbei. Die Feldlinien im Laborsystem können wir erhalten, indem wir das elektrische Feld im Ruhesystem der **Ladung** (radiale Feldlinien) in das Laborsystem transformieren. Wenn \(v \ll c \) ist, haben wir auch im Laborsystem radiale Feldlinien, die von der momentanen Position der **Ladung** weggehen. Die Maxwellgleichung im Vakuum \(\text{div} \, E = 0 \) bedingt, dass die Feldlinien geschlossen und stetig sind. Die Vermutung ist, dass die Feldlinien in der Wellenzone linear die beiden Feldlinienmuster miteinander verbinden.

Abbildung 6.10.: Berechnung der Wellenausbreitung

Da \(t \gg \Delta t \) ist, kann die Beschleunigungsphase für die Bestimmung der Position der **Ladung** zur Zeit \(t \) vernachlässigt werden. Wir haben also

\[x(t) = v \cdot t \quad (6.5.1) \]
Wegen \(v \ll c \) ist dann auch
\[
r = c \cdot t \gg x
\]
(6.5.2)
sowie wegen \(t \gg \Delta t \) auch
\[
r \gg c \cdot \Delta t
\]
(6.5.3)
Wir bezeichnen mit \(\perp \) die Richtung senkrecht zum Radiusvektor \(r \). Wir erhalten dann, unter der Annahme, dass das \(E \)-Feld in der Wellenzone linear sei,
\[
\frac{E_\perp}{E_\parallel} = \frac{v_\perp \cdot t}{c \cdot \Delta t}
\]
(6.5.4)
Mit
\[
v_\perp = a_\perp \cdot \Delta t
\]
(6.5.5)
sowie mit \(t = r/c \) bekommen wir
\[
\frac{E_\perp}{E_\parallel} = a_\perp \frac{r}{c^2}
\]
(6.5.6)
Andererseits, wenn wir die Integralform der ersten Maxwellgleichung auf den kleinen Zylinder an der Stelle \(r \) anwenden, erhalten
\[
\int \int E \cdot da = 0
\]
(6.5.7)
und damit mit dem Coulombgesetz
\[
E_\parallel = E_r = q \frac{1}{4\pi \varepsilon_0} \cdot \frac{1}{r^2}
\]
(6.5.8)
Dies bedeutet, dass das radiale \(E_r \)-Feld sich stetig durch die Kugelschale hindurch fortsetzt. Die Komponente \(E_\perp \) existiert nur in der Wellenzone. Das \(E_\perp \)-Feld ist das gesuchte Feld der elektromagnetischen Feldes, das STRahlungsfeld. Seine Grösse ist
\[
E_\perp = q \frac{1}{4\pi \varepsilon_0} \cdot \frac{a_\perp}{c^2 \cdot r}
\]
(6.5.9)
Vektoriell geschrieben lautet diese Gleichung
\[
E(\mathbf{r}, t) = -q \frac{1}{4\pi \varepsilon_0 c^2} \cdot \frac{a_\perp(t')}{r} \cdot \frac{t' = t - r}{c}
\]
(6.5.10)
Das elektrische Feld \(E \) an der Stelle \(\mathbf{r} \) ist proportional zur senkrechten Komponente der Beschleunigung, aber zur RETARDIERTEN ZEIT \(t' = t - r/c \). Zum Strahlungsfeld gehört auch ein \(B \)-Feld, das so gerichtet ist, dass \(E, B \) und \(k \) ein Rechtssystem bilden. \(k \) ist die Ausbreitungsrichtung. Das Magnetfeld ist, in vektorieller Schreibweise,
\[
B(\mathbf{r}, t) = \frac{1}{c} \left(\frac{k}{k} \right) \times E(\mathbf{r}, t)
\]
(6.5.11)
Wenn wir \(\Delta t \) halbieren, bleibt der äussere Teil der des Strahlungsfeldes konstant, der innere Teil liegt dann in der Mitte der Verbindungslinie durch die Wellenzone.
Durch fortgesetzte Anwendung dieses Verfahrens wird die Linearität des elektrischen Feldes in der Wellenzone gezeigt.

Wenn \(a \perp b \) ist, gilt die Vektoridentität \(a \times b \times a = (a \cdot a) b = |a|^2 b \). Also ist im Vakuum

\[
S = E \times H = \frac{1}{\mu_0} E \times B = \frac{1}{\mu_0} E \times \left(\frac{k}{c} \right) \times E = \frac{1}{\mu_0 c^2} |E|^2 \frac{k}{k} \tag{6.5.12}
\]

Also ist \(S \) kollinear zur Ausbreitungsrichtung \(k \). Mit \(\sqrt{\varepsilon_0 \mu_0} = 1/c \) erhalten wir auch im Vakuum

\[
S = \sqrt{\varepsilon_0 \mu_0} |E|^2 \frac{k}{k} \tag{6.5.13}
\]

Diese Gleichung kann auf lokal isotrope Medien erweitert werden (\(\varepsilon \) und \(\mu \) sind Zahlen!)

\[
S = \sqrt{\varepsilon \mu \mu_0} |E|^2 \frac{k}{k} \tag{6.5.14}
\]

Beispiel: Ein Elektron in einem Atom führe in die \(z \)-Richtung die harmonische Bewegung

\[
z(t') = z_0 \cdot \sin \omega t' \tag{6.5.15}
\]

aus. Dabei ist \(t' \) die retardierte Zeit. Die Beschleunigung ist

\[
a(t') = \ddot{z}(t') = -z_0 \cdot \omega^2 \cdot \sin \omega t' \tag{6.5.16}
\]

Das elektrische Feld ist

\[
E(r, \Theta, t) = \frac{e}{4\pi \varepsilon_0 c^2} \cdot \frac{1}{r} \cdot |a(t')| \sin \Theta = \frac{e z_0 \omega^2}{4\pi \varepsilon_0 c^2} \cdot \frac{1}{r} \cdot \sin \left[\omega \left(t - \frac{r}{c} \right) \right] \sin \Theta \tag{6.5.17}
\]

Das Magnetfeld ist

\[
B(r, \Theta, t) = \frac{1}{c} E(r, \Theta, t) \tag{6.5.18}
\]

Der Poynting-Vektor oder Energiefluss ist

\[
S(r, \Theta, t) = \sqrt{\varepsilon_0 \mu_0} E^2(r, \Theta, t) \tag{6.5.19}
\]

Mit \(\langle \sin^2(\omega t - kr) \rangle_t = 1/2 \) wird die Intensität

\[
I(r, \Theta) = \langle S(r, \Theta, t) \rangle_t = \sqrt{\varepsilon_0 \frac{e^2 z_0^2 \omega^4}{4\pi \varepsilon_0 c^2}} \sin^2 \Theta \tag{6.5.20}
\]

Damit haben wir gezeigt, dass die Annahme eines harmonischen Oszillators das Strahlungsfeld eines Atoms erklären kann. Die abgeführte Energie dämpft dabei den Oszillator. Je stärker die Dämpfung ist, das heisst, je kürzer die Lebensdauer ist, desto breiter wird das Frequenzspektrum sein.
6.5.1. Ebene Wellen

Eine ebene Welle entsteht aus der allgemeinen Wellengleichung dadurch, dass die Amplitude und der Wellenvektor nicht vom Ort abhängen. Eine ebene Transversalwelle des elektromagnetischen Feldes ist durch

\[E(x) = E_0 \cos(k \cdot x - \omega t) \quad \text{mit} \quad E_0 \cdot k = 0 \]

gegeben. Der Vektor \(k \), der, gibt die Ausbreitungsrichtung an, der Betrag \(|k| = k = \frac{2\pi}{\lambda} \) heisst die Wellenzahl. Bei elektromagnetischen Wellen im Sichtbaren kann man alternativ auch von Lichtstrahlen sprechen. Zum Vergleich, eine Longitudinalwelle ist eine örtliche Schwankung einer skalaren Funktion, zum Beispiel, des Druckes, gegeben durch

\[\Psi(x) = \Psi_0 \cos(k \cdot x - \omega t) \]

6.5.2. Kugelwellen

(Siehe Hecht, Optik [Hec05, pp. 48, 710]) (Siehe Pérez, Optik [Pér96, pp. 287])

Versuch zur Vorlesung:

Wellenwanne (Versuchskarte O-021)

Eine weitere häufig vorkommende Form von Wellen sind die Kugelwellen. Wir können die Amplitudenabhängigkeit durch folgende Überlegung erhalten.

- Wir denken uns eine Kugeloberfläche um die Quelle, wobei die Quelle im Mittelpunkt der Kugel sein soll.

- Der Energiefluss pro Zeit, die Leistung, die durch die gesamte Kugeloberfläche fließt ist konstant, unabhängig vom Radius der Kugel.
• Damit diese Gleichung für alle \(r \) gilt muss \(E(r) = \mathcal{E}_0 \frac{r_0}{r} \) sein.

Abbildung 6.12.: Amplitude und Intensität einer Kugelwelle in Abhängigkeit der Distanz \(r \) von der Quelle. Links eine lineare, rechts eine logarithmische Darstellung.

Bei elektromagnetischen Wellen gilt

\[
E(r) = E(r, \phi, \theta) = \hat{\mathcal{E}}_0(\phi, \theta) \frac{r_0}{r} \cos(kr - \omega t)
\]
mit \(r \cdot \hat{E}_0(\phi, \theta) \) (6.5.23)

Bei einer Kugelwelle ist

- die Amplitude: \(E(r) = E_0 \frac{r_0}{r} \)
- die Intensität \(I(r) = I_0 \frac{r_0^2}{r^2} \)

6.6. Lichtgeschwindigkeit im Medium und Intensität

In einem Medium bewegen sich elektromagnetische Wellen langsamer. Die einfallende Welle regt die polarisierbaren Atome zum Schwingen an. Diese schwingen mit der gleichen Frequenz, aber mit einer frequenzabhängigen Phasenverschiebung. Die Resonanzfrequenz des Elektron-Atomrumpfsystems liegt im Ultravioletten. In der Summe wird die elektromagnetische Welle durch diese mit der zunehmenden Frequenz zunehmenden Phasenverschiebung verlangsamt. Mit dem (frequenzabhängigen) Brechungsindex \(n = \sqrt{\varepsilon \mu} \) bekommt man

\[
c_m = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = \frac{c}{n}
\] (6.6.1)

wobei \(c \) die Lichtgeschwindigkeit im Vakuum ist. Die Brechzahl oder der Brechungsindex \(n \) gibt an, um wieviel langsamer elektromagnetische Wellen in einem Medium sind als im Vakuum. Die Intensität ist gegeben durch den Mittelwert des Poynting-Vektors \(S(r) = S_0(r) \sin^2(k \cdot r - \omega t) \). Für harmonische
Schwingungen erhält man für die auf die Fläche mit der Flächennormale \(a \) einfallende Intensität

\[
I_a(r) = \langle |S(r)| \rangle_t = \frac{1}{2} S_0(r) \cdot \frac{a}{|a|} = \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} |E|^2 \cos(\theta S_0, a) = \frac{n \varepsilon_0 c}{2 \mu} E^2 \cos(\theta S_0, a)
\] (6.6.2)

wenn \(E \) das elektrische Feld, d.h. eine der beiden möglichen Amplituden der elektromagnetischen Welle ist. \(\varepsilon_0 = 8.8542 \cdot 10^{-12} \text{AS} \cdot \text{Vm} \) ist die VAKUUMPERMITTIVITÄT und \(c = 2.9979 \cdot 10^8 \text{m} \cdot \text{s} \) die Lichtgeschwindigkeit im Vakuum. Der Vorfaktor \(\frac{1}{2} \) entsteht durch die Mittelung über viele Perioden. Bei nichtmagnetischen Materialien \((\mu = 1) \) kann man auch schreiben:

\[
I_a(r) = \frac{n \varepsilon_0 c}{2} E^2 \cos(\theta S_0, a)
\] (6.6.3)

Gleichung (6.6.2) kann auch so geschrieben werden:

\[
I = \frac{n}{\mu} E^2 \cdot 1.3272 \cdot 10^{-3} \frac{A}{V}
\] (6.6.4)

6.7. Polarisation

(Siehe Hecht, Optik [Hec05, pp. 475]) (Siehe Tipler, Physik [TM04, pp. 1044])

Versuch zur Vorlesung:
Polarisiertes Licht: Polarisorator und Analysator (Versuchskarte SW048)

Elektromagnetische Wellen (auch Licht) sind transversale Wellen. Das heisst, dass das elektrische und das magnetische Feld senkrecht zur Ausbreitungsrichtung schwingen. Die Wellengleichung für das elektrische Feld und damit auch für die elektromagnetischen Wellen sind durch

\[
E(x, t) = E_0(x) \cos(k(x) \cdot x - \omega t)
\]

und

\[
B(x, t) = B_0(x) \cos(k(x) \cdot x - \omega t)
\]

gegeben. Die Tatsache, dass wir eine Transversalwelle haben erfordert, dass \(E_0 \) der Bedingung

\[
E_0 \cdot k = 0
\] (6.7.1)

gilt.

Wenn wir nun, ohne Einschränkung der Allgemeinheit, die Ausbreitungsrichtung der Welle in die x-Richtung legen, dann sind

- der Wellenvektor \(k = (k; 0; 0) \)
- und die Amplitude \(E_0 = (0; E_y; E_z) \)
Diese Wahl erfüllt die Bedingung der Transversalität.

Es gibt zwei mögliche orthogonale Orientierungen von E_0 sowie die daraus folgenden Linearkombinationen. Die Richtung, in die E_0 zeigt ist die **Polarisationsrichtung**.

6.7.1. Polarisation durch Absorption (Dichroismus)

(Siehe Pérez, Optik [Pér96, pp. 323]) (Siehe Hecht, Optik [Hec05, pp. 487]) (Siehe Tipler, Physik [TM04, pp. 1044])

Wenn das elektrische Feld einer Mikrowelle entlang eines Drahtes zeigt, kann dieses Feld im Draht Ladungen bewegen und so Energie abgeben. Die **Intensität** der Welle und damit die die Absorption hängen von der Polarisation ab. Ebenso gibt es Moleküle mit Doppelbindungen zwischen den Kohlenstoffatomen, bei denen π-Elektronen beweglich sind, die wie Drähte wirken. Werden diese Moleküle orientiert zu einer Folie gemacht, so erhält man eine polarisierende Folie.

Abbildung 6.13.: Polarisation durch Absorption in einem Drahtpolarisator

Abbildung 6.14.: Elektromagnetische Wellen durchstrahlen durch einen **Polarisator** und einen **Analysator** mit gekreuzten Polarisationsrichtungen. Darunter die gleiche Anordnung, aber der Analysator ist nun um $\pi/4$ gedreht.

Bei einer Anordnung von **Analysator** und **Polarisator** polarisiert der **Pola-
Die Fresnelschen Formeln

Die Fresnelschen Formeln (Siehe Hecht, Optik [Hec05, pp. 190]) (Siehe Gerthsen, Physik [Mes06, pp. 539])
Abbildung 6.16.: Das gleiche Gebäude mit Polarisationsfilter aufgenommen. Die Achse des Polarisationsfilters wurde dabei um 90° gedreht. Links sind die Reflexionen im Glas kaum zu erkennen, rechts ist dafür der Kontrast des Himmels schwächer.

Versuch zur Vorlesung:
Fresnelse Formeln (Versuchskarte O-039)

Abbildung 6.17.: Definition der s-Polarisation und der p-Polarisation

Die Reflexion und die Brechung von elektromagnetischen Wellen werden durch die Maxwellschen Gleichungen und die daraus abgeleiteten Randbedingungen bestimmt. Die resultierenden Beziehungen für die Amplituden und die Intensitäten werden die Fresnelschen Formeln genannt. Zur Berechnung verwenden die Definitionen
• Der einfallende und der reflektierte Strahl elektromagnetischer Wellen definiert die EINFALLSEBENE. Diese ist senkrecht zur Grenzfläche der beiden Medien.

• Elektromagnetische Wellen, deren Polarisationsebene senkrecht zur EINFALLSEBENE liegt, heissen s-POLARISIERT. Die Polarisationsebene gibt die Richtung des elektrischen Feldes an.

• Elektromagnetische Wellen, deren Polarisationsebene parallel zur EINFALLSEBENE liegt, heissen p-POLARISIERT.

• Für die Intensität der elektromagnetischen Wellen in nichtmagnetischen Medien gilt

\[I \propto \sqrt{\varepsilon E^2}, \quad \text{wobei} \quad \varepsilon = n^2. \]

• Genauer gilt für die Intensität:

\[I = \frac{1}{2} \sqrt{\frac{\varepsilon_0 \varepsilon_0}{\mu_0 \mu_0}} E^2 = \frac{\varepsilon_0 \varepsilon_0}{2\mu_0} E^2 \quad \text{für sinusförmige Wellen mit der Amplitude} \ E. \]

Wir betrachten eine Welle \(E_e \), die aus dem Medium mit \(\mu_1 \) und \(\varepsilon_1 \) auf eine ebene Grenzfläche zum Medium mit \(\mu_2 \) und \(\varepsilon_2 \) fällt. Neben der einfallenden Welle existierten eine reflektierte und eine transmittierte elektromagnetische Welle

\[
\begin{align*}
E_e &= \mathbf{e}_e \cos (k_e \cdot r - \omega_e t) \\
E_r &= \mathbf{e}_r \cos (k_r \cdot r - \omega_r t + \varphi_r) \\
E_t &= \mathbf{e}_t \cos (k_t \cdot r - \omega_t t + \varphi_t)
\end{align*}
\]

(6.8.1a)

\[
\begin{align*}
E_e &= \mathbf{e}_e e^{(k_e \cdot r - \omega_e t)} \\
E_r &= \mathbf{e}_r e^{(k_r \cdot r - \omega_r t + \varphi_r)} \\
E_t &= \mathbf{e}_t e^{(k_t \cdot r - \omega_t t + \varphi_t)}
\end{align*}
\]

(6.8.1b)

Gegeben sind \(\mathbf{e}_e, \mu_1, \varepsilon_1, \mu_2, \varepsilon_2, k_e \) und \(\omega_e (=|k_e|) \). An den Grenzflächen gilt

• Die tangentielle Komponente von \(E \) ist stetig.

• Die tangentielle Komponente von \(H \) ist stetig.

Sei \(\mathbf{e}_n \) der Normaleneinheitsvektor auf die Grenzfläche. Der resultierende Vektor des Kreuzproduktes von \(E_e \) mit \(\mathbf{e}_n \) liegt senkrecht zu \(\mathbf{e}_n \) und damit in der Grenzfläche der beiden Medien. Um den Tangentialvektor in die ursprüngliche Richtung zurück zu drehen, wenden wir nochmals ein Kreuzprodukt mit \(\mathbf{e}_n \) an. Unabhängig von der Richtung von \(E_e \) bekommt man mit dieser Operation immer die Komponente von \(E_e \) tangential zur Grenzfläche

\[\mathbf{E}_{e,\text{tangential}} = \mathbf{e}_n \times E_e \times \mathbf{e}_n \]

(6.8.2)

Mit der gleichen Methode kann man auch die Komponenten der Vektoren \(E_r \) und \(E_t \) in der Grenzfläche berechnen. Die Bedingung der Stetigkeit der Tangentialkomponente des elektrischen Feldes kann dann mit den Kreuzprodukten so geschrieben werden

\[\mathbf{e}_n \times E_e \times \mathbf{e}_n + \mathbf{e}_n \times E_r \times \mathbf{e}_n = \mathbf{e}_n \times E_t \times \mathbf{e}_n \]

(6.8.3)
Die Gleichung besagt, dass die Summe der Tangentialkomponenten des elektrischen Feldes im Medium 1 (einfallende und reflektierte Welle) gleich der Tangentialkomponente der transmittierten Welle ist. Ausgeschrieben erhalten wir

\[
e_n \times \mathbf{E}_e \cos (k_e \cdot r - \omega_e t) \times e_n + e_n \times \mathbf{E}_r \cos (k_r \cdot r - \omega_r t + \varphi_r) \times e_n = e_n \times \mathbf{E}_t \cos (k_t \cdot r - \omega_t t + \varphi_t) \times e_n \quad (6.8.4a)
\]

\[
e_n \times \mathbf{E}_e e^{i(k_e \cdot r - \omega_e t)} \times e_n + e_n \times \mathbf{E}_r e^{i(k_r \cdot r - \omega_r t + \varphi_r)} \times e_n = e_n \times \mathbf{E}_t e^{i(k_t \cdot r - \omega_t t + \varphi_t)} \times e_n \quad (6.8.4b)
\]

Die Gleichung (6.8.4) muss für alle Zeiten und alle Orte auf der Grenzfläche gelten. Deshalb gilt

\[
\cos (k_e \cdot r - \omega_e t)|_{\text{in der Grenzfläche}} = \cos (k_r \cdot r - \omega_r t + \varphi_r)|_{\text{in der Grenzfläche}} = \cos (k_t \cdot r - \omega_t t + \varphi_t)|_{\text{in der Grenzfläche}} \quad (6.8.5a)
\]

\[
e^{i(k_e \cdot r - \omega_e t)}|_{\text{in der Grenzfläche}} = e^{i(k_r \cdot r - \omega_r t + \varphi_r)}|_{\text{in der Grenzfläche}} = e^{i(k_t \cdot r - \omega_t t + \varphi_t)}|_{\text{in der Grenzfläche}} \quad (6.8.5b)
\]

wobei \(r \) nach Definition ein Vektor in der Grenzfläche ist, also mit \(e_n \cdot r = 0 \). Damit Gleichung (6.8.5) zu allen Zeiten an einem beliebigen Punkt gilt, müssen die Kreisfrequenzen gleich sein

\[
\omega_e = \omega_r = \omega_t \quad (6.8.6)
\]

Weiter muss dann gelten: Die Gleichung (6.8.4) muss für alle Zeiten und alle Orte auf der Grenzfläche gelten. Deshalb gilt

\[
k_e \cdot r|_{\text{in der Grenzfläche}} = k_r \cdot r + \varphi_r|_{\text{in der Grenzfläche}} = k_t \cdot r + \varphi_t|_{\text{in der Grenzfläche}} \quad (6.8.7)
\]

\(r \) zeigt auf einen Punkt in der Grenzfläche. Da der Ursprung des Koordinatensystems nicht in der Grenzfläche liegen muss, ist \(r \) im Allgemeinen nicht parallel zur Grenzfläche. Aus der ersten Gleichung in (6.8.7) folgt

\[
((k_e - k_r) \cdot r)|_{\text{in der Grenzfläche}} = \varphi_r \quad (6.8.8)
\]

Eine Gleichung vom Typ \(\mathbf{a} \cdot \mathbf{r} = \varpi \) beschreibt eine Ebene. Die Endpunkte von \(r \) liegen in der Ebene mit dem Normalenvektor \(\mathbf{a} \). \(\varpi \) gibt die Verschiebung zum Nullpunkt an. Gleichung (6.8.8) ist also die Gleichung einer Ebene, die senkrecht zu \(k_e - k_r \) liegt. Andererseits wissen wir, nach unserer Konstruktion, dass \(r \) in
der Grenzfläche mit dem Normalenvektor \(\mathbf{e}_n \) liegt. \(\mathbf{e}_n \) ist also parallel zu \(\mathbf{k}_e - \mathbf{k}_r \). Weiter sind beide Wellen im gleichen Medium 1, das heisst \(|\mathbf{k}_e| = |\mathbf{k}_r| = k_r \). Wir können also schreiben

\[
\mathbf{e}_n \times (\mathbf{k}_e - \mathbf{k}_r) = 0
\]

(6.8.9)

Mit Beträgen geschrieben heisst dies

\[
k_e \sin \alpha = k_r \sin \beta \Rightarrow \sin \alpha = \sin \beta \Rightarrow \alpha = \beta
\]

(6.8.10)

Dabei ist \(\alpha \) der Winkel zwischen der Oberflächennormale \(\mathbf{e}_n \) und dem Wellenvektor der einfallenden Welle \(\mathbf{k}_e \) und \(\beta \) der Winkel zwischen der Oberflächennormale \(\mathbf{e}_n \) und dem Wellenvektor der reflektierten Welle \(\mathbf{k}_r \).

Das Reflexionsgesetz besagt, dass

\[
\alpha = \beta
\]

(Einfallswinkel=Ausfallswinkel)

Aus Gleichung (6.8.7) folgt weiter

\[
((\mathbf{k}_e - \mathbf{k}_t) \cdot \mathbf{r})_{\text{Grenzfläche}} = \varphi_t
\]

(6.8.11)

Gleichung (6.8.8) ist also die Gleichung einer Ebene, die senkrecht zu \(\mathbf{k}_e - \mathbf{k}_t \) liegt. Andererseits wissen wir, nach unserer Konstruktion, dass \(\mathbf{r} \) in der Grenzfläche mit dem Normalenvektor \(\mathbf{e}_n \) liegt. \(\mathbf{e}_n \) ist also parallel zu \(\mathbf{k}_e - \mathbf{k}_t \). Wir können also schreiben

\[
\mathbf{e}_n \times (\mathbf{k}_e - \mathbf{k}_t) = 0
\]

(6.8.12)

Mit Beträgen geschrieben heisst dies

\[
k_e \sin \alpha = k_t \sin \gamma
\]

(6.8.13)

Dabei ist \(\alpha \) der Winkel zwischen der Oberflächennormale \(\mathbf{e}_n \) und dem Wellenvektor der einfallenden Welle \(\mathbf{k}_e \) und \(\gamma \) der Winkel zwischen der Oberflächennormale \(\mathbf{e}_n \) und dem Wellenvektor der transmittierten Welle \(\mathbf{k}_t \). Aus der Wellengleichung folgt

\[
\frac{\omega}{k_i} = c_i = \frac{1}{\sqrt{\varepsilon_0 \mu_0 \varepsilon_i}}
\]

(6.8.14)

Da \(\omega_e = \omega_r = \omega_t \) ist, kann Gleichung (6.8.13) auch als

\[
\frac{\omega_e}{c_e} \sin \alpha = \frac{\omega_t}{c_t} \sin \gamma
\]

(6.8.15)

oder

\[
\sqrt{\mu_1 \varepsilon_1} \sin \alpha = \sqrt{\mu_2 \varepsilon_2} \sin \gamma \Rightarrow \sqrt{\mu_1 \varepsilon_1} \sin \alpha = \sqrt{\mu_2 \varepsilon_2} \sin \gamma
\]

(6.8.16)
Mit der Definition (6.6.1) \(n = \sqrt{\mu \epsilon} \) bekommt man auch

\[n_1 \sin(\alpha) = n_2 \sin(\gamma) \]

(6.8.17)

Dies ist das Brechungsgesetz nach Snellius.

Schließlich können wir noch eine Beziehung der Tangentialkomponenten aller Felder erhalten. Analog zur Gleichung (6.8.3) können wir die Tangentialkomponenten der Wellenvektoren angeben:

\[k_{e,tangential} = e_n \times k_e \times e_n \]

(6.8.18a)

\[k_{r,tangential} = e_n \times k_r \times e_n \]

(6.8.18b)

\[k_{t,tangential} = e_n \times k_t \times e_n \]

(6.8.18c)

Wir subtrahieren Gleichung (6.8.18a) von Gleichung (6.8.18b), beziehungsweise von Gleichung (6.8.18c) erhalten wir die Beziehungen

\[k_{r,tangential} - k_{e,tangential} = e_n \times (k_r - k_e) \times e_n \]

(6.8.19a)

\[k_{t,tangential} - k_{e,tangential} = e_n \times (k_t - k_e) \times e_n \]

(6.8.19b)

Setzen wir mit Gleichung (6.8.9) für \(k_r - k_e = \Gamma_\text{re} e_n \) und \(k_t - k_e = \Gamma_\text{te} e_n \) erhalten wir für die Gleichungen (6.8.19a) beziehungsweise (6.8.19b)

\[k_{r,tangential} - k_{e,tangential} = e_n \times (k_r - k_e) \times e_n = e_n \times \Gamma_\text{re} e_n \times e_n = 0 \]

(6.8.20a)

\[k_{t,tangential} - k_{e,tangential} = e_n \times (k_t - k_e) \times e_n = e_n \times \Gamma_\text{te} e_n \times e_n = 0 \]

(6.8.20b)

Damit gilt für die Tangentialkomponenten der Wellenvektoren

Die Tangentialkomponenten der Wellenvektoren der einfallenden, reflektierten und gebrochenen Wellen sind gleich.

\[k_{e,tangential} = k_{r,tangential} = k_{t,tangential} \]

(6.8.21)

Die Änderung der Ausbreitungsrichtung bei Reflexion und Brechung stammt alleine von den Komponenten der Wellenvektoren, die parallel zum Normalenvektor der Grenzfläche liegen.
6.8.1. s-Polarisation

Zur Berechnung der Amplitude der reflektierten und transmittierten Wellen mit einer allgemeinen Polarisation verwenden wir zwei orthogonale Polarisationsrichtungen, die s-Polarisation und die p-Polarisation. Jeder Polarisationszustand kann als Linearkombination der s-Polarisation und der p-Polarisation geschrieben werden.

Wir beginnen die Rechnungen für elektromagnetische Wellen mit einer Polarisation senkrecht zur Einfallsebene (s-POLARISATION).

Wenn in den beiden angrenzenden Medien die DIELEKTRIZITÄTSKONSTANTEN \(\varepsilon_1 \) und \(\varepsilon_2 \) sind, dann muss der POINTINGVEKTOR (Energiestrom) senkrecht zur Grenzfläche an der Grenzfläche kontinuierlich sein, also

\[
\frac{1}{2} \sqrt{\frac{\varepsilon_1 \varepsilon_0}{\mu_1 \mu_0}} (\mathcal{E}_e^2 - \mathcal{E}_r^2) \cos \alpha = \frac{1}{2} \sqrt{\frac{\varepsilon_2 \varepsilon_0}{\mu_2 \mu_0}} \mathcal{E}_t^2 \cos \gamma \quad (6.8.22)
\]

wobei \(\alpha \) und \(\gamma \) die Winkel zur OBERFLÄCHENNORMALEN \(\mathbf{e}_n \) sind, \(\mathcal{E}_e \) ist die Amplitude der \(\mathbf{E} \)-Feldkomponente der einfallenden elektromagnetischen Welle parallel zur OBERFLÄCHE (s-Polarisation), \(\mathcal{E}_r \) die Amplitude der reflektierten und \(\mathcal{E}_t \) die der gebrochenen elektromagnetischen Welle.

Vereinfacht kann man die Energieerhaltung schreiben als

\[
\sqrt{\frac{\varepsilon_1}{\mu_1}} (\mathcal{E}_e^2 - \mathcal{E}_r^2) \cos \alpha = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathcal{E}_t^2 \cos \gamma
\]

(6.8.23)

Die Komponente von \(\mathbf{E} \) parallel zur OBERFLÄCHE muss stetig sein, also ist nach Gleichung (6.8.3)

\[
\mathcal{E}_e + \mathcal{E}_r = \mathcal{E}_t \quad (6.8.24)
\]

Wir beachten, dass \(a^2 - b^2 = (a-b)(a+b) \) ist und dividieren die beiden Gleichungen durcheinander. Wir erhalten

\[
\sqrt{\frac{\varepsilon_1}{\mu_1}} (\mathcal{E}_e - \mathcal{E}_r) \cos \alpha = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathcal{E}_t \cos \gamma \Rightarrow \sqrt{\frac{\varepsilon_1 \mu_2}{\mu_1 \varepsilon_2}} (\mathcal{E}_e - \mathcal{E}_r) \cos \alpha = \mathcal{E}_t \cos \gamma
\]

(6.8.25)

Aus der Kombination der Gleichungen (6.8.24) und (6.8.25) erhalten wir die Fresnelschen Gleichungen für die s-Polarisation.
Die Fresnelschen Gleichungen für die s-Polarisation lauten

\[\begin{align*}
E_r &= E_e \frac{\sqrt{\varepsilon_1 \mu_1} \cos \alpha - \sqrt{\varepsilon_2 \mu_2} \cos \gamma}{\sqrt{\varepsilon_1 \mu_1} \cos \alpha + \sqrt{\varepsilon_2 \mu_2} \cos \gamma} \\
E_t &= E_e \frac{2 \sqrt{\varepsilon_1 \mu_1} \cos \alpha}{\sqrt{\varepsilon_1 \mu_1} \cos \alpha + \sqrt{\varepsilon_2 \mu_2} \cos \gamma}
\end{align*} \] (6.8.26)

Mit den Brechungsindizes \(n_1 = \sqrt{\mu_1 \varepsilon_1} \) und \(n_2 = \sqrt{\mu_2 \varepsilon_2} \) erhält man

\[\begin{align*}
E_r &= E_e \frac{n_1 \mu_1 \cos \alpha - n_2 \mu_2 \cos \gamma}{n_1 \mu_1 \cos \alpha + n_2 \mu_2 \cos \gamma} \\
E_t &= E_e \frac{2 n_1 \mu_1 \cos \alpha}{n_1 \mu_1 \cos \alpha + n_2 \mu_2 \cos \gamma}
\end{align*} \] (6.8.27)

Nach dem Brechungsgesetz ist

\[\frac{\sin \gamma}{\sin \alpha} = \sqrt{\frac{\mu_1 \varepsilon_1}{\mu_2 \varepsilon_2}} = \frac{\mu_1}{\mu_2} \sqrt{\frac{\varepsilon_1 \mu_2}{\mu_1 \varepsilon_2}} = \frac{\mu_1 \varepsilon_2}{\mu_2 \varepsilon_1} \]

Wir setzen dies ein und erhalten

\[\frac{\mu_2 \sin \gamma}{\mu_1 \sin \alpha} (E_e - E_r) \cos \alpha = E_t \cos \gamma \]

\[\frac{(E_e - E_r) \cos \alpha \sin \gamma}{\mu_1} = \frac{E_t \cos \gamma \sin \alpha}{\mu_2} \] (6.8.28)

Wir setzen \(E_e + E_r = E_t \) ein und bekommen

\[\begin{align*}
E_r &= E_e \frac{\frac{1}{\mu_1} \sin \gamma(\alpha) \cos \alpha - \frac{1}{\mu_2} \sin \alpha \cos \gamma(\alpha)}{\frac{1}{\mu_1} \sin \gamma(\alpha) \cos \alpha + \frac{1}{\mu_2} \sin \alpha \cos \gamma(\alpha)} \\
E_t &= E_e \frac{2 \frac{1}{\mu_1} \sin \gamma(\alpha) \cos \alpha}{\frac{1}{\mu_1} \sin \gamma(\alpha) \cos \alpha + \frac{1}{\mu_2} \sin \alpha \cos \gamma(\alpha)}
\end{align*} \] (6.8.29)

Dabei ist

\[\sqrt{\mu_1 \varepsilon_1} \sin \alpha = \sqrt{\mu_2 \varepsilon_2} \sin \gamma \]
Für nichtmagnetische Materialien können die Fresnelgleichungen umgeschrieben werden.

<table>
<thead>
<tr>
<th>Fresnelsche Formeln für die s-POLARISATION bei nichtmagnetischen Materialien</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_r = E_e \frac{\sin \gamma(\alpha) \cos \alpha - \sin \alpha \cos \gamma(\alpha)}{\sin \gamma(\alpha) \cos \alpha + \sin \alpha \cos \gamma(\alpha)}$</td>
</tr>
<tr>
<td>$= -E_e \frac{\sin(\alpha - \gamma(\alpha))}{\sin(\alpha + \gamma(\alpha))}$</td>
</tr>
<tr>
<td>$E_t = E_e \frac{2 \sin \gamma(\alpha) \cos \alpha}{\sin \gamma(\alpha) \cos \alpha + \sin \alpha \cos \gamma(\alpha)}$</td>
</tr>
<tr>
<td>$= E_e \frac{2 \sin \gamma(\alpha) \cos \alpha}{\sin(\alpha + \gamma(\alpha))}$</td>
</tr>
<tr>
<td>(6.8.30)</td>
</tr>
</tbody>
</table>

Dabei ist

$\sqrt{\varepsilon_1 \sin \alpha} = \sqrt{\varepsilon_2 \sin \gamma}$

- Wenn $\alpha > \gamma$, wenn also die elektromagnetische Welle aus dem schnelleren Medium auf das langsameren Medium trifft, haben E_e und E_r unterschiedliche Vorzeichen: es tritt ein Phasensprung um π bei der REFLEXION auf.

- Bei der REFLEXION am schnelleren Medium $\alpha < \gamma$ ist $\sin(\alpha - \gamma)$ negativ und E_r positiv. Es gibt keinen Phasensprung bei der REFLEXION. Dies erklärt zum Beispiel, warum Seifenlamellen in Reflexion schwarz werden, wenn die Dicke gegen null geht.

- Die Gesetze für die INTENSITÄT bekommt man durch quadrieren und unter Berücksichtigung der relativen Dielektrizitätszahl ε_1 und der relativen magnetischen Permeabilität μ_1.

- Bei fast senkrechtem Einfall bekommt man $E_r \approx -E_e \frac{\sin \alpha - \sin \gamma}{\sin \alpha + \sin \gamma} = -E_e \frac{n_2 - n_1}{n_2 + n_1}$
Fresnellsche Formeln für die Intensität bei der s-POLARISATION für nichtmagnetische Materialien

\[
I_r = I_e \left[\frac{\sin \gamma(\alpha) \cos \alpha - \sin \alpha \cos \gamma(\alpha)}{\sin \gamma(\alpha) \cos \alpha + \sin \alpha \cos \gamma(\alpha)} \right]^2
\]

\[
= I_e \frac{\sin^2(\alpha - \gamma(\alpha))}{\sin^2(\alpha + \gamma(\alpha))}
\]

\[
I_t = \frac{n_2}{n_1} I_e \frac{4 \sin^2 \gamma(\alpha) \cos^2 \alpha}{\sin^2(\alpha + \gamma(\alpha))}
\]

Wir haben die einfallende Intensität \(I_e = n_1 \frac{\varepsilon_0 c^2}{\varepsilon_0} E_e^2 \) als Referenz verwendet. Deshalb erscheint der Vorfaktor \(\frac{n_2}{n_1} \) für \(I_t \). Im Medium mit dem Brechungsindex \(n_2 \) wird die Energie mit einer anderen Geschwindigkeit transportiert als im Medium mit dem Brechungsindex \(n_1 \). Ist \(n_2 \) grösser als \(n_1 \), so ist die Ausbreitungsgeschwindigkeit kleiner und \(I_2 \) muss grösser werden.

6.8.2. p-Polarisation

Abbildung 6.18.: Stetigkeitsbedingungen für elektromagnetische Wellen mit p-Polarisation. Die dicken Vektoren stellen die \(\mathbf{k} \)-Vektoren dar (rot für die einfallende elektromagnetische Welle, grün für die reflektierte und blau für die gebrochene elektromagnetische Welle.). Die \(\mathbf{E} \)-Vektoren sind gestrichelt gezeichnet, ihre Projektion auf die Grenzfläche dünn.

Bei p-polarisierten elektromagnetischen Wellen ist die Bedingung für die Stetigkeit der Parallelkomponente von \(\mathbf{E} \) durch

\[
(\varepsilon_e - \varepsilon_r) \cos \alpha = \varepsilon_t \cos \gamma
\] (6.8.32)
gegeben. Weiter gilt immer noch die Beziehung für den Poynting-Vektor (Energie-
erhaltung)

\[
\sqrt{\frac{\varepsilon_1}{\mu_1}} \left(\mathbf{E}_e^2 - \mathbf{E}_r^2 \right) \cos \alpha = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathbf{E}_t^2 \cos \gamma \quad (6.8.33)
\]

Wir teilen die beiden Gleichungen und erhalten

\[
\sqrt{\frac{\varepsilon_1}{\mu_1}} (\mathbf{E}_e + \mathbf{E}_r) = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathbf{E}_t \quad (6.8.34)
\]

Damit müssen wir das Gleichungssystem

\[
\begin{align*}
\mathbf{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} &= - \sqrt{\frac{\varepsilon_1}{\mu_1}} \mathbf{E}_r + \mathbf{E}_t \sqrt{\frac{\varepsilon_2}{\mu_2}} \\
\mathbf{E}_e \cos \alpha &= \mathbf{E}_r \cos \alpha + \mathbf{E}_t \cos \gamma
\end{align*}
\]

(6.8.35)

lös. Wir multiplizieren die erste Gleichung mit \(\cos \alpha\) und die zweite mit \(\sqrt{\frac{\varepsilon_1}{\mu_1}}\)

\[
\begin{align*}
\mathbf{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \alpha &= - \sqrt{\frac{\varepsilon_1}{\mu_1}} \mathbf{E}_r \cos \alpha + \mathbf{E}_t \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha \\
\mathbf{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma &= \mathbf{E}_r \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \alpha + \mathbf{E}_t \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma
\end{align*}
\]

und addieren

\[
2 \mathbf{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \alpha = \mathbf{E}_t \left(\sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha + \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma \right) \quad (6.8.36)
\]

Um \(\mathbf{E}_r\) zu bekommen multiplizieren wir die obere Gleichung in (6.8.35) mit \(\cos \gamma\) und die untere mit \(\sqrt{\frac{\varepsilon_2}{\mu_2}}\)

\[
\begin{align*}
\mathbf{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma &= - \sqrt{\frac{\varepsilon_1}{\mu_1}} \mathbf{E}_r \cos \gamma + \mathbf{E}_t \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \gamma \\
\mathbf{E}_e \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha &= \mathbf{E}_r \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha + \mathbf{E}_t \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \gamma,
\end{align*}
\]

subtrahieren und erhalten

\[
\mathbf{E}_e \left(\sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma - \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha \right) = -\mathbf{E}_r \left(\sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma + \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha \right) \quad (6.8.37)
\]

Damit erhält man
Elektromagnetische Wellen

Fresnelsche Formeln (p-Polarisation):

\[
\begin{align*}
\mathbf{E}_r &= \mathbf{E}_e \frac{\sqrt{\mu_2}}{\sqrt{\mu_1}} \cos \alpha - \frac{\mu_1}{\mu_2} \cos \gamma \\
\mathbf{E}_t &= \mathbf{E}_e \frac{2}{\sqrt{\mu_1} \cos \alpha + \sqrt{\mu_2} \cos \gamma} \\
\end{align*}
\]

\[(6.8.38) \]

Mit den Brechungsindizes \(n_1 = \sqrt{\mu_1 \varepsilon_1} \) und \(n_2 = \sqrt{\mu_2 \varepsilon_2} \) erhält man

Fresnelsche Formeln (p-Polarisation):

\[
\begin{align*}
\mathbf{E}_r &= \mathbf{E}_e \frac{n_2}{n_1} \cos \alpha - \frac{n_1}{\mu_1} \cos \gamma \\
\mathbf{E}_t &= \mathbf{E}_e \frac{2 n_1}{\mu_1} \cos \alpha \\
\end{align*}
\]

\[(6.8.39) \]

Für nichtmagnetische Materialien vereinfachen sie sich zu

Fresnelsche Formeln (p-Polarisation) für nichtmagnetische Materialien:

\[
\begin{align*}
\mathbf{E}_r &= \mathbf{E}_e \frac{n_2 \cos \alpha - n_1 \cos \gamma}{n_1 \cos \gamma + n_2 \cos \alpha} \\
\mathbf{E}_t &= \mathbf{E}_e \frac{2 n_1 \cos \alpha}{n_2 \cos \alpha + n_1 \cos \gamma} \\
\end{align*}
\]

\[(6.8.40) \]

Die Brechungsindizes \(n_1 \) und \(n_2 \) können mit dem Snelliusschen Gesetz \(n_1 \sin \alpha = n_2 \sin \gamma \) eliminiert werden
Die Fresnelschen Formeln (p-Polarisation) für nichtmagnetische Materialien:

\[
\mathcal{E}_r = \mathcal{E}_e \frac{\sin \alpha \cos \alpha - \sin \gamma \cos \gamma}{\sin \gamma \cos \alpha + \sin \alpha \cos \gamma}
\]
\[
\mathcal{E}_t = \mathcal{E}_e \frac{2 \sin \gamma \cos \alpha}{\sin \alpha \cos \alpha + \sin \gamma \cos \gamma}
\]
(6.8.41)

Mit \(\sin(\alpha \pm \gamma) \cos(\alpha \mp \gamma) = \sin \alpha \cos \alpha \pm \sin \gamma \cos \gamma\) werden die obigen Gleichungen

\[
\mathcal{E}_r = \mathcal{E}_e \frac{\sin(\alpha - \gamma) \cos(\alpha + \gamma)}{\sin(\alpha + \gamma) \cos(\alpha - \gamma)}
\]
\[
\mathcal{E}_t = \mathcal{E}_e \frac{2 \sin \gamma \cos \alpha}{\sin(\alpha + \gamma) \cos(\alpha - \gamma)}
\]
(6.8.42)

Die Quotienten aus \(\sin\) und \(\cos\) können zu \(\tan\) zusammengefasst werden

\[
\mathcal{E}_r = \mathcal{E}_e \frac{\tan[\alpha - \gamma(\alpha)]}{\tan[\alpha + \gamma(\alpha)]}
\]
\[
\mathcal{E}_t = \mathcal{E}_e \frac{2 \sin \gamma(\alpha) \cos \alpha}{\sin[\alpha + \gamma(\alpha)] \cos[\alpha - \gamma(\alpha)]}
\]
(6.8.43)

Die Fresnelschen Formeln für die Intensität lauten

\[
I_r = I_e \frac{\tan^2[\alpha - \gamma(\alpha)]}{\tan^2[\alpha + \gamma(\alpha)]}
\]
\[
I_t = \frac{n_2}{n_1} I_e \frac{4 \sin^2 \gamma(\alpha) \cos^2 \alpha}{\sin^2[\alpha + \gamma(\alpha)] \cos^2[\alpha - \gamma(\alpha)]}
\]
(6.8.44)
Wir haben die einfallende Intensität $I_e = \frac{n_1 \varepsilon_0 c^2 E_e^2}{2}$ als Referenz verwendet. Deshalb erscheint der Vorfaktor $\frac{n_2}{n_1}$ für I_t.

6.8.3. Grenzfall des senkrechten Einfalles

Abbildung 6.19.: Darstellung der Richtungen der elektrischen Felder für die s- und p-Polarisation.

Im Grenzfall $\alpha \to 0$ müssen die Resultate für die s- und p-Polarisation übereinstimmen. Wir betrachten den Fall kleiner Winkel. Dann lautet das Snelliussche Brechungsgesetz

$$n_1 \sin \alpha = n_2 \sin \gamma \quad \Rightarrow \quad n_1 \alpha = n_2 \gamma \quad \Rightarrow \quad \gamma = \frac{n_1 \alpha}{n_2} \quad (6.8.45)$$

Weiter gilt

$$\cos \alpha \quad \Rightarrow \quad 1 \quad \quad \text{sin} \alpha \quad \Rightarrow \quad \alpha. \quad (6.8.46)$$

Lässt man in Gleichung (6.8.42) α gegen null gehen, ergibt sich für das reflektierte und das transmittierte elektrische Feld
\[\mathcal{E}_r = \lim_{\alpha \to 0} \mathcal{E}_e \frac{\sin(\alpha - \gamma) \cos(\alpha + \gamma)}{\sin(\alpha + \gamma) \cos(\alpha - \gamma)} \]

Snellius, \(\alpha \ll 1 \) & \(\gamma \ll 1 \)
\[\lim_{\alpha \to 0} \mathcal{E}_e \frac{\sin(\alpha - \frac{n_1}{n_2} \alpha) \cos(\alpha + \frac{n_1}{n_2} \alpha)}{\sin(\alpha + \frac{n_1}{n_2} \alpha) \cos(\alpha - \frac{n_1}{n_2} \alpha)} \]
\[\Rightarrow \lim_{\alpha \to 0} \mathcal{E}_e \left(\frac{\alpha - \frac{n_1}{n_2} \alpha}{\alpha + \frac{n_1}{n_2} \alpha} \right) \cdot 1 = \mathcal{E}_e \frac{n_2 - n_1}{n_2 + n_1} \quad (6.8.47)\]

\[\mathcal{E}_t = \lim_{\alpha \to 0} \mathcal{E}_e \frac{2 \sin \gamma \cos \alpha}{\sin(\alpha + \gamma) \cos(\alpha - \gamma)} \]
Snellius, \(\alpha \ll 1 \) & \(\gamma \ll 1 \)
\[\lim_{\alpha \to 0} \mathcal{E}_e \frac{2 \sin \left(\frac{n_1}{n_2} \alpha \right) \cos \alpha}{\sin \left(\alpha + \frac{n_1}{n_2} \alpha \right) \cos \left(\alpha - \frac{n_1}{n_2} \alpha \right)} \]
\[\Rightarrow \lim_{\alpha \to 0} \mathcal{E}_e \left(\frac{2 \frac{n_1}{n_2} \alpha}{\alpha + \frac{n_1}{n_2} \alpha} \right) \cdot 1 = \mathcal{E}_e \frac{2n_1}{n_2 + n_1} \quad (6.8.48)\]

und damit \(\mathcal{E}_{r,p} > 0 \). Andererseits hat der Grenzwert des elektrischen Feldes \(\mathcal{E}_{r,s} \) für \(\alpha \) gegen Null bei der s-Polarisation in Gleichung (6.8.30)

\[\mathcal{E}_r = \lim_{\alpha \to 0} \left(-\mathcal{E}_e \frac{\sin(\alpha - \gamma(\alpha))}{\sin(\alpha + \gamma(\alpha))} \right) \]
Snellius, \(\alpha \ll 1 \) & \(\gamma \ll 1 \)
\[\lim_{\alpha \to 0} \mathcal{E}_e \frac{\sin(\alpha - \frac{n_1}{n_2} \alpha)}{\sin(\alpha + \frac{n_1}{n_2} \alpha)} \]
\[\Rightarrow \lim_{\alpha \to 0} \mathcal{E}_e \left(\frac{\alpha - \frac{n_1}{n_2} \alpha}{\alpha + \frac{n_1}{n_2} \alpha} \right) = -\mathcal{E}_e \frac{n_2 - n_1}{n_2 + n_1} \quad (6.8.49)\]

\[\mathcal{E}_t = \lim_{\alpha \to 0} \mathcal{E}_e \frac{2 \sin(\gamma(\alpha)) \cos(\alpha)}{\sin(\alpha + \gamma(\alpha))} \]
Snellius, \(\alpha \ll 1 \) & \(\gamma \ll 1 \)
\[\lim_{\alpha \to 0} \mathcal{E}_e \frac{2 \sin \left(\frac{n_1}{n_2} \alpha \right) \cos(\alpha)}{\sin \left(\alpha + \frac{n_1}{n_2} \alpha \right)} \]
\[\Rightarrow \lim_{\alpha \to 0} \mathcal{E}_e \left(\frac{2 \frac{n_1}{n_2} \alpha}{\alpha + \frac{n_1}{n_2} \alpha} \right) = \mathcal{E}_e \frac{2n_1}{n_2 + n_1} \quad (6.8.50)\]

einen negativen Wert. Dies ist korrekt, da nach der Abbildung 6.19 die Vektoren für beide Polarisationen in unterschiedliche Richtungen zeigen. Die beiden Werte \(\mathcal{E}_{r,p} \) und \(\mathcal{E}_{s,p} \) sind die Vorfaktoren. Also zeigen die beiden elektrischen Felder der reflektierten Wellen in identische Richtungen.

6.8.4. Brewster-Winkel

Wenn bei der p-Polarisation in der Gleichung (6.8.42) für \(\mathcal{E}_r \) der Nenner \(\alpha + \gamma(\alpha) = \pi/2 \) ist, divergiert der Nenner. Wir erhalten also \(\mathcal{E}_r(\alpha = \pi/2 - \gamma(\alpha)) = 0 \). Dies ist der **BREWSTER-WINKEL**.
Beim Brewsterwinkel gegeben durch \(\alpha + \gamma(\alpha) = \pi/2 \) ist \(\mathbf{E}_{r,p} \) für die p-Polarisation gleich null. Die elektromagnetische Welle ist s-polarisiert!

Abbildung 6.20.: Polarisation bei der Spiegelung an Wasser. Links ist der Analysator so gestellt, dass das an der Wasseroberfläche reflektierte Licht durchgelassen wird. Rechts die gleiche Szene, aber der Analysator blockt das an der Wasserfläche reflektierte Licht.

6.8.5. Beispielkurven für die Fresnelformeln

Abbildung 6.23.: Verlauf der Amplitude des elektrischen Feldes für p- und s-Polarisation, wenn elektromagnetische Wellen aus dem schnelleren Medium \((n_1 = 1)\) in das langsamere \((n_2 = 1.5)\) eintreten.

Abbildung 6.24.: Verlauf der Intensität für p- und s-Polarisation, wenn elektromagnetische Wellen aus dem schnelleren Medium \((n_1 = 1)\) in das langsamere \((n_2 = 1.5)\) eintreten. Die Intensität ist mit \(I = n_i E^2\) berechnet worden, wobei \(n_i\) die für das jeweilige Medium gültige Brechzahl ist.

6.8 Die Fresnelschen Formeln

Abbildung 6.25.: Verlauf der Amplitude des elektrischen Feldes für P- und S-Polarisation, wenn elektromagnetische Wellen aus dem langsameren ($n_1 = 1.5$) Medium in das schnellere ($n_2 = 1$) eintreten.

Abbildung 6.26.: Verlauf der Intensität für P- und S-Polarisation, wenn elektromagnetische Wellen aus dem langsameren ($n_1 = 1.5$) Medium in das schnellere ($n_2 = 1$) eintreten. Die Intensität ist mit $I = n_i E^2$ berechnet worden, wobei n_i die für das jeweilige Medium gültige Brechzahl ist.

6.8.6. Energiefluss senkrecht zur Grenzfläche

Wir können kontrollieren, ob im Energiefluss senkrecht zur Grenzfläche die Energie erhalten bleibt. Dazu müssen wir den Energiefluss durch eine Fläche parallel zur Oberfläche berechnen. Wir betrachten hier die p-Polarisation. Der einfallende Energiefluss ist
Der Fluss der reflektierten Energie (Betrag des Poynting-Vektors) durch eine Fläche parallel zur Grenzfläche ist

\[I_{r,\perp} = n_1 \frac{\varepsilon_0 c}{2} E_e^2 \cos \alpha \] (6.8.52)

Ebenso ist der Fluss der gebrochenen Energie durch eine Fläche parallel zur Grenzfläche

\[I_{t,\perp} = n_2 \frac{\varepsilon_0 c}{2} E_t^2 \cos \gamma(\alpha) \] (6.8.53)

Die Energieerhaltung sagt nun, dass für die \(p \)-Polarisation

\[I_{e,p,\perp} = n_1 \frac{\varepsilon_0 c}{2} E_e^2 \cos \alpha = I_{r,p,\perp} + I_{t,p,\perp} = \frac{\varepsilon_0 c}{2} E_e^2 \tan^2[\alpha - \gamma(\alpha)] \cos \alpha \]

\[+ n_2 \frac{\varepsilon_0 c}{2} E_t^2 \frac{4 \sin^2 \gamma(\alpha) \cos^2 \alpha}{\sin^2[\alpha + \gamma(\alpha)] \cos^2[\alpha - \gamma(\alpha)] \cos(\gamma(\alpha))} \]

\[= \frac{\varepsilon_0 c}{2} E_e^2 \left[\frac{\sin^2[\alpha - \gamma(\alpha)] \cos^2[\alpha - \gamma(\alpha)] \cos \alpha}{\sin^2[\alpha + \gamma(\alpha)] \cos^2[\alpha - \gamma(\alpha)]} \right] \]

\[+ n_2 \frac{\varepsilon_0 c}{2} E_t^2 \frac{4 \sin^2 \gamma(\alpha) \cos^2 \alpha \cos(\gamma(\alpha))}{\sin^2[\alpha + \gamma(\alpha)] \cos^2[\alpha - \gamma(\alpha)]} \]

\[= n_1 \frac{\varepsilon_0 c}{2} E_e^2 \left[\frac{\sin^2 [\alpha - \gamma(\alpha)] \cos^2 [\alpha + \gamma(\alpha)] \cos \alpha}{\sin \gamma(\alpha)} \cdot 4 \sin^2 \gamma(\alpha) \cos^2 \alpha \cos(\gamma(\alpha)) \right] \]

\[\cdot \left[\sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)] \right]^{-1} \]

\[= n_1 \frac{\varepsilon_0 c}{2} E_e^2 \cos \alpha \left[\sin^2 [\alpha - \gamma(\alpha)] \cos^2 [\alpha + \gamma(\alpha)] \cos^2 \alpha \right. \]

\[+ 4 \sin \alpha \sin \gamma(\alpha) \cos \alpha \cos(\gamma(\alpha)) \]

\[\left. \cdot \left[\sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)] \right]^{-1} \right] \] (6.8.54)

gilt.

Wir müssen also den Wert des Bruches

\[X = \left\{ \sin^2 [\alpha - \gamma(\alpha)] \cos^2 [\alpha + \gamma(\alpha)] + 4 \sin \alpha \sin \gamma(\alpha) \cos \alpha \cos(\gamma(\alpha)) \right\} \]

\[\cdot \left\{ \sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)] \right\}^{-1} \]
berechnen.

\[X = \left\{ \sin^2[\alpha - \gamma] \cos^2[\alpha + \gamma] + 4 \sin \alpha \sin \gamma \cos \alpha \cos(\gamma) \right\} \cdot \left\{ \sin^2[\alpha + \gamma] \cos^2[\alpha - \gamma] \right\}^{-1} \]

\[= \left\{ \sin^2[\alpha - \gamma] \cos^2[\alpha + \gamma] + \sin(2 \alpha) \sin(2 \gamma) \right\} \cdot \left\{ \sin^2[\alpha + \gamma] \cos^2[\alpha - \gamma] \right\}^{-1} \]

\[= \left\{ \frac{1}{2} \left(1 - \cos(2 \alpha - 2 \gamma) \right) \right\} \frac{1}{2} \left(1 + \cos(2 \alpha + 2 \gamma) \right) \]

\[+ \sin(2 \alpha) \sin(2 \gamma) \cdot \left\{ \frac{1}{2} \left(1 - \cos(2 \alpha + 2 \gamma) \right) \right\} \frac{1}{2} \left(1 + \cos(2 \alpha - 2 \gamma) \right) \)

\[= \left\{ (1 - \cos(2 \alpha - 2 \gamma)) \left(1 + \cos(2 \alpha + 2 \gamma) \right) \right\} \]

\[+ 4 \sin(2 \alpha) \sin(2 \gamma) \cdot \left\{ (1 - \cos(2 \alpha + 2 \gamma)) \left(1 + \cos(2 \alpha - 2 \gamma) \right) \right\}^{-1} \]

\[= \left\{ (1 - \cos(2 \alpha - 2 \gamma)) \left(1 + \cos(2 \alpha + 2 \gamma) \right) \right\}^{-1} + 2 \left(\cos(2 \alpha - 2 \gamma) - \cos(2 \alpha + 2 \gamma) \right) \]

\[\cdot \left\{ (1 - \cos(2 \alpha + 2 \gamma)) \left(1 + \cos(2 \alpha - 2 \gamma) \right) \right\}^{-1} \quad (6.8.55) \]

Wir setzen \(A = \cos(2 \alpha - 2 \gamma) \) und \(B = \cos(2 \alpha + 2 \gamma) \) und schreiben die Gleichung um

\[X = \frac{(1 - A)(1 + B) + 2A - 2B}{(1 - B)(1 + A)} \quad (6.8.56) \]

\[= \frac{1 - A + B - AB + 2A - 2B}{1 - B - AB} \]

\[= \frac{1 + A - B - AB}{1 + A - B - AB} \]

\[= 1 \]

Da \(X = 1 \) ist, ist gezeigt, dass für den Energiefluss durch die Grenzfläche für \(p \)-Polarisation Energieerhaltung gilt.

Eine ähnliche Gleichung kann man für die \(s \)-Polarisation berechnen. In der Elektrizitätslehre würde man sagen, dass der Fluss anhand des Pointing-Vektors berechnet wurde.
Abbildung 6.27.: Verlauf der mit der Fläche gewichteten INTENSITÄT für P- und S-POLARISATION, wenn elektromagnetische Wellen aus dem schnelleren \((n_1 = 1)\) Medium in das langsamere \((n_2 = 1.5)\) eintreten.

Für beide Bilder wurde die INTENSITÄT mit \(I = n_i E^2 \cos(\alpha_i)\) berechnet, wobei \(n_i\) die für das jeweilige Medium gültige Brechzahl und \(\alpha_i\) der entsprechende Winkel ist. Die drei Kurven für die gesamte Intensität bei der \(p\)-Polarisation und der \(s\)-Polarisation liegen über der Kurve der mit dem Winkel gewichteten Intensität der einfallenden elektromagnetischen Welle.

Parallel zur Oberfläche ist es wegen der Translationssymmetrie schwieriger Energieerhaltungsgrössen zu definieren.

Die dritte Stetigkeitsbedingung an der Grenzfläche, die der Normalkomponente
Die Fresnelschen Formeln von $\varepsilon E = D$ liefern das Snelliussche Gesetz.

6.8.7. Felder und Intensitäten bei senkrechtem Einfall

Da bei senkrechtem Einfall s- und p-Polarisation ununterscheidbar sind, können die Gleichungen am einfachsten aus Gleichung (6.8.40) abgeleitet werden. Aus dem Brechungsgesetz folgt, dass mit $\alpha = 0$ auch $\gamma = 0$ ist. Setzen wir diese beiden Werte in Gleichung (6.8.40) ein, erhalten wir

\[
\frac{\mathcal{E}_r}{\mathcal{E}_e} = \frac{n_2 \cos(0) - n_1 \cos(0)}{n_1 \cos(0) + n_2 \cos(0)} = \frac{n_2 - n_1}{n_1 + n_2},
\]

\[
\frac{\mathcal{E}_t}{\mathcal{E}_e} = \frac{2n_1 \cos(0)}{n_2 \cos(0) + n_1 \cos(0)} = \frac{2n_1}{n_2 + n_1}. \tag{6.8.57}
\]

Die Intensitäten bei senkrechtem Einfall ist über

\[
I_e = n_1 \frac{\varepsilon_0 c^2}{2} \mathcal{E}_e^2, \quad I_r = n_1 \frac{\varepsilon_0 c^2}{2} \mathcal{E}_r^2, \quad I_t = n_2 \frac{\varepsilon_0 c^2}{2} \mathcal{E}_t^2 \tag{6.8.58}
\]

gegeben. Also haben wir (wir lassen die gleichen Faktoren in allen Intensitätsgleichungen weg)

\[
\frac{I_r}{I_e} = \frac{n_1 \mathcal{E}_r^2}{n_1 \mathcal{E}_e^2} = \left(\frac{n_2 - n_1}{n_1 + n_2}\right)^2,
\]

\[
\frac{I_t}{I_e} = \frac{n_2 \mathcal{E}_t^2}{n_1 \mathcal{E}_e^2} = \frac{n_2}{n_1} \left(\frac{2n_1}{n_2 + n_1}\right)^2 = \frac{4n_1 n_2}{(n_1 + n_2)^2}. \tag{6.8.59}
\]

In beiden Fällen ist nur das Verhältnis der Brechungsindizes wichtig. Mit $a_n = n_2/n_1$ erhalten wir

\[
\frac{\mathcal{E}_r}{\mathcal{E}_e} = \frac{a_n - 1}{a_n + 1}, \tag{6.8.60a}
\]

\[
\frac{\mathcal{E}_t}{\mathcal{E}_e} = \frac{2}{a_n + 1}, \tag{6.8.60b}
\]

\[
\frac{I_r}{I_e} = \left(\frac{a_n - 1}{a_n + 1}\right)^2, \tag{6.8.60c}
\]

\[
\frac{I_t}{I_e} = \left(\frac{4a_n}{a_n + 1}\right)^2. \tag{6.8.60d}
\]

Aus den beiden Gleichungen (6.8.60c) und (6.8.60d) ersieht man leicht, dass die Summe aus transmittierter und reflektierter Intensität

\[
\frac{I_r}{I_e} + \frac{I_t}{I_e} = \left(\frac{a_n - 1}{a_n + 1}\right)^2 + \frac{4a_n}{(a_n + 1)^2} = \frac{a_n^2 - 2a_n + 1 + 4a_n}{(a_n + 1)^2} = \frac{a_n^2 + 2a_n}{(a_n + 1)^2} = 1 \tag{6.8.61}
\]

ist. Wesentlich war dabei der Faktor n_2/n_1 bei der Berechnung der transmittierten Intensität. Die folgende Abbildung 6.29 zeigt das Verhalten der reflektierten und
transmittierten feldamplituden und Intensitäten als Funktion von \(a_n = n_2/n_1 \).

\[
\text{Fresnel-Formeln: senkrechter Einfall, } a_n = n_2/n_1
\]

\[
E_r(a_n = n_2/n_1)\quad E_t(a_n = n_2/n_1)
\]

Abbildung 6.29.: Feldamplituden und Intensitäten bei senkrechtem Einfall, abhängig von \(a_n = n_2/n_1 \).

Abbildung 6.30 zeigt die gleichen Kurven in logarithmischer Darstellung.

\[
\text{Fresnel-Formeln: senkrechter Einfall, } a_n = n_2/n_1
\]

\[
I_r(a_n = n_2/n_1)\quad I_t(a_n = n_2/n_1)
\]

Abbildung 6.30.: Feldamplituden und Intensitäten bei senkrechtem Einfall, abhängig von \(a_n = n_2/n_1 \), mit logarithmischer Abszisse.

6.8.8. Evaneszente Wellen

(Siehe Hecht, Optik [Hec05, pp. 193,196])

Versuch zur Vorlesung:

Evaneszente Wellen - tunneln mit Licht (Versuchskarte O-080)

Aus den letzten Abbildungen ist ersichtlich, dass, wenn elektromagnetische Wellen aus dem langsameren Medium \((n_1)\) in das schnellere \(n_2 < n_1\) eintreten, es Winkel \(\gamma \) gibt \(((n_1/n_2) \sin \alpha = \sin \gamma > 1)\), für die es keine reelle Lösung der Fresnelschen Formeln gibt. Die Lösung ist dann in die \(z \)-Richtung rein imaginär. Was bedeutet dies? Dies heisst, dass auch die \(z \)-Komponente des \(k \)-Vektor der elektromagnetischen Welle im schnelleren Medium imaginär wird. Darum wird aus \(e^{ikz} \) mit \(k_z = i\kappa z \) der exponentielle Dämpfungsfaktor \(e^{-\kappa z} \), wobei \(\kappa \) vom Einfallswinkel abhängt. Die elektromagnetischen Wellen aus dem langsameren Medium können
sich im schnelleren Medium also nicht weiter in die z-Richtung bewegen: Wegen der Energieerhaltung ist die REFLEXION perfekt.

Abbildung 6.31.: Momentaufnahme der Interferenz einer total reflektierten Welle mit sich selber sowie der evaneszenten Wellen.

Wir suchen nun eine Beziehung zwischen dem Wellenvektor k_t der transmittierten Welle und dem Wellenvektor k_e der einfallenden Welle für den Fall, dass $n_1 \sin(\alpha) \geq n_2$ ist, also dass dass Snelliussche Brechungsgesetz (6.8.17) keine reelle Lösung hat.

Aus der Definition der Brechzahl n in Gleichung (6.6.1) und der Gleichung (6.8.14) folgt mit λ_{vac} der Vakuumwellenlänge und $c = 1/ \sqrt{\varepsilon_0 \mu_0}$ der Vakuumlichtgeschwindigkeit

$$ k = k e_k = \frac{2\pi}{\lambda} e_k = \frac{2\pi}{\lambda_{\text{vac}}} e_k = \frac{2\pi n}{\lambda_{\text{vac}}} e_k = n k_{\text{vac}} $$

(6.8.62)

Der Betrag der Tangentialkomponente $k_{e, \text{tangential}}$ des Wellenvektors der einfallen-
den Welle kann mit dem Einfallswinkel berechnet werden:

\[|\mathbf{k}_{e,tangential}| = |\mathbf{k}_e| \sin(\alpha) = n_1 k_{\text{vac}} \sin(\alpha) \quad (6.8.63) \]

Der Betrag des Wellenvektors der transmittierten Welle ist andererseits

\[|\mathbf{k}_t| = \sqrt{k_{t,tangential}^2 + k_{t,senkrecht}^2} = n_2 k_{\text{vac}} \quad (6.8.64) \]

Wir stellen Gleichung (6.8.64) um und isolieren \(k_{t,senkrecht}^2 \), und setzen dann Gleichungen (6.8.21) und (6.8.63) ein

\[k_{t,senkrecht}^2 = n_2^2 k_{\text{vac}}^2 - k_{t,tangential}^2 = n_2^2 k_{\text{vac}}^2 - n_1^2 k_{\text{vac}}^2 \sin^2(\alpha) \quad (6.8.65) \]

Im Falle der Totalreflexion ist \(n_1 \sin(\alpha) \geq n_2 \) und damit \(n_2^2 - n_1^2 \sin^2(\alpha) \leq 0 \). Damit erhalten wir für den Betrag von \(k_{t,senkrecht} \)

\[k_{t,senkrecht} = \pm i k_{\text{vac}} \sqrt{n_1^2 \sin^2(\alpha) - n_2^2} = i \kappa_t \quad (6.8.66) \]

Die physikalisch sinnvolle Lösung für einen unendlich ausgedehnten Halbraum mit dem Brechungsindex \(n_2 \) ist die exponentiell abfallende Lösung

\[\mathbf{E}(r, t) = \mathbf{E}_t e^{i(k_{t,tangential} \cdot r - \omega t)} e^{-\kappa_t z} \quad (6.8.67) \]

Die resultierende Welle im Medium 2 hat dann die zeitgemittelte Intensität

\[I(x, z) = I_0 e^{-2\kappa_t z} \quad (6.8.68) \]

Wir erhalten also für die Intensität einen exponentiellen Abfall mit einer Abfalllänge

\[\ell_0 = \frac{1}{2\kappa_t} = \frac{\lambda_{\text{vac}}}{4\pi} \frac{1}{\sqrt{n_1^2 \sin^2(\alpha) - n_2^2}} \quad (6.8.69) \]

Wenn eine Welle mit der Vakuumwellenlänge \(\lambda_{\text{vac}} = 500 \) nm und dem Einfallswinkel \(\alpha = 5\pi/12 = 75^\circ \) von einem Medium mit dem Brechungsindex \(n_1 = 1.55 \) in Luft \(n_2 = 1 \) übertritt, ist \(\lambda_0 = 35.71 \) nm.

6.9. Zusammenfassung

Maxwellgleichungen im Vakuum Gleichung (6.1.3)

\[
\begin{align*}
\text{div } \mathbf{E} &= 0 \quad \text{I} \\
\text{rot } \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \quad \text{II} \\
\text{div } \mathbf{B} &= 0 \quad \text{III} \\
\text{rot } \mathbf{B} &= \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \frac{1}{\varepsilon_0} \frac{\partial \mathbf{E}}{\partial t} \quad \text{III}
\end{align*}
\]
Zusammenfassung

Wellengleichung für E Gleichung (6.1.7)
\[\frac{\partial^2 E}{\partial t^2} = -c^2 \Delta E \]

Wellengleichung für B Gleichung (6.1.8)
\[\frac{\partial^2 B}{\partial t^2} = -c^2 \Delta B \]

Wellenwiderstand eines Zweidrahtsystems Gleichung (6.3.15)
\[R^* = \frac{1}{\pi} \ln \left(\frac{4a}{d} \right) \sqrt{\mu_0 \epsilon_0} \]

Wellenwiderstand des Vakuums Gleichung (6.3.16)
\[R_0^* = \sqrt{\mu_0 \epsilon_0} = 377 \Omega \]

Energiefluss im Vakuum, Poynting-Vektor Gleichung (6.4.5)
\[S(r, t) = \frac{1}{\mu_0} E(r, t) \times B(r, t) \]

Energiefluss in Materie, Poynting-Vektor Gleichung (6.4.6)
\[S(r, t) = E(r, t) \times H(r, t) \]

Elektrisches Strahlungsfeld eines Atoms Gleichung (6.5.17)
\[E(r, \Theta, t) = \frac{e}{4\pi \epsilon_0 c^2} \cdot \frac{1}{r} \cdot |a(t')| \sin \Theta = \frac{e \omega^2}{4\pi \epsilon_0 c^2} \cdot \frac{1}{r} \cdot \sin \left(\omega \left(t - \frac{r}{c} \right) \right) \sin \Theta \]

Magnetisches Strahlungsfeld eines Atoms Gleichung (6.5.18)
\[B(r, \Theta, t) = \frac{1}{c} e(r, \Theta, t) \]

Energiefluss des Strahlungsfeldes eines Atoms Gleichung (6.5.19)
\[S(r, \Theta, t) = \sqrt{\frac{\epsilon_0}{\mu_0}} E^2(r, \Theta, t) \]

Intensität des Strahlungsfeldes eines Atoms Gleichung (6.5.20)
\[I(r, \Theta) = \langle S(r, \Theta, t) \rangle_t = \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{e^2 \omega^2}{4\pi \epsilon_0 c^2} \frac{\sin^2 \Theta}{2r^2} \]
A. Literaturhinweise

Den Stoff der Vorlesung finden Sie in ähnlicher Form in den Werken von Giancoli „Physik“[Gia06], Gerthsen/Meschede „Physik“[Mes06], Tipler „Physik“[TM04], Leisi „Klassische Physik“[Lei98], Alonso-Finn „Physik“[AF00] und, als leichtere Einführung im Buch von Halliday „Physik“[HRW03].
Eine gut strukturierte (und leicht tragbare Übersicht bieten Lindström/Langkau „Physik kompakt: Elektrodynamik“[LL96] und Langkau/Lindström/Scobel „Physik kompakt: Elektromagnetische Wellen“[LLS96]
Dieses Skript gibt es auch als PDF-Datei und als Web-Site.
Eine wunderbare Website zum Aufarbeiten Ihres Wissens ist Hyperphysics von R. Nave. Ergänzend gibt es vom gleichen Autor auch Hypermath.
Historische wissenschaftliche Arbeiten bieten oftmals einen guten Einblick in die Gedanken hinter den physikalischen Gesetzen. Dazu gehören die Arbeiten von Michael Faraday [Far32b, Far32a, Far33b, Far33a, Far33c, Far34a, Far34b, Far34c, Far35a, Far35b, Far38b, Far38b, Far38a, Far38a, Far38a, Far38a, Far39, Far40, Far40, Far43, Far46, Far46, Far46, Far49b, Far49a, Far50, Far51c, Far51a, Far51b, Far51b, Far52a, Far52b, Far56], James Clerk Maxwell [Max65, Max73] und anderen.
B. Begriffe

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Einheit</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨f⟩</td>
<td>Mittelung über f</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>atomare Polarisierbarkeit</td>
<td>[\frac{C^2m}{N} = \frac{Cm^2}{V} =]</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Winkel (z.B. zwischen Geschwindigkeit und der Oberflächennormalen der Referenzfläche)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Abstand einer Ladung zur Oberfläche, Radius</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Dicke eines Dielektrikums</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Länge einer Leiterschlaufe in einem Motor</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>da</td>
<td>Oberflächenelement in Integralen</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Beschleunigung</td>
<td>[\frac{m}{s^2} = \frac{N}{kg}]</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Fläche</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Fläche des Plattenkondensators</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Vektorpotential</td>
<td>[\frac{Nm}{kg} = \frac{Vs}{mA}]</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>reduzierte Geschwindigkeit</td>
<td>1</td>
<td>[\beta = \frac{v}{c}]</td>
</tr>
<tr>
<td>b</td>
<td>Breite eines Dielektrikums</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Breite einer Leiterschlaufe in einem Motor</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Breite des Leiters in einer Hall-Anordnung</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>magnetische Induktion</td>
<td>[\frac{kA}{m} = \frac{Vs}{m^2}]</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Lichtgeschwindigkeit im Vakuum</td>
<td>[\frac{m}{s}]</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Kapazität</td>
<td>[\frac{C}{V} = \frac{A}{Vs}]</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Curie-Konstante</td>
<td>[\frac{AK}{lmK} = \frac{A^2K}{N}]</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Einheit</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>c_{ij}</td>
<td>Kapazität zwischen den Körpern i und j</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>$\delta(t)$</td>
<td>Delta-Funktion für die Zeit</td>
<td>$\frac{1}{s}$</td>
<td></td>
</tr>
<tr>
<td>$\delta(x)$</td>
<td>Delta-Funktion für den Ort</td>
<td>$\frac{1}{m}$</td>
<td></td>
</tr>
<tr>
<td>δx</td>
<td>Längenelement</td>
<td>m</td>
<td>andere Schreibweise zu dx</td>
</tr>
<tr>
<td>Δ</td>
<td>Laplace-Operator</td>
<td>$\frac{1}{m^2}$</td>
<td></td>
</tr>
<tr>
<td>dA</td>
<td>Flächenelement</td>
<td>m^2</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Abstand</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Abstand der Platten im Plattenkondensator</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>div</td>
<td>Divergenz-Operator</td>
<td>$\frac{1}{m}$</td>
<td>$\text{div } f = \left(\frac{\partial f_x}{\partial x} \right) \cdot \left(\begin{array}{c} f_x \ f_y \ f_z \end{array} \right) = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$</td>
</tr>
<tr>
<td>D</td>
<td>Dielektrische Verschiebung</td>
<td>$\frac{C}{m^2} = \frac{C}{Nm} = \frac{N}{Vm}$</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Elementarladung</td>
<td>C</td>
<td>$e = 1.6022 \times 10^{-19} C$</td>
</tr>
<tr>
<td>e</td>
<td>Basis des natürlichen Logarithmus</td>
<td>1</td>
<td>$e = 2.7182818284590$</td>
</tr>
<tr>
<td>ϵ</td>
<td>relative Dielektrizitätszahl</td>
<td>1</td>
<td>Im Allgemeinen ist ϵ ein Tensor. (heisst auch relative Dielektrizitätskonstante)</td>
</tr>
<tr>
<td>ϵ_0</td>
<td>Dielektrizitätskonstante des Vakuums</td>
<td>$\frac{C^2}{N^2m^2} = \frac{C}{Vm} = \frac{N}{Vm}$</td>
<td>$\epsilon_0 = 8.8544 \times 10^{-12} \frac{C^2}{Nm^2}$</td>
</tr>
<tr>
<td>$E(r)$</td>
<td>elektrisches Feld</td>
<td>$\frac{N}{C} = \frac{V}{m}$</td>
<td></td>
</tr>
<tr>
<td>E_{local}</td>
<td>lokales elektrisches Feld</td>
<td>$\frac{N}{C} = \frac{V}{m}$</td>
<td></td>
</tr>
<tr>
<td>E_0</td>
<td>elektrisches Feld ohne Dielektrikum</td>
<td>$\frac{N}{C} = \frac{V}{m}$</td>
<td>Verwendet bei Berechnungen mit dielektrischen Materialien</td>
</tr>
<tr>
<td>E_{pot}</td>
<td>potentielle Energie</td>
<td>$J = Nm$</td>
<td></td>
</tr>
<tr>
<td>E_t</td>
<td>spezifische Haftenergie</td>
<td>$\frac{J}{m^2}$</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>eine der Koordinaten bei Kugelkoordinaten</td>
<td>1</td>
<td>Winkel gemessen von der x-Achse in der xy-Ebene (Längengrad)</td>
</tr>
<tr>
<td>φ</td>
<td>elektrostatisches Potential</td>
<td>$\frac{J}{C} = V$</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Einheit</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>Phase</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\Phi)</td>
<td>Fluss eines Vektorfeldes</td>
<td>(Nm^2)</td>
<td>In diesem Falle, Einheit hängt vom Vektorfeld ab</td>
</tr>
<tr>
<td>(\Phi_B)</td>
<td>magnetischer Fluss</td>
<td>(1Wb = Tm^2 = \frac{Nm^2}{A^2} = \frac{Vs}{A})</td>
<td></td>
</tr>
<tr>
<td>(f(x))</td>
<td>Funktion</td>
<td>-</td>
<td>(x) ist ein Platzhalter</td>
</tr>
<tr>
<td>(F)</td>
<td>Kraft</td>
<td>(N)</td>
<td></td>
</tr>
<tr>
<td>(F_L)</td>
<td>Lorentzkraft</td>
<td>(N)</td>
<td></td>
</tr>
<tr>
<td>(F_M)</td>
<td>magnetische Kraft</td>
<td>(N)</td>
<td></td>
</tr>
<tr>
<td>(F_V)</td>
<td>Krafstdichte</td>
<td>(\frac{N}{m^3})</td>
<td>(F_V = \lim_{\Delta V \to 0} \frac{\Delta F_V}{\Delta V})</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>relativistischer Korrekturfaktor</td>
<td>1</td>
<td>(\gamma = (1 - \frac{v^2}{c^2})^{-1/2})</td>
</tr>
<tr>
<td>(\text{grad})</td>
<td>Gradienten-Operator</td>
<td>(\frac{1}{m})</td>
<td>(\text{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right))</td>
</tr>
<tr>
<td>(G)</td>
<td>Leitwert</td>
<td>(\frac{A}{V} = \frac{1}{\Omega})</td>
<td></td>
</tr>
<tr>
<td>(G)</td>
<td>Gravitationskonstante</td>
<td>(\frac{m^3}{kg \cdot s^2})</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Höhe der Mantelfläche</td>
<td>(m)</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Höhe des Leiters in einer Hall-Anordnung</td>
<td>(m)</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Planckches Wirkungsquantum</td>
<td>(Js)</td>
<td>(h = 6.63 \times 10^{-34} Js)</td>
</tr>
<tr>
<td>(h)</td>
<td>reduziertes Planckches Wirkungsquantum</td>
<td>(Js)</td>
<td>(h \approx 10^{-34} Js)</td>
</tr>
<tr>
<td>(H)</td>
<td>Magnetfeld</td>
<td>(\frac{A}{m})</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>Stromdichte</td>
<td>(\frac{A}{m^2})</td>
<td></td>
</tr>
<tr>
<td>(I)</td>
<td>Strom</td>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{eff}})</td>
<td>effektiver Strom</td>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{rms}})</td>
<td>RMS-Strom</td>
<td>(A)</td>
<td>Leistungsgewichteter Strom, "Root Mean Square"-Strom</td>
</tr>
<tr>
<td>(j)</td>
<td>lineare Stromdichte</td>
<td>(\frac{A}{m})</td>
<td>(j = \lim_{\Delta y \to 0} \frac{I(\Delta y)}{\Delta y})</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Einheit</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>k</td>
<td>Federkonstante</td>
<td>$\frac{N}{m}$</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>beliebige, auch komplexe Zahl</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann-Konstante</td>
<td>$\frac{J}{K}$</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Vorfaktor</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>mittlere freie Weglänge</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>Linienladungsichte</td>
<td>$\frac{C}{m}$</td>
<td></td>
</tr>
<tr>
<td>ℓ</td>
<td>Abstand von $-q$ zu $+q$ im Dipol</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>ℓ</td>
<td>Drehimpuls</td>
<td>$\frac{m^2kg}{s}$</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Länge</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Selbstinduktion oder Selbstinduktivität einer Spule</td>
<td>$H = \frac{Wb}{A} = \frac{Tm^2}{kgm^2} = \frac{Nm}{Am^2} = \frac{N^2A^2}{C} = \frac{V_s}{A} = \Omega s$</td>
<td>$\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$</td>
</tr>
<tr>
<td>μ_0</td>
<td>Induktionskonstante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>magnetisches Moment</td>
<td>Am^2</td>
<td></td>
</tr>
<tr>
<td>m_z</td>
<td>magnetisches Moment in z-Richtung</td>
<td>Am^2</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Gesamtmasse aller Ionen</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>M_{12}</td>
<td>Gegeninduktivität zwischen zwei Spulen</td>
<td>$H = \frac{Wb}{A} = \frac{Tm^2}{kgm^2} = \frac{Nm}{Am^2} = \frac{N^2A^2}{C} = \frac{V_s}{A} = \Omega s$</td>
<td>$\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$</td>
</tr>
<tr>
<td>M_{mol}</td>
<td>Molmasse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>makroskopische Magnetisierung</td>
<td>$\frac{A}{m}$</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Drehmoment</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>Frequenz</td>
<td>$Hz = \frac{1}{s}$</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Ladungsträgerdichte</td>
<td>$\frac{1}{m^2}$</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>spezifische Windungszahl einer Spule</td>
<td>$\frac{1}{m}$</td>
<td>$n = \frac{N}{l}$</td>
</tr>
<tr>
<td>n</td>
<td>Normalenvektor auf ein Flächenelement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Dichte der induzierten Dipole</td>
<td>$\frac{1}{m^3}$</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Einheit</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>N</td>
<td>Windungszahl einer Spule</td>
<td>1</td>
<td>$N_A = 6.02 \times 10^{23} \frac{1}{Mol}$</td>
</tr>
<tr>
<td>N_A</td>
<td>Avogadrozahl</td>
<td>$\frac{1}{Mol}$</td>
<td></td>
</tr>
<tr>
<td>\mathbf{p}</td>
<td>Dipolmoment</td>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>\mathbf{p}</td>
<td>Impuls (mechanisch)</td>
<td>$\frac{kgm}{s} = Ns$</td>
<td></td>
</tr>
<tr>
<td>\mathbf{p}_{ind}</td>
<td>induziertes Dipolmoment</td>
<td>$\frac{Cm}{N^2m^2} = Asm = \frac{J}{s} = \frac{Nm}{s}$</td>
<td>z.B. Verlustleistung am WIDERSTAND</td>
</tr>
<tr>
<td>P</td>
<td>Leistung</td>
<td>$W = \frac{J}{s} = \frac{Nm}{s}$</td>
<td></td>
</tr>
<tr>
<td>\mathbf{P}</td>
<td>Polarisation</td>
<td>$\frac{C^2}{m^2} = As = \frac{N^2m}{V^2}$</td>
<td></td>
</tr>
<tr>
<td>P_M</td>
<td>Leistung des Motors</td>
<td>$W = \frac{N^2m}{V^2}$</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>Ladung</td>
<td>$C = As = \frac{N^2m}{V^2}$</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Ladung</td>
<td>$C = As = \frac{N^2m}{V^2}$</td>
<td>andere Schreibweise für q</td>
</tr>
<tr>
<td>ρ</td>
<td>Massedichte</td>
<td>$\frac{kg}{m^3}$</td>
<td></td>
</tr>
<tr>
<td>ρ_{el}</td>
<td>elektrische Ladungsichte</td>
<td>$\frac{C}{m^3} = \frac{pa}{V}$</td>
<td>Siehe auch Gleichung (2.2.4)</td>
</tr>
<tr>
<td>ρ</td>
<td>spezifischer WIDERSTAND</td>
<td>$\Omega m = \frac{V m}{A} = \frac{m^2}{S}$</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Abstand</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>\mathbf{r}</td>
<td>Abstand, Ortsvektor</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>r_0</td>
<td>Referenzradius</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>\mathbf{rot}</td>
<td>Rotations-Operator</td>
<td>$\frac{1}{m}$</td>
<td>$\mathbf{rot} \mathbf{f} = \left(\begin{array}{c} \frac{\partial f_x}{\partial y} - \frac{\partial f_y}{\partial x} \ \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \ -\frac{\partial f_z}{\partial x} + \frac{\partial f_x}{\partial z} \end{array} \right)$</td>
</tr>
<tr>
<td>R</td>
<td>Widerstand</td>
<td>$\Omega = \frac{V}{A}$</td>
<td></td>
</tr>
<tr>
<td>\mathbf{R}^*</td>
<td>Wellenwiderstand</td>
<td>$\Omega = \frac{V}{A}$</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Radius</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>Oberflächenladungsdichte</td>
<td>$\frac{C}{m^2}$</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>Influenzladungsdichte an der Oberfläche</td>
<td>$\frac{C}{m^2}$</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Einheit</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>σ</td>
<td>(spezifische) Leitfähigkeit</td>
<td>$\frac{S}{m} = \frac{A}{Vm} = \frac{1}{m} \Omega$</td>
<td>Im Allgemeinen ist die Leitfähigkeit ein Tensor</td>
</tr>
<tr>
<td>σ_{Maxwell}</td>
<td>Maxwellspannung (mechanische Spannung)</td>
<td>$\frac{N}{m^2}$</td>
<td>$\sigma_{\text{Maxwell}} = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$</td>
</tr>
<tr>
<td>s</td>
<td>Schlaufe, ein Weg</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Spin</td>
<td>Js</td>
<td></td>
</tr>
<tr>
<td>ds</td>
<td>Längenelement</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Bezugssystem für relativistische Rechnung</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>S'</td>
<td>Bezugssystem für relativistische Rechnung</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>S^+</td>
<td>Bezugssystem für relativistische Rechnung</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>S^-</td>
<td>Bezugssystem für relativistische Rechnung</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Poynting-Vektor</td>
<td>$\frac{J}{m^2 s} = \frac{N}{ms}$</td>
<td></td>
</tr>
<tr>
<td>Θ</td>
<td>eine der Koordinaten bei Kugelkoordinaten</td>
<td>1</td>
<td>Winkel gemessen von der z-Achse (Breitengrad, von Norden gemessen)</td>
</tr>
<tr>
<td>τ</td>
<td>Mittlere Zeit zwischen zwei Stössen, Relaxationszeit</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>Abklingzeitkonstante eines RC-Gliedes</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>Zeit unter Integralen</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Δt</td>
<td>kleine Zeitdifferenz</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Periodendauer einer periodischen größe</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>SPANNUNG, auch elektrostatisches Potential</td>
<td>$\frac{J}{C} = V$</td>
<td></td>
</tr>
<tr>
<td>U_{grav}</td>
<td>Gravitationspotential</td>
<td>$\frac{J}{kg} = \frac{m^2}{s^2}$</td>
<td></td>
</tr>
<tr>
<td>U_C</td>
<td>Spannung am Kondensator</td>
<td>$V = \frac{Nm}{As}$</td>
<td></td>
</tr>
<tr>
<td>U_{eff}</td>
<td>effektive Spannung</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Einheit</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>U_{rms}</td>
<td>RMS-Spannung</td>
<td>V</td>
<td>Leistungsgewichtete Spannung, "Root Mean Square"-Spannung</td>
</tr>
<tr>
<td>U_{EMK}</td>
<td>elektromotorische Kraft</td>
<td>$V = \frac{Nm}{As}$</td>
<td></td>
</tr>
<tr>
<td>U_{Hall}</td>
<td>Hallspannung</td>
<td>$V = \frac{Nm}{As}$</td>
<td></td>
</tr>
<tr>
<td>U_R</td>
<td>Spannung am WIDERSTAND</td>
<td>$V = \frac{Nm}{As}$</td>
<td></td>
</tr>
<tr>
<td>v_j</td>
<td>Geschwindigkeit des j-ten Ladungsträgers</td>
<td>$\frac{m}{s}$</td>
<td></td>
</tr>
<tr>
<td>v_s</td>
<td>Abziehgeschwindigkeit Klebestreifen</td>
<td>$\frac{m}{s}$</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Hilfsvektorpotential</td>
<td>$Tm = \frac{N}{A}$ =</td>
<td></td>
</tr>
<tr>
<td>dV</td>
<td>Volumenelement</td>
<td>$\frac{mkg}{mA^2} \cdot \frac{Vs}{m}$</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>Kreisfrequenz</td>
<td>$\frac{1}{s}$</td>
<td>$\omega = 2\pi \nu$</td>
</tr>
<tr>
<td>Ω</td>
<td>Larmorwinkelgeschwindigkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{el}</td>
<td>elektrische Energiedichte</td>
<td>$\frac{J}{m^3} = \frac{N}{m^3}$</td>
<td></td>
</tr>
<tr>
<td>w_B</td>
<td>Energiedichte des Magnetfeldes</td>
<td>$\frac{J}{m^3} = \frac{N}{m^3}$</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Arbeit</td>
<td>$J = Nm$</td>
<td></td>
</tr>
<tr>
<td>W_{el}</td>
<td>elektrische Arbeit</td>
<td>$J = Nm$</td>
<td></td>
</tr>
<tr>
<td>W_{mech}</td>
<td>mechanische Arbeit</td>
<td>$J = Nm$</td>
<td></td>
</tr>
<tr>
<td>W_{Batt}</td>
<td>Arbeit der Batterie</td>
<td>$J = Nm$</td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td>Ersatz für x in Integralen</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>χ_e</td>
<td>dielektrische Suszeptibilität</td>
<td>1</td>
<td>Im Allgemeinen ist χ_e ein Tensor</td>
</tr>
<tr>
<td>x</td>
<td>Ortsvektor</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Koordinate im kartesischen Koordinatensystem</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>X_C</td>
<td>Impedanz der Kapazität</td>
<td>Ω or KAPAZITIVER WIDERSTAND</td>
<td></td>
</tr>
<tr>
<td>X_L</td>
<td>Impedanz der Spule</td>
<td>Ω or INDUKTIVER WIDERSTAND</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Einheit</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>y</td>
<td>Koordinate im kartesischen Koordinatensystem</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>Koordinate im kartesischen Koordinatensystem</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Kernladungszahl</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
C. Mathematische Sätze

C.1. Ableitung

Abbildung C.1.: Berechnung der Ableitung

d.h. die Steigung einer Kurve oder die Änderung finden

\[
\frac{df(x)}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]
(C.1.1)

Gesetze beim Ableiten:

\[
\frac{d}{dx} (f(x) \cdot g(x)) = \left(\frac{d}{dx} f(x) \right) \cdot g(x) + f(x) \left(\frac{d}{du} g(x) \right)
\]
(C.1.2)

\[
\frac{d}{dx} g(x) = \left(\frac{d}{du} f(u) \right) \frac{dg(x)}{dx} \text{ mit } u = g(x)
\]
(C.1.3)

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(f'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin(x))</td>
<td>(\cos(x))</td>
</tr>
<tr>
<td>(\cos(x))</td>
<td>(-\sin(x))</td>
</tr>
<tr>
<td>(\ln(x))</td>
<td>(\frac{1}{x})</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(e^x)</td>
</tr>
</tbody>
</table>

Tabelle C.1.: Beispiele für Ableitungen
C.2. Differentiationsregeln

Einige Differentiationsregeln sind

Definition der Ableitung	$u = f(t)$	$u' = \frac{du}{dt} = f'(t) = \lim_{\Delta t \to 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}$
Partielle Ableitung	$u = f(x, y, z, \ldots, t)$	$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x, y, z, \ldots, t)-f(x, y, z, \ldots, t)}{\Delta x}$
Andere Schreibweise	$u = f(t)$	$\frac{du}{dt} = \frac{d}{dt} u = \frac{d}{dt} f(t)$
Konstanter Faktor	$u = f(x), c = \text{const}$	$\frac{dcu}{dx} = c \frac{du}{dx}$
Summenregel	$u = f(t), v = g(t)$	$\frac{d(u+v)}{dt} = \frac{du}{dt} + \frac{dv}{dt}$
Produktregel	$u = f(t), v = g(t)$	$\frac{duv}{dt} = u \frac{dv}{dt} + v \frac{du}{dt}$
Bruch	$u = f(t), v = g(t)$	$\frac{d}{dt} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2}$
Kettenregel	$u = f(v), v = g(t)$	$\frac{df(g(t))}{dt} = \frac{df}{dv} \frac{dv}{dt} = \frac{df}{dv} \frac{dg(t)}{dt}$
logarithmische Ableitung	$u = f(x)$	$\frac{d\ln u}{dx} = \frac{du}{u} \frac{1}{y}$

| Tabelle C.2.: Differentiationsregeln |
C.3. Differentiation einfacher Funktionen

<table>
<thead>
<tr>
<th>Funktion</th>
<th>n-te Ableitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^n)</td>
<td>(m(m-1)(m-2)\ldots(m-n+1)x^{m-n}) bei ganzzahligem (m) und (n) und (m > n) ist die n-te Ableitung null</td>
</tr>
<tr>
<td>(\ln x)</td>
<td>((-1)^{n-1}(n-1)! \cdot x^{-n})</td>
</tr>
<tr>
<td>(\log_a(x))</td>
<td>((-1)^{n-1} \frac{(n-1)!}{\ln a} \cdot x^{-n})</td>
</tr>
<tr>
<td>(e^{kx})</td>
<td>(k^n e^{kx})</td>
</tr>
<tr>
<td>(a^{kx})</td>
<td>((k \ln a)^n \cdot a^{kx})</td>
</tr>
<tr>
<td>(\sin(kx))</td>
<td>(k^n \sin \left(kx + \frac{n\pi}{2} \right))</td>
</tr>
<tr>
<td>(\cos(kx))</td>
<td>(k^n \cos \left(kx + \frac{n\pi}{2} \right))</td>
</tr>
</tbody>
</table>

Tabelle C.3.: Ableitung einiger Funktionen

Beispiel:

\[y = (5x^2 - 3x + 2)^6x \] soll differenziert werden. Wir verwenden die logarithmische Ableitung.

\[\ln(y) = 6x \ln(5x^2 - 3x + 2) \quad \frac{d}{dx} \]

\[\frac{d}{dx} (\ln(y)) = \frac{d}{dx} \left(6x \ln(5x^2 - 3x + 2) \right) \quad \text{|ableiten, Produktregel rechts} \]

\[\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{d(5x^2 - 3x + 2)}{dx} \quad \text{|Kettenregel ganz rechts} \]

\[\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{1}{5x^2 - 3x + 2} \left(10x - 3 \right) \quad \text{|* y} \]

\[\frac{dy}{dx} = y' = 6y \ln(5x^2 - 3x + 2) + 6yx \frac{10x - 3}{5x^2 - 3x + 2} \quad \text{|y einsetzen} \]
C.4. Taylorreihe und Reihen

Definition

\[f(x) = f(a) + \frac{x-a}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \ldots + \frac{(x-a)^n}{n!} f^{(n)}(a) + \ldots \]

andere Schreibweise

\[f(x + \Delta x) = f(x) + \frac{\Delta x}{1!} f'(x) + \frac{(\Delta x)^2}{2!} f''(x) + \ldots + \frac{(\Delta x)^n}{n!} f^{(n)}(x) + \ldots \]

Beispiel

\[f(x + \Delta x) = \sin(x + \Delta x) = \sin(x) + \frac{\Delta x}{1!} \cos(x) + \frac{(\Delta x)^2}{2!} f''(x) + \ldots + (-1)^n \frac{(\Delta x)^{2n+1}}{(2n+1)!} \cos(x) + \ldots \]

Spezialfall: \(x = 0 \)

\[\sin(\Delta x) = \Delta x - \frac{1}{3!} (\Delta x)^5 + \frac{1}{3!} (\Delta x)^5 + \ldots + (-1)^n \frac{(\Delta x)^{2n+1}}{(2n+1)!} + \ldots \]
C.5. Einige Reihen

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Potenzreihe</th>
<th>Konvergenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1 \pm x)^m)</td>
<td>(1 \pm mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\sin(x + \Delta x))</td>
<td>(\sin(x) + \frac{\Delta x}{1!}\cos(x) + \frac{(\Delta x)^2}{2!}f''(x) + \ldots) (</td>
<td>\Delta x</td>
</tr>
<tr>
<td>(\cos(x + \Delta x))</td>
<td>(\cos(x) - \Delta x\sin(x) - \frac{\Delta x^2\cos(x)}{2!} - \frac{\Delta x^3\sin(x)}{3!} - \ldots) (</td>
<td>\Delta x</td>
</tr>
<tr>
<td>(\tan x)</td>
<td>(x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \frac{62}{2835}x^9 + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\cot x)</td>
<td>(\frac{1}{x} - \left[\frac{x}{3} + \frac{x^3}{45} + \frac{2x^5}{945} + \frac{x^7}{62835} + \ldots \right]) (0 <</td>
<td>x</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(a^x = e^{x\ln a})</td>
<td>(1 + \frac{x\ln a}{1!} + \frac{(x\ln a)^2}{2!} + \frac{(x\ln a)^3}{3!} + \frac{(x\ln a)^4}{4!} + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\ln x)</td>
<td>(\frac{e^{-1}}{x+1} + \left[\frac{e^{-1}}{3(x+1)^3} + \frac{(e^{-1})^3}{5(x+1)^5} + \ldots \right]) (</td>
<td>x</td>
</tr>
<tr>
<td>(\ln x)</td>
<td>(x - 1 - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\ln x)</td>
<td>(\frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x}\right)^2 + \frac{1}{3} \left(\frac{x-1}{x}\right)^3 + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\ln(1 + x))</td>
<td>(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\arcsin x)</td>
<td>(x + \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3x^5}{5} + \frac{1}{2} \cdot \frac{3 \cdot 5x^5}{5^2} + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\arccos x)</td>
<td>(\frac{\pi}{2} - x - \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3x^5}{5} + \frac{1}{2} \cdot \frac{3 \cdot 5x^5}{5^2} + \ldots) (</td>
<td>x</td>
</tr>
<tr>
<td>(\arctan x)</td>
<td>(x - \frac{x^3}{3} + \frac{x^5}{5} - \ldots + (-1)^n \frac{2n+1}{2n+1} x^{2n+1} + \ldots) (</td>
<td>x</td>
</tr>
</tbody>
</table>

Tabelle C.4.: Reihenentwicklungen
C.6. Ableitungen zur näherungsweisen Berechnung von Funktionswerten

Eine allgemeine Funktion \(f(x) \), die genügend oft stetig differenzierbar ist, soll in der Nähe des Wertes \(x_0 \) angenähert werden (Siehe auch die Ausführungen über Taylorreihen in C.4).

Abbildung C.2.: Approximationen der Funktion \(f(x) = \cos(x) \) mit dem Grad 1, 2 und 3.

Abbildung C.2 zeigt, wie die Funktion \(\cos(x) \) an der Stelle \(x_0 = -\pi/4 \) angenähert wird. Die Funktion und die ersten drei Ableitungen sind

\[
\begin{align*}
 f(x) &= \cos(x) \\
 \frac{df}{dx}(x) &= -\sin(x) \\
 \frac{d^2f}{dx^2}(x) &= -\cos(x) \\
 \frac{d^3f}{dx^3}(x) &= \sin(x)
\end{align*}
\]

In nullter Näherung würde man sagen, dass \(\cos(x) = 1/\sqrt{2} + O(1) \) ist in der Umgebung von \(x_0 = -\pi/4 \). Das Symbol \(O(1) \) bedeutet, dass Termen von \(x \) mit dem Exponenten grösser oder gleich 1 vernachlässigt wurden.

In erster oder linearer Näherung hätten wir \(\cos(x) = 1/\sqrt{2} - 1/\sqrt{2}(x - (-\pi/4)) + O(2) = 1/\sqrt{2} (1 - (x + \pi/4)) + O(2) \). Hier sind Termen mit dem Exponenten 2 oder mehr vernachlässigt worden.

Die nächste Näherung, die 2., nimmt auch die quadratischen oder paraboloiden Anteile mit. Hier wäre \(\cos(x) = 1/\sqrt{2} - 1/\sqrt{2}(x - (-\pi/4)) - 1/\sqrt{2}(x - (-\pi/4))^2 + O(3) = 1/\sqrt{2} (1 - (x + \pi/4) - (x + \pi/4))^2 + O(3) \).

Allgemein sind die verschiedenen Approximationen
\[f(x_0 + \Delta x) \approx f_0(\Delta x) = f(x_0) + O(1) \] (C.6.2)
\[f(x_0 + \Delta x) \approx f_1(\Delta x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x=x_0} \Delta x + O(2) \]
\[f(x_0 + \Delta x) \approx f_2(\Delta x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x=x_0} \Delta x + \frac{d^2 f(x)}{dx^2} \bigg|_{x=x_0} \Delta x^2 + O(3) \]
\[f(x_0 + \Delta x) \approx f_3(\Delta x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x=x_0} \Delta x + \frac{d^2 f(x)}{dx^2} \bigg|_{x=x_0} \Delta x^2 + \frac{d^3 f(x)}{dx^3} \bigg|_{x=x_0} \Delta x^3 + O(4) \]

Mit \(x = x_0 + \Delta x \) lauten die Gleichungen

\[f(x) \approx f_0(x) = f(x_0) + O(1) \] (C.6.3)
\[f(x) \approx f_1(x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x=x_0} (x - x_0) + O(2) \]
\[f(x) \approx f_2(x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x=x_0} (x - x_0) + \frac{d^2 f(x)}{dx^2} \bigg|_{x=x_0} (x - x_0)^2 + O(3) \]
\[f(x) \approx f_3(x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x=x_0} (x - x_0) + \frac{d^2 f(x)}{dx^2} \bigg|_{x=x_0} (x - x_0)^2 + \frac{d^3 f(x)}{dx^3} \bigg|_{x=x_0} (x - x_0)^3 + O(4) \]

oder allgemein

\[f(x) = \sum_{j=0}^{\infty} \frac{1}{j!} \frac{df(x)}{dx} \bigg|_{x=x_0} (x - x_0)^j \] (C.6.4)

Dabei ist \(j! = 1 \cdot 2 \cdot \ldots \cdot j \) die FAKULTÄT von \(j \), Per Definition ist \(0! = 1 \). Die multiline-Ableitung ist einfach die Funktion selber.

Als Beispiel betrachten wir \(\cos(x) \) an der Stelle \(x_0 = -\pi/4 \). Wir haben

\[f(-\pi/4) = \frac{1}{\sqrt{2}} \]
\[\frac{df(x)}{dx} \bigg|_{x=-\pi/4} = -\frac{1}{\sqrt{2}} \] (C.6.5)
\[\frac{d^2 f(x)}{dx^2} \bigg|_{x=-\pi/4} = -\frac{1}{\sqrt{2}} \]
\[\frac{d^3 f(x)}{dx^3} \bigg|_{x=-\pi/4} = \frac{1}{\sqrt{2}} \]

und

\[f(x) \approx f_0(x) = \frac{1}{\sqrt{2}} + O(1) \] (C.6.6)
\[f(x) \approx f_1(x) = f(-\pi/4) + \frac{df(x)}{dx} \bigg|_{x=-\pi/4} (x + \pi/4) + O(2) \]
\[f(x) \approx f_2(x) = f(-\pi/4) + \frac{df(x)}{dx} \bigg|_{x=-\pi/4} (x + \pi/4) + \frac{d^2 f(x)}{dx^2} \bigg|_{x=-\pi/4} (x + \pi/4)^2 + O(3) \]
\[f(x) \approx f_3(x) = f(-\pi/4) + \frac{df(x)}{dx} \bigg|_{x=-\pi/4} (x + \pi/4) + \frac{d^2 f(x)}{dx^2} \bigg|_{x=-\pi/4} (x + \pi/4)^2 + \frac{d^3 f(x)}{dx^3} \bigg|_{x=-\pi/4} (x + \pi/4)^3 + O(4) \]

Diese Kurven werden in Abbildung C.2 gezeigt.
Abbildung C.3.: Approximationen der Funktion \(f(x) = \cos(x) \) mit dem Grad 1, 2 und 3.

Abbildung C.3 zeigt die Approximation für \(x_0 = -\pi/2 \). Hier ist der Funktionswert wie auch die zweite Ableitung null, so dass eine lineare Approximation resultiert. Erst die dritte Ableitung ist wieder ungleich null.

Abbildung C.4.: Approximationen der Funktion \(f(x) = \cos(x) \) mit dem Grad 1, 2 und 3.

Abbildung C.4 zeigt die Approximationen bei \(x_0 = 0 \). Hier ist die erste und die dritte Ableitung null, so dass nur die zweite übrig bleibt.

C.7. Vektoren

beschreiben Orte oder gerichtete Grössen
Abbildung C.5.: Definition von Vektoren. \(\mathbf{r} \) ist ein Ortsvektor, \(\mathbf{v} \) der Geschwindigkeitsvektor.

\[
\mathbf{r} = \mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix}
\]

\[
\mathbf{v} = \mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}
\]

Die Ableitung nach der Zeit wird auch als

\[
\dot{x} = \frac{dx}{dt}
\]

geschrieben.

Addition:

\[
\mathbf{a} + \mathbf{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} + \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_x + b_x \\ a_y + b_y \\ a_z + b_z \end{pmatrix}
\]

Versuch zur Vorlesung:

Kraft-Polygon (Versuchskarte M-28)

Länge eines Vektors

\[
|\mathbf{a}| = \sqrt{a_y^2 + b_y^2 + a_z^2}
\]

Skalarprodukt

\[
\mathbf{a} \cdot \mathbf{b} = a_x b_y + a_y b_x + a_z b_z = |\mathbf{a}| |\mathbf{b}| \cdot \cos (\mathbf{a}, \mathbf{b})
\]

der Einheitsvektor \(\mathbf{e}_x \) ist ein Vektor der Länge 1, der in die \(x \)-Richtung zeigt.
Vektorprodukt

\[
\mathbf{a} \times \mathbf{b} = \begin{pmatrix}
a_x \\
a_y \\
b_z
\end{pmatrix} \times \begin{pmatrix}
b_x \\
b_y \\
b_z
\end{pmatrix} = \begin{pmatrix}
a_y b_z - a_z b_y \\
a_z b_x - a_x b_z \\
a_x b_y - a_y b_x
\end{pmatrix}
\]

(C.7.4)

C.7.1. Gesetze

Vertauschung der Reihenfolge (Kommutationsgesetze)

\[
\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}
\]

(C.7.5)

\[
\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}
\]

(C.7.6)

Zwei Vektoren sind orthogonal, wenn

\[
\mathbf{a} \cdot \mathbf{b} = 0
\]

(C.7.7)

Sie sind kollinear, wenn

\[
\mathbf{a} \times \mathbf{b} = 0
\]

(C.7.8)

Für die Orientierung der Vektoren gilt:

\[
\mathbf{a} \times \mathbf{b} \perp \mathbf{a} \]

(C.7.9)

\[
\mathbf{a} \times \mathbf{b} \perp \mathbf{b}
\]

(C.7.10)

\[
|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \cdot \sin (\angle \mathbf{a}, \mathbf{b})
\]

(C.7.11)

C.7.1.1. Orthogonalität zweier Vektoren testen

Gegeben seien zwei Vektoren \(\mathbf{a} \) und \(\mathbf{b} \). Die Projektion von \(\mathbf{a} \) auf \(\mathbf{b} \), das heisst, die Komponente von \(\mathbf{a} \) in die Richtung von \(\mathbf{b} \) ist

\[
a_b = a_{\text{in Richtung b}} = \mathbf{a} \cdot \mathbf{e}_b = \mathbf{a} \cdot \frac{\mathbf{b}}{|\mathbf{b}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}
\]

(C.7.12)

In kartesischen Koordinaten heisst dies

\[
a_b = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{b_x^2 + b_y^2 + b_z^2}}
\]

(C.7.13)

Beispiel:

Sei \(\mathbf{a} = (3, 2, -2) \) und \(\mathbf{b} = (-2, 0, 1) \). Dann ist

\[
a_b = \frac{3 \cdot (-2) + 2 \cdot 0 + (-2) \cdot 2}{\sqrt{(-2)^2 + 0^2 + 2^2}} = \frac{-6 - 4}{\sqrt{8}} = \frac{-10}{2\sqrt{2}} = -\frac{5}{\sqrt{2}}
\]

Beispiel:

Sei \(\mathbf{a} = (3, 2, -2) \) und \(\mathbf{b} = (0, 0, 1) \). Dann ist

\[
a_b = \frac{3 \cdot 0 + 2 \cdot 0 + (-2) \cdot 2}{\sqrt{0^2 + 0^2 + 1^2}} = \frac{-2}{\sqrt{1}} = -2
\]
Dis ist die z-Komponente von a.

C.8. Vektoridentitäten

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 190])

Im Folgenden sind a, b, c und f Vektoren oder vektorielle Funktionen, a, b, c und f ihre Längen, k eine Zahl und $\varphi(r)$ eine skalare Funktion. Die Komponenten der Vektoren in kartesischen Koordinaten sind

$$ a = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} $$

Für die anderen Vektoren werden die Komponenten analog geschrieben.

C.8.1. Produkte mit Vektoren

Doppeltes Vektorprodukt

$$ a \times (b \times c) = (a \cdot c) b - (a \cdot b) c \quad (C.8.1) $$

Das Spatprodukt oder gemischte Produkt berechnet das VOLUMEN des durch a, b, c aufgespannten Spates. Das Vorzeichen ist + bei gerader Permutation von a, b, c und − bei ungerader Permutation.

$$ (a \times b) \cdot c = (b \times c) \cdot a = (c \times a) \cdot b = -(b \times a) \cdot c = -(c \times b) \cdot a = -(a \times c) \cdot b = a_x b_y c_z + a_y b_z c_x + a_z b_x c_y - (a_x b_y c_z + a_y b_z c_x + a_z b_x c_y) \quad (C.8.2) $$

Drei Vektoren sind komplanar, wenn

$$ (a \times b) \cdot c = 0 \quad (C.8.3) $$

Jacobi-Identität

$$ a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0 \quad (C.8.4) $$

Lagrangesche Identität

$$ (a \times b) \cdot (c \times f) = (a \cdot c) (b \cdot f) - (a \cdot f) (b \cdot c) \quad (C.8.5) $$

Vierfaches Vektorprodukt

$$ (a \times b) \times (c \times f) = ((a \times b) \cdot f) c - ((a \times b) \cdot c) f \quad (C.8.6) $$
C.8.2. Ableiten von Vektoren

Ableiten eines Vektors

\[
\frac{d}{dt} \mathbf{a} = \frac{d}{dt} \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} \frac{da_x}{dt} \\ \frac{da_y}{dt} \\ \frac{da_z}{dt} \end{pmatrix} = \begin{pmatrix} \dot{a}_x \\ \dot{a}_y \\ \dot{a}_z \end{pmatrix}
\]
(C.8.7)

Ableitung eines Produktes

\[
\frac{d}{dt} (\varphi(t)\mathbf{a}(t)) = \frac{d\varphi}{dt} \mathbf{a} + \varphi \frac{d\mathbf{a}}{dt}
\]
(C.8.8)

Ableitung des Skalarproduktes

\[
\frac{d}{dt} (\mathbf{a} \cdot \mathbf{b}) = \frac{d\mathbf{a}}{dt} \cdot \mathbf{b} + \mathbf{a} \cdot \frac{d\mathbf{b}}{dt}
\]
(C.8.9)

Ableitung des Vektorproduktes

\[
\frac{d}{dt} (\mathbf{a} \times \mathbf{b}) = \frac{d\mathbf{a}}{dt} \times \mathbf{b} + \mathbf{a} \times \frac{d\mathbf{b}}{dt}
\]
(C.8.10)

Ableitung eines Vektors mit konstantem Betrag. Hier ist \(\mathbf{a} \cdot \mathbf{a} = a^2 = \text{const.}\) Aus Gleichung (C.8.9) folgt

\[
0 = \frac{d a^2}{dt} = \frac{d}{dt} (\mathbf{a} \cdot \mathbf{a}) = \frac{d\mathbf{a}}{dt} \cdot \mathbf{a} + \mathbf{a} \cdot \frac{d\mathbf{a}}{dt} = \frac{d\mathbf{a}}{dt} \cdot \mathbf{a} \quad \Rightarrow \quad \frac{d\mathbf{a}}{dt} \perp \mathbf{a}
\]
(C.8.11)

Taylorentwicklung einer Vektorfunktion

\[
\mathbf{a}(t + \tau) = \mathbf{a}(t) + \tau \frac{d\mathbf{a}}{dt} \bigg|_t + \frac{\tau^2}{2} \frac{d^2\mathbf{a}}{dt^2} \bigg|_t + \ldots + \frac{\tau^n}{n!} \frac{d^n\mathbf{a}}{dt^n} \bigg|_t + \ldots
\]
(C.8.12)

C.8.3. Vektorableitungen bei Skalarfeldern

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 668])

Ableitung eines skalaren Feldes nach einer Richtung

\[
\frac{\partial \varphi(r)}{\partial \mathbf{e}} = \lim_{\varepsilon \to 0} \frac{\varphi(r + \varepsilon \mathbf{e}) - \varphi(r)}{\varepsilon}
\]
(C.8.13)

Ableitung \(\frac{\partial \varphi(r)}{\partial \mathbf{e}_c}\) in Richtung des Einheitsvektors \(\mathbf{e}_c\) in Richtung von \(\mathbf{c}\)

\[
\frac{\partial \varphi(r)}{\partial \mathbf{c}} = |\mathbf{c}| \frac{\partial \varphi(r)}{\partial \mathbf{e}_c}
\]
(C.8.14)

Richtungsableitung einer skalaren Funktion im Vergleich zur Richtung mit dem stärksten Abfall (Einheitsvektor \(\mathbf{n}\))

\[
\frac{\partial \varphi(r)}{\partial \mathbf{e}_c} = \frac{\partial \varphi(r)}{\partial \mathbf{n}} \cos (\angle \mathbf{e}_c, \mathbf{n})
\]
(C.8.15)
C.8.4. Vektorableitungen bei Vektorfeldern

Ableitung eines Vektorfeldes a nach einer Richtung c

$$
\frac{\partial a(r)}{\partial c} = \lim_{\varepsilon \to 0} \frac{a(r + \varepsilon c) - a(r)}{\varepsilon}
$$

(C.8.16)

Ableitung $\frac{\partial a(r)}{\partial e_c}$ in Richtung des Einheitsvektors e_c in Richtung von c

$$
\frac{\partial a(r)}{\partial e_c} = |c| \frac{\partial a(r)}{\partial e_c}
$$

(C.8.17)

Richtungsableitung einer Vektorfunktion

$$
\frac{\partial a(r)}{\partial c} = (c \cdot \text{grad } a)
$$

(C.8.18)

$$
= \frac{1}{2} \left(\text{rot } (a \times c) + \text{grad } (c \cdot a) + c \cdot \text{div } a - a \cdot \text{div } c \\
- c \times \text{rot } a - a \times \text{rot } c \right)
$$

Gradient eines Produktes

$$
\text{grad } (\varphi_1 \varphi_2) = \varphi_1 \text{grad } \varphi_2 + \varphi_2 \text{grad } \varphi_1
$$

(C.8.19)

Kettenregel beim Gradienten

$$
\text{grad } \varphi_1 (\varphi_2) = \frac{d\varphi_1}{d\varphi_2} \text{grad } \varphi_2
$$

(C.8.20)

Gradient eines Skalarproduktes

$$
\text{grad } (a \cdot b) = (a \cdot \text{grad } b) + (b \cdot \text{grad } a) + a \times \text{rot } b + b \times \text{rot } a
$$

(C.8.21)

Gradient eines Skalarproduktes eines konstanten Vektors k mit einem Ortsvektor r

$$
\text{grad } (r \cdot k) = k
$$

(C.8.22)

Gradient eines Vektors $v = (v_x, v_y, v_z)^T$

$$
\text{grad } v = \begin{pmatrix}
\frac{\partial v_x(x,y,z)}{\partial x} & \frac{\partial v_x(x,y,z)}{\partial y} & \frac{\partial v_x(x,y,z)}{\partial z} \\
\frac{\partial v_y(x,y,z)}{\partial x} & \frac{\partial v_y(x,y,z)}{\partial y} & \frac{\partial v_y(x,y,z)}{\partial z} \\
\frac{\partial v_z(x,y,z)}{\partial x} & \frac{\partial v_z(x,y,z)}{\partial y} & \frac{\partial v_z(x,y,z)}{\partial z}
\end{pmatrix}
$$

(C.8.23)

Divergenz eines Produktes

$$
\text{div } (\varphi a) = \varphi \text{div } a + a \text{grad } \varphi
$$

(C.8.24)

Divergenz eines Skalarproduktes eines konstanten Vektors k mit einem Ortsvektor r

$$
\text{div } (r \cdot k) = \frac{r \cdot k}{|r|}
$$

(C.8.25)
Divergenz eines Vektorproduktes

\[\text{div} (a \times b) = b \cdot \text{rot} \ a - a \cdot \text{rot} \ b \] (C.8.26)

Rotation eines Produktes

\[\text{rot} (\varphi a) = \varphi \text{rot} \ a + \text{grad} \varphi \times a \] (C.8.27)

Rotation eines Vektorproduktes

\[\text{rot} (a \times b) = (b \cdot \text{grad}) a - (a \cdot \text{grad}) b + a \text{div} b - b \text{div} a \] (C.8.28)

Rotation eines Potentialfeldes

\[\text{rot} (\text{grad} \varphi) = 0 \quad \forall \varphi \] (C.8.29)

Divergenz einer Rotation

\[\text{div} (\text{rot} \ a) = 0 \quad \forall a \] (C.8.30)

Rotation einer Rotation

\[\text{rot} (\text{rot} \ a) = \text{grad} (\text{div} \ a) - \text{div} (\text{grad} \ a) \] (C.8.31)

Laplace-Operator in kartesischen Koordinaten

\[\Delta f = (\text{div} \ \text{grad}) f = \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right) f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \] (C.8.32)

und für Vektorfunktionen

\[\Delta a = (\text{div} \ \text{grad}) a = \left(\frac{\partial^2 a}{\partial x^2} + \frac{\partial^2 a}{\partial y^2} + \frac{\partial^2 a}{\partial z^2} \right) a = \frac{\partial^2 a}{\partial x^2} + \frac{\partial^2 a}{\partial y^2} + \frac{\partial^2 a}{\partial z^2} \] (C.8.33)

C.8.5. Graphische Darstellung der Ableitungen in drei Dimensionen

C.8.5.1. Gradient in kartesischen Koordinaten

Wenn wir eine Funktion \(y = f(x) \) als Höhenprofil in einer zweidimensionalen Landschaft auffassen, dann ist

\[\frac{df(x)}{dx} \]

die Steigung dieses Profiles an der Stelle \(x \). \(f(x) \) ist die Höhenangabe über einer eindimensionalen Grundfläche.

Wir können eine Funktion \(f(x, y) \) als Höhenangabe über einer zweidimensionalen Grundfläche betrachten.
Die Funktion \textbf{Gradient} berechnet das stärkste Gefälle einer Höhenlandschaft über einer zweidimensionalen Ebene. Sie ist definiert:

\[
\text{grad } f = \begin{pmatrix}
\frac{\partial f(x,y)}{\partial x} \\
\frac{\partial f(x,y)}{\partial y}
\end{pmatrix}
\]

Eine skalare Funktion \(f(x, y, z)\) definiert eine „Höhenlandschaft“ über einer dreidimensionalen Grundfläche. Sie kann nicht mit einfachen Mitteln visualisiert werden. Hier ist die Definition:

Gradient einer skalaren Funktion \(f(x, y, z)\) von drei Variablen

\[
\text{grad } f = \begin{pmatrix}
\frac{\partial f(x,y,z)}{\partial x} \\
\frac{\partial f(x,y,z)}{\partial y} \\
\frac{\partial f(x,y,z)}{\partial z}
\end{pmatrix}
\]

C.8.5.2. Divergenz in kartesischen Koordinaten

Wir betrachten eine Vektorfunktion
\[f(x, y) = \begin{pmatrix} f_x(x, y) \\ f_y(x, y) \end{pmatrix} \]

Wenn wir die Umrandung betrachten, dann sehen wir, dass netto etwas aus ihr herausfliesst. Die „Fläche“ ist \(dx \). In die \(x \)-Richtung heisst das, dass

\[F_x \cdot dx = f_x(x + dx, y) - f_x(x, y) \implies F_x = f_x(x + dx, y) - f_x(x, y) \]

fliesst.

In die \(y \)-Richtung müssen wir die schräg liegenden Vektoren aufteilen. Die \(x \)-Komponente, \(f_x(x, y) \) und \(f_x(x, y + dy) \) ist parallel zur oberen und unteren Umrandung. Sie trägt nichts zum Fluss bei. Also gilt auch für die \(y \)-Richtung

\[F_y \cdot dy = f_y(x, y + dy) - f_y(x, y) \implies F_y = f_y(x, y + dy) - f_y(x, y) \]

Die Größe \(F = F_x + F_y \) nennen wir Divergenz oder Quellstärke. Mit

\[\lim_{dx \to 0} F_x = \lim_{dx \to 0} f_x(x + dx, y) - f_x(x, y) = \frac{\partial f_x(x, y)}{\partial x} \]

und

\[\lim_{dy \to 0} F_y = \lim_{dy \to 0} f_y(x, y + dy) - f_y(x, y) = \frac{\partial f_y(x, y)}{\partial y} \]

erhalten wir für die

\[\text{Divergenz oder Quellstärke in 2 Dimensionen} \]

\[\text{div} \ f(x, y) = \frac{\partial f_x(x, y)}{\partial x} + \frac{\partial f_y(x, y)}{\partial y} \]

Eine analoge Überlegung kann man sich in drei Dimensionen machen. Die Vektor-
Die Funktion ist dann
\[f(x, y, z) = \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix} \]

Wir definieren

Divergenz einer Vektorfunktion \(f(x, y, z) \) in drei Dimensionen

\[\text{div } f(x, y, z) = \frac{\partial f_x(x, y, z)}{\partial x} + \frac{\partial f_y(x, y, z)}{\partial y} + \frac{\partial f_z(x, y, z)}{\partial z} \]

C.8.5.3. Rotation in kartesischen Koordinaten

Wir betrachten wieder eine zweidimensionale Vektorfunktion
\[f(x, y) = \begin{pmatrix} f_x(x, y) \\ f_y(x, y) \end{pmatrix} \]

Wir nehmen nun an, dass die durch \(f(x, y) \) definierten Strömungen den rechteckigen schwimmenden Klotz beeinflussen. So wie die Vektoren gezeichnet sind, wird er sich drehen. Seine Drehachse zeigt aus der Zeichenebene heraus, also die \(z \)-Richtung. Die Drehung hat etwas zu tun mit den Größen

\[R_ydx = f_y(x + dx, y) - f_y(x, y) \quad \rightarrow \quad R_x = \frac{f_y(x + dx, y) - f_y(x, y)}{dx} \]

und

\[R_xdy = -(f_x(x, y + dy) - f_x(x, y)) \quad \Rightarrow \quad R_x = -\frac{f_x(x, y + dy) - f_x(x, y)}{dy} \]

Um bei gleicher Drehrichtung (positiv ist im Gegenurzeigersinn) eine positive Größe zu haben, wird bei \(R_x \) ein „−“ eingefügt. Mit
\[
\lim_{dx \to 0} R_y = \lim_{dx \to 0} \frac{f_y(x + dx, y) - f_y(x, y)}{dx} = \frac{\partial f_y(x, y)}{\partial x}
\]

und
\[
\lim_{dy \to 0} R_x = -\lim_{dx \to 0} \frac{f_x(x, y + dy) - f_x(x, y)}{dx} = -\frac{\partial f_x(x, y)}{\partial y}
\]

ist die Stärke der Drehung oder die

Rotation in zwei Dimensionen
\[
R = \frac{\partial f_y(x, y)}{\partial x} - \frac{\partial f_x(x, y)}{\partial y}
\]

Diese \(R \) zeigt in die \(+z \)-Richtung, wenn wir den zweidimensionalen Raum im dreidimensionalen eingebettet betrachten. Für eine dreidimensionale Vektorfunktion
\[
f(x, y, z) = \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix}
\]
nach man sich überlegen, dass die gleichen Überlegungen wie für die \(xy \)-Ebene (Rotation um \(z \)) auch für die \(xz \)-Ebene (Rotation um \(y \)) und die \(yz \)-Ebene (Rotation um \(x \)) gelten. Wir definieren also

Rotation in drei Dimensionen
\[
\mathbf{rot} \ f(x, y, z) = \begin{pmatrix} \frac{\partial f_z(x, y, z)}{\partial y} - \frac{\partial f_y(x, y, z)}{\partial z} \\ \frac{\partial f_x(x, y, z)}{\partial z} - \frac{\partial f_z(x, y, z)}{\partial x} \\ \frac{\partial f_y(x, y, z)}{\partial x} - \frac{\partial f_x(x, y, z)}{\partial y} \end{pmatrix}
\]

Man kann sich die Berechnung gut merken mit

Gedankenstütze für Rotation
\[
\mathbf{rot} \ f(x, y, z) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix}
\]
C.8.6. Totale Ableitung bei mitgeführten Koordinatensystemen

Wenn \(\mathbf{v} = \frac{d}{dt} \mathbf{r} \) ein konstanter Geschwindigkeitsvektor ist und diese Größe an einem mit der Geschwindigkeit \(\mathbf{v} \) bewegten Ort beobachtet wird, dann gilt (Siehe Jackson[Jac75, p212]):

\[
\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla = \frac{\partial}{\partial t} + \mathbf{v} \cdot \text{grad} \quad \text{(C.8.34)}
\]

wobei \(\frac{d}{dt} \) die totale Ableitung im raumfesten Koordinatensystem und \(\frac{\partial}{\partial t} \) die lokale, mitgeführte Ableitung ist. Diese Gleichung stammt von der Kettenregel:

\[
\frac{d}{dt} f(x(t),t) = \frac{\partial}{\partial x} f(x(t),t) \cdot \frac{d}{dt} x(t) + \frac{\partial}{\partial t} f(x(t),t)
\]

= \(v(t) \frac{\partial}{\partial x} f(x(t),t) + \frac{\partial}{\partial t} f(x(t),t) \) \text{(C.8.35)}

In drei Dimensionen muss mit dem Gradienten gerechnet werden:

\[
\frac{d}{dt} f(\mathbf{r}(t),t) = \frac{d}{dt} f(x(t),y(t),z(t),t)
\]

= \(\text{grad} f(x,y,z,t) \cdot \frac{d}{dt} \mathbf{r}(t) + \frac{\partial}{\partial t} f(\mathbf{r}(t),t) \)

= \(\frac{\partial}{\partial t} f(\mathbf{r}(t),t) + v(t) \cdot \text{grad} f(\mathbf{r}(t),t) \) \text{(C.8.36)}

Dabei bedeutet die partielle Ableitung \(\frac{\partial}{\partial t} \) dass man nur nach der Zeitvariable ableitet, nicht aber nach der impliziten Zeitableitung in \(\mathbf{r} \).

Mit Gleichung (C.8.28) kann man schreiben

\[
\text{rot} (\mathbf{B} \times \mathbf{v}) = (\mathbf{v} \cdot \text{grad}) \mathbf{B} - (\mathbf{B} \cdot \text{grad}) \mathbf{v} + \mathbf{B} \text{div} \mathbf{v} - \mathbf{v} \text{div} \mathbf{B}
\]

\[
\nabla \times (\mathbf{B} \times \mathbf{v}) = (\mathbf{v} \cdot \nabla) \mathbf{B} - (\mathbf{B} \cdot \nabla) \mathbf{v} + \mathbf{B} \nabla \cdot \mathbf{v} - \mathbf{v} \nabla \cdot \mathbf{B} \quad \text{(C.8.37)}
\]

oder

\[
(\mathbf{v} \cdot \text{grad}) \mathbf{B} = \text{rot} (\mathbf{B} \times \mathbf{v}) + (\mathbf{B} \cdot \text{grad}) \mathbf{v} - \mathbf{B} \text{div} \mathbf{v} + \mathbf{v} \text{div} \mathbf{B}
\]

\[
(\mathbf{v} \cdot \nabla) \mathbf{B} = \nabla \times (\mathbf{B} \times \mathbf{v}) + (\mathbf{B} \cdot \nabla) \mathbf{v} - \mathbf{B} \nabla \cdot \mathbf{v} + \mathbf{v} \nabla \cdot \mathbf{B} \quad \text{(C.8.38)}
\]

Nun ist \(\text{div} \mathbf{B} = 0 \). Weiter ist \(\text{div} \left(\frac{d}{dt} \mathbf{v} \right) = \frac{d}{dt} \text{div} \mathbf{v} = \frac{d}{dt}(3) = 0 \) und \(\text{grad} \mathbf{v} = \frac{d}{dt} \text{grad} \mathbf{r} = \frac{d}{dt} \mathbf{E} = 0 \), wobei \(\mathbf{E} \) die 3 mal 3 Einheits-Diagonalmatrix ist. Damit haben wir ohne Einschränkung der Allgemeinheit

\[
(\mathbf{v} \cdot \text{grad}) \mathbf{B} = \text{rot} (\mathbf{B} \times \mathbf{v})
\]

\[
(\mathbf{v} \cdot \nabla) \mathbf{B} = \nabla \times (\mathbf{B} \times \mathbf{v}) \quad \text{(C.8.39)}
\]
und
\[
\frac{d}{dt} B = \frac{\partial}{\partial t} B + v \cdot \nabla B = \frac{\partial}{\partial t} B + \nabla \times (B \times v)
\] (C.8.40)

C.9. Satz von Gauss

Der Satz von K. F. Gauss (1777-1855) verknüpft ein Volumenintegral mit einem Oberflächenintegral. Gegeben seien

- eine vektorielle Ortsfunktion \(v(r) \)
- eine geschlossene Fläche \(a \), die das Volumen \(V(S) \) umschliesst.

\[
\int_{V(a)} \text{div } v \, dV = \int_{a} v \cdot da = \int_{a} v \cdot n \, da
\] (C.9.1)

Man kann auch schreiben \(\text{div } v = \nabla \cdot v \), wobei \(\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z) \) der Nabla-Operator ist.

C.10. Satz von Green

Der Satz von G. Green (1793-1841) verknüpft ein Volumenintegral mit einem Oberflächenintegral. Gegeben seien

- eine skalare Ortsfunktion \(\Psi(r) \)
- eine geschlossene Fläche \(a \), die das Volumen \(V(S) \) umschliesst.

\[
\int_{V(a)} \Delta \Psi \, dV = \int_{a} \text{grad } \Psi \cdot da = \int_{a} \text{grad } \Psi \cdot n \, da
\] (C.10.1)

Man kann auch schreiben \(\text{grad } \Psi = \nabla \Psi \), wobei \(\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z) \) der Nabla-Operator ist.

C.11. Satz von Stokes

Der Satz von G. G. Stokes (1819-1903) verknüpft ein Oberflächenintegral mit einem Linienintegral. Gegeben seien

- eine vektorielle Ortsfunktion \(v(r) \)
- eine geschlossener Weg \(s \), der die Oberfläche \(a(s) \) umrandet.
\[\int_{a(s)} \text{rot } \mathbf{v} \cdot da = \int_{a(s)} \text{rot } \mathbf{v} \cdot \mathbf{n} da = \oint_{s} \mathbf{v} \cdot ds \] (C.11.1)

Man kann auch schreiben \(\text{rot } \mathbf{v} = \nabla \times \mathbf{v} \), wobei \(\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z) \) der Nabla-Operator ist.

Dabei wird jedes Flächenelement so umlaufen, dass die entsprechende Normale \(\mathbf{n} \) der Bewegung einer Rechtsschraube entspricht.
D. Rechnen mit Integralen

D.1. Integration

Integrieren, d.h. Fläche unter der Kurve oder den „zurückgelegten“ Weg bestimmen

\[\int_{u_1}^{u_2} f(u) \, du = \lim_{n \to \infty} \sum_{j=0}^{n} f \left(u_1 + j \frac{u_2 - u_1}{n} \right) \cdot \left(\frac{u_2 - u_1}{n} \right) \] \hspace{1cm} (D.1.1)

Die verwendeten Symbole sind nebensächlich. Man kann mathematische Operationen mit allen Symbolen durchführen, z.B. die Integration mit \(u \).

\[\begin{array}{lcl}
\frac{f(t)}{t^n} & \frac{\int f(\tau) d\tau}{\frac{1}{n+1} t^{n+1}} & \text{wobei } n \neq -1 \\
\sin (t) & -\cos (t) & \\
\cos (t) & \sin (t) & \\
e^t & e^t & \\
\frac{1}{t} & \ln(t) & \\
\end{array} \]

Tabelle D.1.: Beispiele für Integrale
Gesetze der Integration

\[\int (g(x) + h(x)) \, dx = \int g(x) \, dx + \int h(x) \, dx \] \hspace{1cm} (D.1.2)

\[\int (g(x) \cdot h'(x)) \, dx = g(x) h(x) - \int g'(x) h(x) \, dx \] \hspace{1cm} (D.1.3)

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 447])

Konstanter Faktor

\[\int a f(x) \, dx = a \int f(x) \, dx \]

Integral einer Summe oder Differenz

\[\int [u(x) + v(x) - w(x)] \, dx = \int u(x) \, dx + \int v(x) \, dx - \int w(x) \, dx \]

Substitutionsmethode

Sei \(y = \phi(x) \)

\[\int f(y) \, dy = \int f(\phi(x)) \phi'(x) \, dx \]

Partielle Integration der Kettenregel der Differentiation

\[\int u(x)v'(x) \, dx = u(x)v(x) - \int v(x)u'(x) \, dx \]

\[\int \frac{f'(x)}{f(x)} \, dx = \int \frac{df(x)}{f(x)} = \ln|f(x)| + C \]
D.2. Unbestimmte Integrale

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 445])

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Integral</th>
<th>Funktion</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^n</td>
<td>$\int x^n , dx = \frac{x^{n+1}}{n+1}$</td>
<td>$\frac{1}{x}$</td>
<td>$\int \frac{dx}{x} = \ln</td>
</tr>
<tr>
<td>$\sin(x)$</td>
<td>$\int \sin(x) , dx = - \cos(x)$</td>
<td>$\cos(x)$</td>
<td>$\int \cos(x) , dx = \sin(x)$</td>
</tr>
<tr>
<td>$\tan(x)$</td>
<td>$\int \tan(x) , dx = - \ln</td>
<td>\cos(x)</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{1}{\cos^2(x)}$</td>
<td>$\int \frac{dx}{\cos^2(x)} = \tan(x)$</td>
<td>$\frac{1}{\sin^2(x)}$</td>
<td>$\int \frac{dx}{\sin^2(x)} = - \cot(x)$</td>
</tr>
<tr>
<td>$\frac{1}{a^2 + x^2}$</td>
<td>$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}$</td>
<td>e^x</td>
<td>$\int e^x , dx = e^x$</td>
</tr>
<tr>
<td>a^x</td>
<td>$\int a^x , dx = \frac{a^x}{\ln a}$</td>
<td>$\ln x$</td>
<td>$\int \ln x , dx = x \ln x - x$</td>
</tr>
<tr>
<td>$\sinh x$</td>
<td>$\int \sinh x , dx = \cosh x$</td>
<td>$\cosh x$</td>
<td>$\int \cosh x , dx = \sinh x$</td>
</tr>
<tr>
<td>$\tanh x$</td>
<td>$\int \tanh x , dx = \ln</td>
<td>\cosh x</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{1}{\cosh^2 x}$</td>
<td>$\int \frac{dx}{\cosh^2 x} = \tanh x$</td>
<td>$\frac{1}{\sinh^2 x}$</td>
<td>$\int \frac{dx}{\sinh^2 x} = - \coth x$</td>
</tr>
<tr>
<td>$\frac{1}{\sqrt{a^2 - x^2}}$</td>
<td>$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}$</td>
<td></td>
<td>Tabelle D.2.: Unbestimmte Integrale</td>
</tr>
</tbody>
</table>

D.2.1. Bestimmte Integrale und Integrale mit variabler oberer Grenze

Wenn für eine Funktion $f(x)$ die Stammfunktion

$$\tilde{F}(x) = \int f(x) \, dx + C$$ \hspace{1cm} (D.2.1)

ist, haben bestimmte Integrale der Funktion $f(x)$ die Form

$$F_{a,b} = \int_{a}^{b} f(x) \, dx = F(x) \bigg|_{a}^{b} = F(b) - F(a)$$ \hspace{1cm} (D.2.2)

Der Name der Variablen im bestimmten Integral sind irrelevant.
\[
F_{a,b} = \int_a^b f(x) \, dx = \int_a^b f(\zeta) \, d\zeta = \int_a^b f(\Xi) \, d\Xi = F(\Xi)|_a^b = F(b) - F(a) \quad (D.2.3)
\]

Wir können nun die obere Grenze variabel machen. Wichtig ist, dass die Variable im Integral eine andere Variable ist wie in der Grenze

\[
\int_a^x f(\zeta) \, d\zeta = F(\zeta)|_a^x = F(x) - F(a) \quad (D.2.4)
\]

Wenn \(F(x) \) nach \(x \) abgeleitet wird, erhält man wieder \(f(x) \).

\[
\frac{d}{dx} \int_a^x f(\zeta) \, d\zeta = \frac{d}{dx} (F(x) - F(a)) = \frac{dF(x)}{dx} = f(x) \quad (D.2.5)
\]

Wenn die Variable \(x \) die untere Grenze ist und die obere Grenze fest ist, \(b \), dann gilt

\[
\int_x^b f(\xi) \, d\xi = F(\xi)|_x^b = F(b) - F(x) \quad (D.2.6)
\]

und

\[
\frac{d}{dx} \int_x^b f(\zeta) \, d\zeta = \frac{d}{dx} (F(b) - F(x)) = -\frac{dF(x)}{dx} = -f(x) \quad (D.2.7)
\]

Ist die obere Grenze eine Funktion \(g(x) \), gilt

\[
\frac{d}{dx} \int_a^g f(\zeta) \, d\zeta = \frac{d}{dx} (F(g(x)) - F(a)) = -\frac{dF(g(x))}{dx} = f(g(x)) \frac{dg(x)}{dx} \quad (D.2.8)
\]

Dies ist nichts anderes als die Kettenregel der Differentiation (Siehe Tabelle C.2).

D.3. Berechnung von Linienintegralen

Gegeben sei ein Vektorfeld \(\mathbf{F}(\mathbf{r}) \). Zu berechnen sei das Linienintegral

\[
\int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}
\]

zwischen den Punkten \(\mathbf{r}_1 \) und \(\mathbf{r}_2 \) entlang der Bahn \(b \). Wir nehmen an, dass die Bahn \(b \) mit der Bahnänge \(s \) parametrisiert sei. Dann ist \(\mathbf{F}(\mathbf{r}) = \mathbf{F}(\mathbf{r}(s)) \) und der Tangenteneinheitsvektor ist

\[
\mathbf{\tau} = \frac{d\mathbf{r}}{ds}
\]

Mit \(\mathbf{r}(s_1) = \mathbf{r}_1 \) und \(\mathbf{r}(s_2) = \mathbf{r}_2 \) ist das Linienintegral
\[\int_{r_1}^{r_2} F(r) \cdot dr = \int_{s_1}^{s_2} F(r(s)) \cdot \tau(s) ds \quad \text{(D.3.1)} \]

D.4. Die Diracsche Deltafunktion

Die Diracsche Deltafunktion ist ein nützliches Instrument, um diskrete Ladungsverteilungen, Kräfte, Punktmassen als kontinuierliche Verteilung oder Kraftfelder zu beschreiben.

Wir beginnen, indem wir die Funktion

\[f(x) = \begin{cases} \frac{1}{a}, & \text{für } |x| \leq \frac{a}{2}; \\ 0, & \text{sonst.} \end{cases} \quad \text{(D.4.1)} \]

Abbildung D.2.: Darstellung von \(f(x) \), wobei \(a \) variiert wird.

In der Abbildung D.2 sieht man, dass mit kleiner werdendem \(a \) die Amplitude von \(f(x) \) immer grösser wird. Die Fläche unter der Kurve

\[A_f = \int_{-\infty}^{\infty} f(x) dx = \int_{-a/2}^{a/2} \frac{1}{a} dx = \frac{a}{a} \bigg|_{-a/2}^{a/2} = \frac{1}{a} \left(\frac{a}{2} - \left(-\frac{a}{2} \right) \right) = 1 \quad \text{(D.4.2)} \]

ist konstant und unabhängig von \(a \). Wir definieren nun die Diracsche Deltafunktion

\[\delta(x) := \lim_{a \to 0} f(x) \quad \text{(D.4.3)} \]

Damit ist auch
\[\int_{-\infty}^{\infty} \delta(x) \, dx = \int_{-\infty}^{\infty} \left(\lim_{a \to 0} f(x) \right) \, dx = \lim_{a \to 0} \int_{-a/2}^{a/2} \frac{1}{a} \, dx = \lim_{a \to 0} 1 = 1 \] (D.4.4)

Als Anwendung betrachten wir das Integral des Produktes

\[\int_{-\infty}^{\infty} g(x) \delta(x) \, dx \]

wobei \(g(x) \) genügend oft (Fragen Sie einen Mathematiker oder lesen die Packungsbeilage oder ein Mathematikbuch) stetig differenzierbar sein soll. Die Taylorreihe von \(g(x) \) ist dann

\[g(x) = g(0) + x \left(\frac{\partial}{\partial x} g(x) \right)_{x=0} + \ldots + \frac{x^n}{n!} \left. \frac{\partial^n}{\partial x^n} g(x) \right|_{x=0} + \ldots \] (D.4.5)

Dann ergibt das Integral

\[\int_{-\infty}^{\infty} g(x) \delta(x) \, dx = \lim_{a \to 0} \int_{-\infty}^{\infty} g(x) f(x) \, dx \] (D.4.6)

\[= \lim_{a \to 0} \int_{-\infty}^{\infty} \left[g(0) + x \left(\frac{\partial}{\partial x} g(x) \right)_{x=0} + \ldots \right] f(x) \, dx \]

\[= \lim_{a \to 0} \int_{-\infty}^{\infty} \left[g(0) + x \left(\frac{\partial}{\partial x} g(x) \right)_{x=0} + \ldots \right] \frac{1}{a} \, dx \]

\[= \lim_{a \to 0} \int_{-\infty}^{\infty} \left[g(0) + \frac{\partial}{\partial x} g(x) \right|_{x=0} \frac{a/2}{a} \int_{-a/2}^{a/2} x \, dx + \ldots \right] \]

\[= g(0) + \lim_{a \to 0} \int_{-\infty}^{\infty} \left[\left(\frac{\partial}{\partial x} g(x) \right)_{x=0} \frac{a^2}{2} + \ldots \right] \]

\[= g(0) + \lim_{a \to 0} \left[\frac{a^2}{2} + \ldots \right] = g(0) \]

Damit ist klar, dass die nützliche Gleichung

\[\int_{-\infty}^{\infty} g(x) \delta(x - x_0) \, dx = g(x_0) \] (D.4.7)

gilt. Man kann sie anwenden, zum Beispiel im Gaußschen Gesetz, wenn man das elektrische Feld einer Ebene berechnen will. Wir setzen für die Ladungsdichte

\[\rho_{el}(x, y, z) = \sigma_{el}(x, y) \delta(z) \]

Für die Einheiten haben wir

\[[\rho_{el}] = \text{C m}^{-3} \quad \quad [\sigma_{el}] = \text{C m}^{-2} \]
Der Unterschied in den Dimensionen rührt daher, dass die Delta-Funktion $\delta(z)$ implizit die Dimension $[\delta(z)] = m^{-1}$ hat, sonst wären die Definition in Gleichung (D.4.3) und Gleichung (D.4.1) dimensionsmäßig nicht korrekt. Das Gaussische Gesetz sagt dann

\[
\iint_{A(V)} \mathbf{D} \, da = \iiint_V \rho \, dV = \sigma_{el}(x, y) \, dz \\
= \iiint_V \rho_{el}(x, y, z) \, dxdydz = \sigma_{el}(x, y) \, dz \\
= \int_{Ebene} \sigma_{el}(x, y) \, dxdy
\]
E. Umrechnungen zwischen kartesischen, sphärischen und zylindrischen Koordinatensystemen

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 218])
(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 667])

Definitionen

Kartesisches System

\[V_c = V_x e_x + V_y e_y + V_z e_z \]

Sphärisches System

\[V_s = V_r e_r + V_\phi e_\phi + V_\theta e_\theta \]

Zylindrisches System

\[V_z = V_r e_r + V_\phi e_\phi + V_z e_z \]

Die Transformation zwischen den Koordinatensystemen läuft auf eine allgemeine Drehung der Koordinaten im Raum hinaus.

E.1. Vom kartesischen ins sphärische System

\[V_r = V_x \sin \theta \cos \phi + V_y \sin \theta \sin \phi + V_z \cos \theta \]
\[V_\theta = V_x \cos \theta \cos \phi + V_y \cos \theta \sin \phi - V_z \sin \theta \]
\[V_\phi = -V_z \sin \phi + V_y \cos \phi \]

(E.1.1) \hspace{1cm} (E.1.2) \hspace{1cm} (E.1.3) \hspace{1cm} (E.1.4)

E.2. Vom sphärischen ins kartesische System

\[V_x = V_r \sin \theta \cos \phi + V_\theta \cos \theta \cos \phi - V_\phi \sin \phi \]
\[V_y = V_r \sin \theta \sin \phi + V_\theta \cos \theta \sin \phi + V_\phi \cos \phi \]
\[V_z = V_r \cos \theta - V_\theta \sin \theta \]

(E.2.1) \hspace{1cm} (E.2.2) \hspace{1cm} (E.2.3) \hspace{1cm} (E.2.4)

E.3. Vom kartesischen ins zylindrische System

\[V_\rho = V_x \cos \phi + V_y \sin \phi \]
\[V_\phi = -V_z \sin \phi + V_y \cos \phi \]
\[V_z = V_z \]

(E.3.1) \hspace{1cm} (E.3.2) \hspace{1cm} (E.3.3) \hspace{1cm} (E.3.4)
E.4. Vom zylindrischen ins kartesische System

\[V_x = V_\rho \cos \phi - V_\phi \sin \phi \quad (E.4.1) \]
\[V_y = V_\rho \sin \phi + V_\phi \cos \phi \quad (E.4.2) \]
\[V_z = V_z \quad (E.4.3) \]
\[V_z = V_z \quad (E.4.4) \]

E.5. Vom sphärischen ins zylindrische System

\[V_\rho = V_r \sin \theta + V_\theta \cos \theta \quad (E.5.1) \]
\[V_\phi = V_\phi \quad (E.5.2) \]
\[V_z = V_r \cos \theta - V_\theta \sin \theta \quad (E.5.3) \]
\[V_z = V_z \quad (E.5.4) \]

E.6. Vom zylindrischen ins sphärische System

\[V_r = V_\rho \sin \theta + V_z \cos \theta \quad (E.6.1) \]
\[V_\theta = V_\rho \cos \theta - V_z \sin \theta \quad (E.6.2) \]
\[V_\phi = V_\phi \quad (E.6.3) \]
\[V_\phi = V_\phi \quad (E.6.4) \]
F. Geschwindigkeiten und Beschleunigungen in Kugelkoordinaten

Wir betrachten die Definition der Kugelkoordinaten

Abbildung F.1.: Mitgeführtes orthogonales Koordinatensystem und kartesisches Koordinatensystem

Gegeben sind einerseits die kartesischen Koordinaten x, y und z, andererseits die Kugelkoordinaten r, ϕ, und θ. Am Punkt P definieren wir ein mitgeführtes kartesisches Koordinatensystem. Seine Orientierung hängt also von der Zeit ab! Beide Koordinatensysteme sind jeweils durch ein Tripel von Einheitsvektoren gegeben, die jeweils gegenseitig orthogonal sind. Die Einheitsvektoren sind im kartesischen System e_x, e_y und e_z und im mitgeführten kartesischen System e_r, e_ϕ und e_θ.
Wir betrachten zuerst die xy-Ebene. Die Projektion des Ortsvektors \mathbf{r} auf diese Ebene nennen wir ρ. Wir erhalten also die Beziehungen (Einheitsvektoren!)

\[
\begin{align*}
\mathbf{e}_\phi &= -\sin(\phi)\mathbf{e}_x + \cos(\phi)\mathbf{e}_y \quad \text{(F.0.1)} \\
\rho &= \cos(\phi)\mathbf{e}_x + \sin(\phi)\mathbf{e}_y \quad \text{(F.0.2)}
\end{align*}
\]

Wir betrachten nun die Ebene gebildet aus den Vektoren ρ und \mathbf{e}_z. In dieser Darstellung ist \mathbf{e}_r radial und \mathbf{e}_θ zeigt in die Richtung der positiven θ-Koordinate. Dadurch ist auch \mathbf{e}_r, \mathbf{e}_θ und \mathbf{e}_ϕ in dieser Reihenfolge ein orthogonales Rechtssystem. Aus der Abbildung liest man

\[
\begin{align*}
\mathbf{e}_r &= \cos(\theta)\mathbf{e}_z + \sin(\theta)\rho \quad \text{(F.0.3)} \\
 &= \cos(\theta)\mathbf{e}_z + \sin(\theta) (\cos(\phi)\mathbf{e}_x + \sin(\phi)\mathbf{e}_y) \\
 &= \sin(\theta) \cos(\phi)\mathbf{e}_x + \sin(\theta) \sin(\phi)\mathbf{e}_y + \cos(\theta)\mathbf{e}_z \\
\mathbf{e}_\theta &= -\sin(\theta)\mathbf{e}_z + \cos(\theta)\rho \quad \text{(F.0.4)} \\
 &= -\sin(\theta)\mathbf{e}_z + \cos(\theta) (\cos(\phi)\mathbf{e}_x + \sin(\phi)\mathbf{e}_y) \\
 &= \cos(\theta) \cos(\phi)\mathbf{e}_x + \cos(\theta) \sin(\phi)\mathbf{e}_y - \sin(\theta)\mathbf{e}_z
\end{align*}
\]

Dabei merken wir uns, dass θ und ϕ Funktionen der Zeit sind. Zusammenfassend
erhalten wir

\[e_r = \sin(\theta) \cos(\phi) e_x + \sin(\theta) \sin(\phi) e_y + \cos(\theta) e_z \] (F.0.5)
\[e_\theta = \cos(\theta) \cos(\phi) e_x + \cos(\theta) \sin(\phi) e_y - \sin(\theta) e_z \] (F.0.6)
\[e_\phi = -\sin(\phi) e_x + \cos(\phi) e_y \] (F.0.7)

Wir wissen, dass \(e_x, e_y \) und \(e_z \) ein orthogonales Koordinatensystem ist. Also ist insbesondere
\[1 = e_x \cdot e_x = e_y \cdot e_y = e_z \cdot e_z \quad \text{und} \quad 0 = e_x \cdot e_y = e_y \cdot e_x = e_z \cdot e_x. \]

Wenn wir mit diesem Wissen \(e_r \cdot e_r, e_\theta \cdot e_\theta \) und \(e_\phi \cdot e_\phi \) berechnen, können wir zeigen, dass auch das Koordinatensystem \(e_r, e_\theta \) und \(e_\phi \) ein orthogonales Koordinatensystem ist.

Wenn wir dieses Gleichungssystem nach \(e_x, e_y \) und \(e_z \) auflösen, erhalten wir die Umkehrrelationen

\[e_x = \sin(\theta) \cos(\phi) e_r + \cos(\theta) \cos(\phi) e_\theta - \sin(\phi) e_\phi \] (F.0.8)
\[e_y = \sin(\theta) \sin(\phi) e_r + \cos(\theta) \sin(\phi) e_\theta + \cos(\phi) e_\phi \] (F.0.9)
\[e_z = \cos(\theta) e_r - \sin(\theta) e_\theta \] (F.0.10)

Durch Rückeinsetzen kann man sich überzeugen, dass dies konsistente Formulierungen sind.

F.1. Geschwindigkeiten

Wir wissen, dass in kartesischen Koordinaten

\[r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x e_x + y e_y + z e_z \] (F.1.1)

der Ortsvektor ist. Die Geschwindigkeit ist dann

\[\mathbf{v} = \frac{dr}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \dot{x} e_x + \dot{y} e_y + \dot{z} e_z \] (F.1.2)

Wir verwenden die Beziehungen

\[x = r \sin(\theta) \cos(\phi) \] (F.1.3)
\[y = r \sin(\theta) \sin(\phi) \] (F.1.4)
\[z = r \cos(\theta) \] (F.1.5)

und leiten sie ab. Wir erhalten
Wir setzen in die Gleichung F.1.2 die Gleichungen F.0.8, F.0.9, F.0.10, F.1.6, F.1.7 und F.1.8 ein und ordnen nach e_r, e_θ und e_ϕ.

\[v = \dot{x} e_x + \dot{y} e_y + \dot{z} e_z = \dot{x} [\sin(\theta) \cos(\phi) e_r + \cos(\theta) \sin(\phi) e_\theta - \sin(\phi) e_\phi] \\
+ \dot{y} [\sin(\theta) \sin(\phi) e_r + \cos(\theta) \sin(\phi) e_\theta + \cos(\phi) e_\phi] \\
+ \dot{z} [\cos(\theta) e_r - \sin(\theta) e_\theta] \\
= [\dot{x} \sin(\theta) \cos(\phi) + \dot{y} \sin(\theta) \sin(\phi) + \dot{z} \cos(\theta)] e_r \\
+ [\dot{x} \cos(\theta) \cos(\phi) + \dot{y} \cos(\theta) \sin(\phi) - \dot{z} \sin(\theta)] e_\theta \\
+ [-\dot{x} \sin(\phi) + \dot{y} \cos(\phi)] e_\phi \] (F.1.9)

Der Übersichtlichkeit halber berechnen wir nun die drei Komponenten e_r, e_θ und e_ϕ getrennt. Wir beginnen mit e_r.

\[v_r = \dot{x} \sin(\theta) \cos(\phi) + \dot{y} \sin(\theta) \sin(\phi) + \dot{z} \cos(\theta) \] (F.1.10)

\[= \left[\dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \sin(\phi) \dot{\phi} \right] \sin(\theta) \cos(\phi) \\
+ \left[\dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\theta} + r \sin(\theta) \cos(\phi) \dot{\phi} \right] \sin(\theta) \sin(\phi) \\
+ \left[\dot{r} \cos(\theta) - r \sin(\theta) \dot{\theta} \right] \cos(\theta) \\
= \ddot{r} \left[\sin(\theta) \cos(\phi) \sin(\phi) \cos(\phi) + \sin(\theta) \sin(\phi) \sin(\phi) \sin(\phi) + \cos(\theta) \cos(\theta) \right] \\
+ r \dot{\theta} \left[\cos(\theta) \cos(\phi) \sin(\theta) + \cos(\theta) \sin(\phi) \sin(\theta) \sin(\phi) - \sin(\theta) \cos(\theta) \right] \\
+ r \dot{\phi} \left[-\sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \sin(\phi) \right] \\
= \ddot{r} \left[\sin^2(\theta) \cos^2(\phi) + \sin^2(\theta) \sin^2(\phi) + \cos^2(\theta) \right] \\
+ r \dot{\theta} \left[\cos(\theta) \cos(\phi) \sin(\theta) + \cos(\theta) \sin^2(\phi) \sin(\theta) - \sin(\theta) \cos(\theta) \right] \\
+ r \dot{\phi} \left[-\sin^2(\theta) \sin(\phi) \cos(\phi) + \sin^2(\theta) \sin(\phi) \cos(\phi) \right] \\
= \ddot{r} \left[\sin^2(\theta) \left(\cos^2(\phi) + \sin^2(\phi) \right) + \cos^2(\theta) \right] \\
+ r \dot{\theta} \left[\cos(\theta) \sin(\theta) \left[\cos^2(\phi) + \sin^2(\phi) \right] - \sin(\theta) \cos(\theta) \right] \\
= \ddot{r} \left[\sin^2(\theta) + \cos^2(\theta) \right] + r \dot{\theta} \left[\cos(\theta) \sin(\theta) - \sin(\theta) \cos(\theta) \right] \]

Wir fahren mit e_θ weiter.
v_\theta = \dot{x} \cos(\theta) \cos(\phi) + \dot{y} \cos(\theta) \sin(\phi) - \ddot{z} \sin(\theta) \quad \text{(F.1.11)}

= \left[\dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\phi} - r \sin(\theta) \sin(\phi) \ddot{\phi} \right] \cos(\theta) \cos(\phi)
+ \left[\dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\phi} + r \sin(\theta) \cos(\phi) \ddot{\phi} \right] \cos(\theta) \sin(\phi)
- \left[\ddot{r} \cos(\theta) - r \sin(\theta) \dot{\phi} \right] \sin(\theta)

= \dot{r} \left[\sin(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \sin(\phi) - \cos(\theta) \sin(\theta) \right]
+ r \dot{\phi} \left[\cos(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\theta) \sin(\phi) + \sin(\theta) \sin(\theta) \right]
+ \dot{r} \left[-r \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\phi) \sin(\phi) \cos(\theta) \cos(\phi) \right]

= \dot{r} \left[\sin(\theta) \cos(\phi) \cos^2(\phi) + \sin(\theta) \cos(\phi) \sin^2(\phi) - \cos(\theta) \sin(\theta) \right]
+ r \dot{\phi} \left[\cos^2(\phi) + \cos^2(\phi) \sin^2(\phi) + \sin^2(\theta) \right]
+ \dot{r} \left[-r \sin(\theta) \cos(\phi) \sin(\phi) + \sin(\phi) \sin(\phi) \cos(\theta) \cos(\phi) \right]

= \dot{r} \left[\sin(\theta) \cos(\phi) - \cos(\theta) \sin(\theta) \right]
+ r \dot{\phi} \left[\cos^2(\phi) + \sin^2(\theta) \right]

= \dot{r}

Wir schliessen mit \textbf{e}_\phi.

v_\phi = -\dot{x} \sin(\phi) + \dot{y} \cos(\phi) \quad \text{(F.1.12)}

= - \left[\dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\phi} - r \sin(\theta) \sin(\phi) \ddot{\phi} \right] \sin(\phi)
+ \left[\dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\phi} + r \sin(\theta) \cos(\phi) \ddot{\phi} \right] \cos(\phi)

= \dot{r} \left[-\sin(\theta) \cos(\phi) \sin(\phi) + \sin(\theta) \sin(\phi) \cos(\phi) \right]
+ r \dot{\phi} \left[-\cos(\theta) \cos(\phi) \sin(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) \right]
+ \dot{r} \left[\sin(\theta) \sin(\phi) \sin(\phi) + \sin(\theta) \cos(\phi) \cos(\phi) \right]

= \dot{r} \dot{\phi} \left[\sin(\theta) \sin^2(\phi) + \sin(\theta) \cos^2(\phi) \right]

= \dot{r} \sin(\theta) \dot{\phi}

Zusammenfassend haben wir

\begin{align*}
\mathbf{v} = & \mathbf{v}_r e_r + v_\theta e_\theta + v_\phi \mathbf{e}_\phi \\
= & \dot{r} e_r + r \dot{\theta} e_\theta + r \sin(\theta) \dot{\phi} e_\phi \quad \text{(F.1.13)}
\end{align*}

\textbf{F.2. Beschleunigung}

Die Beschleunigung ist in kartesischen Koordinaten

\[
a = \frac{d^2 \mathbf{r}}{dt^2} = \left(\begin{array}{c}
\frac{d^2 x}{dt^2} \\
\frac{d^2 y}{dt^2} \\
\frac{d^2 z}{dt^2}
\end{array} \right) = \left(\begin{array}{c}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array} \right) = \ddot{x} e_x + \ddot{y} e_y + \ddot{z} e_z \quad \text{(F.2.1)}
\]
Wir verwenden die Beziehungen

\[
\begin{align*}
 x &= r \sin(\theta) \cos(\phi) \quad \text{(F.2.2)} \\
 y &= r \sin(\theta) \sin(\phi) \quad \text{(F.2.3)} \\
 z &= r \cos(\theta) \quad \text{(F.2.4)}
\end{align*}
\]

und leiten sie zweimal ab. Wir erhalten aus

\[
\begin{align*}
 \ddot{x} &= \dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \sin(\phi) \dot{\phi} \\
 \ddot{y} &= \dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\theta} + r \sin(\theta) \cos(\phi) \dot{\phi} \\
 \ddot{z} &= \dot{r} \cos(\theta) - r \sin(\theta) \dot{\theta}
\end{align*}
\]

die Gleichungen

\[
\begin{align*}
 \ddot{x} &= \dot{r} \sin(\theta) \cos(\phi) + \dot{r} \cos(\theta) \cos(\phi) \dot{\theta} - \dot{r} \sin(\theta) \sin(\phi) \dot{\phi} \\
 &\quad + \dot{r} \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \cos(\phi) \dot{\theta}^2 - r \cos(\theta) \sin(\phi) \dot{\phi} \dot{\theta} + r \cos(\theta) \cos(\phi) \ddot{\theta} \\
 &\quad - \dot{r} \sin(\theta) \sin(\phi) \dot{\phi} - r \cos(\theta) \sin(\phi) \dot{\phi} \dot{\theta} - r \sin(\theta) \cos(\phi) \dot{\phi}^2 - r \sin(\theta) \sin(\phi) \ddot{\phi} \\
 &= \ddot{r} \sin(\theta) \cos(\phi) \\
 &\quad + \dot{r} \dot{\theta} \left[\cos(\theta) \cos(\phi) + \cos(\theta) \cos(\phi) \right] \\
 &\quad + \dot{r} \dot{\phi} \left[- \sin(\theta) \sin(\phi) - \sin(\theta) \sin(\phi) \right] \\
 &\quad + r \dot{\theta}^2 \left[- \sin(\theta) \cos(\phi) \right] \\
 &\quad + r \dot{\phi} \dot{\theta} \left[- \cos(\theta) \sin(\phi) - \cos(\theta) \sin(\phi) \right] \\
 &\quad + r \dot{\theta} \left[\cos(\theta) \cos(\phi) \right] \\
 &\quad + r \dot{\phi}^2 \left[- \sin(\theta) \cos(\phi) \right] \\
 &\quad + r \ddot{\phi} \left[- \sin(\theta) \sin(\phi) \right] \\
 &= \ddot{r} \sin(\theta) \cos(\phi) + 2 \dot{r} \dot{\theta} \cos(\theta) \cos(\phi) - 2 \dot{r} \dot{\phi} \sin(\theta) \sin(\phi) - r \dot{\theta}^2 \sin(\theta) \cos(\phi) \\
 &\quad - 2 r \dot{\phi} \dot{\theta} \cos(\theta) \sin(\phi) + r \dot{\theta} \cos(\theta) \cos(\phi) - r \dot{\phi}^2 \sin(\theta) \cos(\phi) - r \ddot{\phi} \sin(\theta) \sin(\phi)
\end{align*}
\]

und

\[
\begin{align*}
 \ddot{x} &= \ddot{r} \sin(\theta) \cos(\phi) + \dot{r} \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \sin(\phi) \dot{\phi} \\
 &\quad + \dot{r} \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \cos(\phi) \dot{\theta}^2 - r \cos(\theta) \sin(\phi) \dot{\phi} \dot{\theta} + r \cos(\theta) \cos(\phi) \ddot{\theta} \\
 &\quad - r \sin(\theta) \sin(\phi) \dot{\phi} - r \cos(\theta) \sin(\phi) \dot{\phi} \dot{\theta} - r \sin(\theta) \cos(\phi) \dot{\phi}^2 - r \sin(\theta) \sin(\phi) \ddot{\phi} \\
 &= \ddot{r} \sin(\theta) \cos(\phi) \\
 &\quad + \dot{r} \dot{\theta} \left[\cos(\theta) \cos(\phi) + \cos(\theta) \cos(\phi) \right] \\
 &\quad + \dot{r} \dot{\phi} \left[- \sin(\theta) \sin(\phi) - \sin(\theta) \sin(\phi) \right] \\
 &\quad + r \dot{\theta}^2 \left[- \sin(\theta) \cos(\phi) \right] \\
 &\quad + r \dot{\phi} \dot{\theta} \left[- \cos(\theta) \sin(\phi) - \cos(\theta) \sin(\phi) \right] \\
 &\quad + r \dot{\theta} \left[\cos(\theta) \cos(\phi) \right] \\
 &\quad + r \dot{\phi}^2 \left[- \sin(\theta) \cos(\phi) \right] \\
 &\quad + r \ddot{\phi} \left[- \sin(\theta) \sin(\phi) \right] \\
 &= \ddot{r} \sin(\theta) \cos(\phi) + 2 \dot{r} \dot{\theta} \cos(\theta) \cos(\phi) - 2 \dot{r} \dot{\phi} \sin(\theta) \sin(\phi) - r \dot{\theta}^2 \sin(\theta) \cos(\phi) \\
 &\quad - 2 r \dot{\phi} \dot{\theta} \cos(\theta) \sin(\phi) + r \dot{\theta} \cos(\theta) \cos(\phi) - r \dot{\phi}^2 \sin(\theta) \cos(\phi) - r \ddot{\phi} \sin(\theta) \sin(\phi)
\end{align*}
\]
\begin{align*}
y & = r \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\theta} + r \sin(\theta) \cos(\phi) \dot{\phi} \\
& + r \cos(\theta) \sin(\phi) \ddot{\theta} - r \sin(\theta) \sin(\phi) \dot{\theta}^2 + r \cos(\theta) \cos(\phi) \ddot{\phi} + r \cos(\theta) \sin(\phi) \dddot{\theta} + r \sin(\theta) \cos(\phi) \dddot{\phi} \\
& = \dddot{r} \sin(\theta) \sin(\phi) \\
& + r \dot{\theta} \left[\cos(\theta) \sin(\phi) + \cos(\theta) \sin(\phi) \right] \\
& + r \dot{\phi} \left[\sin(\theta) \cos(\phi) + \sin(\theta) \cos(\phi) \right] \\
& - r \dot{\theta}^2 \sin(\theta) \sin(\phi) \\
& + r \dddot{\theta} \left[\cos(\theta) \cos(\phi) + \cos(\theta) \cos(\phi) \right] \\
& + r \dot{r} \sin(\theta) \cos(\phi) \\
& - r \dot{\phi}^2 \sin(\theta) \sin(\phi) \\
& + r \sin(\theta) \cos(\phi) \dddot{\phi} \\
& = \dddot{r} \sin(\theta) \sin(\phi) + 2 \dddot{r} \dot{\theta} \cos(\theta) \sin(\phi) + 2 \dot{r} \dot{\phi} \sin(\theta) \cos(\phi) - r \dot{\phi} \dot{\theta} \sin(\theta) \\
& + 2r \dot{\theta} \dot{\phi} \cos(\theta) \cos(\phi) + \dddot{r} \cos(\theta) \sin(\phi) - r \dot{\phi} \ddot{\theta} \sin(\theta) \sin(\phi) + r \ddot{\phi} \sin(\theta) \cos(\phi)
\end{align*}

sowie

\begin{align*}
\ddot{z} & = \dddot{r} \cos(\theta) - \dddot{r} \sin(\theta) \dot{\theta} \\
& - \dddot{r} \sin(\theta) \dot{\theta} - r \cos(\theta) \dot{\theta}^2 - r \sin(\theta) \dddot{\theta} \\
& = \dddot{r} \cos(\theta) - 2 \dddot{r} \sin(\theta) \dot{\theta} - r \cos(\theta) \dot{\theta} - r \sin(\theta) \dddot{\theta}
\end{align*}

Wir setzen in die Gleichung F.2.1 die Gleichungen F.0.8, F.0.9, F.0.10, F.2.5, F.2.6 und F.2.7 ein und ordnen nach \(e_r, e_\theta \) und \(e_\phi \).

\begin{align*}
a & = \dddot{x} e_x + \dddot{y} e_y + \dddot{z} e_z \\
& = [\dddot{x} \sin(\theta) \cos(\phi) e_r + \dddot{y} \sin(\theta) \sin(\phi) e_r + \dddot{z} \cos(\theta) e_r - \sin(\theta) e_\phi] \\
& + [\dddot{x} \sin(\theta) \cos(\phi) e_\theta + \dddot{y} \sin(\theta) \sin(\phi) e_\theta + \dddot{z} \cos(\theta) e_\theta - \sin(\theta) e_\phi] \\
& + [\dddot{x} \sin(\theta) \sin(\phi) + \dddot{y} \sin(\theta) \cos(\phi) + \dddot{z} \cos(\theta) e_r] e_r \\
& + [\dddot{x} \cos(\theta) \cos(\phi) + \dddot{y} \cos(\theta) \sin(\phi) + \dddot{z} \sin(\theta) e_\theta] e_\theta \\
& + [- \dddot{x} \sin(\phi) + \dddot{y} \cos(\phi)] e_\phi
\end{align*}

Der Übersichtlichkeit halber berechnen wir nun die drei Komponenten \(e_r, e_\theta \) und \(e_\phi \) getrennt. Wir beginnen mit \(e_r \).
\[a_r = \ddot{r} \sin(\theta) \cos(\phi) + \ddot{y} \sin(\theta) \sin(\phi) + \ddot{z} \cos(\theta) \]
\[= \left[\ddot{r} \sin(\theta) \cos(\phi) + 2 \ddot{\theta} \cos(\theta) \cos(\phi) - 2r \dddot{\phi} \sin(\theta) \sin(\phi) - r \dot{\theta}^2 \sin(\theta) \cos(\phi) \right. \]
\[- 2r \ddot{\phi} \cos(\theta) \sin(\phi) + r \dot{\theta} \cos(\theta) \cos(\phi) \]
\[- r \dddot{\phi}^2 \sin(\theta) \cos(\phi) - r \dddot{\phi} \sin(\theta) \sin(\phi) \right] \sin(\theta) \cos(\phi) \]
\[+ \left[\ddot{r} \sin(\phi) + 2 \ddot{\theta} \cos(\theta) \sin(\phi) + 2r \dddot{\phi} \cos(\theta) \cos(\phi) \right. \]
\[- r \dot{\theta}^2 \sin(\theta) \sin(\phi) + 2r \dddot{\phi} \cos(\theta) \cos(\phi) \]
\[+ r r \cos(\theta) \sin(\phi) \dddot{\phi} - r \dddot{\phi}^2 \sin(\theta) \sin(\phi) + r \dddot{\phi} \sin(\theta) \cos(\phi) \right] \sin(\theta) \sin(\phi) \]
\[+ \left[\ddot{r} \cos(\theta) - 2r \ddot{\theta} \sin(\theta) - r \dot{\theta}^2 \cos(\theta) - r \dddot{\theta} \sin(\theta) \right] \cos(\theta) \]
\[= \ddot{r} \left[\sin(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \sin(\phi) + \cos(\theta) \cos(\theta) \right] \]
\[+ 2r \dddot{\phi} \left[\cos(\theta) \cos(\phi) \sin(\phi) \sin(\phi) + \cos(\theta) \sin(\phi) \sin(\phi) - \sin(\theta) \cos(\theta) \right] \]
\[+ 2r \dot{\phi} \left[- \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \right] \]
\[+ r \dot{\theta}^2 \left[- \sin(\theta) \cos(\phi) + \sin(\phi) \cos(\phi) \right] \]
\[+ 2r \dddot{\theta} \left[\cos(\theta) \sin(\theta) \cos(\phi) + \cos(\phi) \sin(\theta) \sin(\phi) \right] \]
\[+ r r \dddot{\phi} \left[- \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\phi) \right] \]
\[= \ddot{r} \left[\cos(\theta) \sin(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \sin(\phi) \right] \]
\[+ 2r \dddot{\phi} \left[\cos(\theta) \sin(\theta) \cos(\phi) \sin(\phi) + \cos(\theta) \sin(\phi) \sin(\phi) - \sin(\theta) \cos(\theta) \right] \]
\[+ 2r \dot{\phi} \left[- \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \right] \]
\[+ r \dot{\theta}^2 \left[- \sin(\theta) \cos(\phi) + \sin(\phi) \cos(\phi) \right] \]
\[+ 2r \dddot{\theta} \left[\cos(\theta) \sin(\theta) \cos(\phi) + \cos(\phi) \sin(\theta) \sin(\phi) \right] \]
\[+ r r \dddot{\phi} \left[- \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\phi) \right] \]
\[= \ddot{r} - r \dot{\theta}^2 - r \sin^2(\theta) \dddot{\phi}^2 \]
\[a_\theta = \ddot{x} \cos(\theta) \cos(\phi) + \ddot{y} \cos(\theta) \sin(\phi) - \dddot{z} \sin(\theta) \quad (F.2.11) \]

\[
= \left[\ddot{r} \sin(\theta) \cos(\phi) + 2 \dot{r} \dot{\phi} \cos(\theta) \cos(\phi) - 2 \dot{r} \dot{\phi} \sin(\theta) \sin(\phi) - r \dot{\theta}^2 \sin(\theta) \cos(\phi) \\
- 2r \dot{\phi} \dot{\phi} \cos(\theta) \sin(\phi) + r \dot{\theta} \cos(\theta) \cos(\phi) - r \dot{\phi}^2 \sin(\theta) \cos(\phi) - r \ddot{\phi} \sin(\theta) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ \left[\ddot{r} \sin(\theta) \sin(\phi) + 2 \dot{r} \dot{\phi} \sin(\theta) \sin(\phi) + 2 \dot{r} \dot{\phi} \cos(\theta) \cos(\phi) - r \dot{\theta}^2 \sin(\theta) \sin(\phi) \right. \\
+ 2r \dot{\phi} \dot{\phi} \cos(\theta) \cos(\phi) + r \dot{\theta} \sin(\theta) \sin(\phi) - r \dot{\phi}^2 \sin(\theta) \cos(\phi) + r \ddot{\phi} \sin(\theta) \cos(\phi) \right] \cos(\theta) \sin(\phi) \\
- \left. \left[\ddot{r} \cos(\theta) - 2r \dot{\theta} \sin(\theta) - r \dot{\theta} \cos(\theta) - r \ddot{\theta} \sin(\theta) \right] \sin(\theta) \right]
\]

\[= \ddot{r} \left[\sin(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\phi) \cos(\theta) \sin(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \cos(\phi) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ 2 \dot{r} \dot{\phi} \left[\cos(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) \cos(\theta) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ 2r \dot{\phi}^2 \left[- \sin(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ 2 \dot{r} \ddot{\phi} \left[- \cos(\theta) \sin(\phi) \cos(\phi) \cos(\theta) \cos(\phi) + \cos(\theta) \cos(\phi) \cos(\theta) \cos(\phi) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ r \ddot{\phi} \left[\cos(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) \cos(\theta) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ r \ddot{\phi}^2 \left[- \sin(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \cos(\phi) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ \dddot{r} \left[\sin(\theta) \cos(\theta) \cos^2(\phi) + \sin(\theta) \cos(\theta) \sin^2(\phi) - \cos(\theta) \sin(\theta) \right] \\
+ 2r \dot{\theta} \left[\cos^2(\theta) \cos^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\theta) \right] \cos(\theta) \cos(\phi) \\
+ r \ddot{\theta} \left[- \sin(\theta) \cos(\theta) \cos^2(\phi) - \sin(\theta) \cos(\theta) \sin^2(\phi) + \cos(\theta) \sin(\theta) \right] \cos(\theta) \cos(\phi) \\
+ r \dddot{\theta} \left[\cos^2(\theta) \cos^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\theta) \right] \cos(\theta) \cos(\phi) \\
+ r \ddot{\phi} \left[- \sin(\theta) \cos(\theta) \cos^2(\phi) - \sin(\theta) \cos(\theta) \sin^2(\phi) \right] \cos(\theta) \cos(\phi) \\
+ \dddot{r} \left[\sin(\theta) \cos(\theta) - \cos(\theta) \sin(\theta) \right].\]
und schließlich

\[a_\phi = -\ddot{x}\sin(\phi) + \ddot{y}\cos(\phi) \]
\[= -\left[\ddot{r}\sin(\theta)\cos(\phi) + 2\ddot{\theta}\cos(\theta)\cos(\phi) - 2\dddot{\phi}\sin(\theta)\sin(\phi) - r\ddot{\theta}^2\sin(\theta)\cos(\phi) - 2r\dddot{\phi}\cos(\theta)\cos(\phi) - r\dddot{\phi}^2\sin(\theta)\sin(\phi) - r\dddot{\phi}\sin(\theta)\sin(\phi)\right] \sin(\phi) \]
\[+ \left[\ddot{r}\sin(\theta)\sin(\phi) + 2\ddot{\theta}\cos(\theta)\sin(\phi) + 2\dddot{\phi}\sin(\theta)\cos(\phi) - r\ddot{\theta}^2\sin(\theta)\sin(\phi) + 2r\dddot{\phi}\cos(\theta)\cos(\phi) + r\dddot{\phi}^2\sin(\theta)\sin(\phi) + r\dddot{\phi}\sin(\theta)\cos(\phi)\right] \cos(\phi) \]
\[= \dddot{r}\left[-\sin(\theta)\cos(\phi)\sin(\phi) + \sin(\theta)\sin(\phi)\cos(\phi)\right] \]
\[+ 2\dddot{\theta}\left[-\cos(\theta)\cos(\phi)\sin(\phi) + \cos(\theta)\sin(\phi)\cos(\phi)\right] \]
\[+ 2\dddot{\phi}\left[\sin(\theta)\sin(\phi)\sin(\phi) + \sin(\theta)\cos(\phi)\cos(\phi)\right] \]
\[+ r\dddot{\theta}^2\left[\sin(\theta)\cos(\phi)\sin(\phi) - \sin(\theta)\sin(\phi)\cos(\phi)\right] \]
\[+ 2r\dddot{\phi}\left[\cos(\theta)\sin(\phi)\sin(\phi) + \cos(\theta)\cos(\phi)\cos(\phi)\right] \]
\[+ r\dddot{\phi}^2\left[\sin(\theta)\cos(\phi)\sin(\phi) - \sin(\theta)\sin(\phi)\cos(\phi)\right] \]
\[+ r\dddot{\phi}\left[\sin(\theta)\sin(\phi)\sin(\phi) + \sin(\theta)\cos(\phi)\cos(\phi)\right] \]
\[= + 2\dddot{\phi}\left[\sin(\theta)\sin^2(\phi) + \sin(\theta)\cos^2(\phi)\right] \]
\[+ 2r\dddot{\phi}\left[\cos(\theta)\sin^2(\phi) + \cos(\theta)\cos^2(\phi)\right] \]
\[+ r\dddot{\phi}\left[\sin(\theta)\sin^2(\phi) + \sin(\theta)\cos^2(\phi)\right] \]
\[= + 2\dddot{\phi}\sin(\theta) + 2r\dddot{\phi}\cos(\theta) + r\dddot{\phi}\sin(\theta) \]
\[= \left[r\dddot{\phi} + 2r\dddot{\phi}\right]\sin(\theta) + 2r\dddot{\phi}\cos(\theta) \]

Zusammenfassend haben wir

\[\mathbf{a} = a_r \mathbf{e}_r + a_\theta \mathbf{e}_\theta + a_\phi \mathbf{e}_\phi \]
\[= \left[\dddot{r} - r\dddot{\theta}^2 - r\sin^2(\theta)\dddot{\phi}^2\right] \mathbf{e}_r \]
\[+ \left[2r\dddot{\phi} + r\dddot{\phi}\right]\sin(\theta)\cos(\theta)\dddot{\phi}\right] \mathbf{e}_\theta \]
\[+ \left[r\dddot{\phi} + 2r\dddot{\phi}\right] \sin(\theta) + 2r\dddot{\phi}\cos(\theta) \mathbf{e}_\phi \]

F.2.1. Interpretation

Wir teilen die Beschleunigung in drei Komponenten auf

\[\mathbf{a} = \mathbf{a}_p + \mathbf{a}_z + \mathbf{a}_c \]

Dies ist in der angegebenen Reihenfolge die Parallelbeschleunigung, die den Betrag der Geschwindigkeit erhöht, die Zentripetalbeschleunigung und die Coriolis-Beschleunigung.
Im Einzelnen haben wir

\[a_p = \ddot{r} e_r + r \dot{\theta} e_\theta + r \sin(\theta) \dot{\phi} e_\phi \]
\[a_z = -r \left(\dot{\theta}^2 + \sin^2(\theta) \dot{\phi}^2 \right) e_r - r \sin(\theta) \cos(\theta) \dot{\phi}^2 e_\theta \]
\[a_c = 2\dot{r} \dot{\theta} e_\theta + 2 \left(\dot{r} \sin(\theta) + r \dot{\theta} \cos(\theta) \right) \dot{\phi} e_\phi \]

(F.2.15)
(F.2.16)
(F.2.17)
G. Berechnungen in ebenen schiefwinkligen Dreiecken

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 146])

Abbildung G.1.: Dreieck

halber Dreiecksumfang \(s = \frac{a+b+c}{2} \)

Radius des Umkreises \(R = \frac{a}{2 \sin \alpha} = \frac{b}{2 \sin \beta} = \frac{c}{2 \sin \gamma} \)

Radius des Inkreises \(r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = s \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2} = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \)

Flächeninhalt \(S = \frac{1}{2} ab \sin \gamma = 2R^2 \sin \alpha \sin \beta \sin \gamma = rs = \sqrt{s(s-a)(s-b)(s-c)} \)

Sinussatz \(\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R \)

Projektionssatz \(c = a \cos \beta + b \cos \alpha \)

Kosinussatz oder Satz des Pythagoras im schiefwinkligen Dreieck \(c^2 = a^2 + b^2 - 2ab \cos \gamma \)

Mollweidsche Gleichungen \((a + b) \sin \frac{\gamma}{2} = c \cos \left(\frac{a-\beta}{2} \right) \)

\((a - b) \cos \frac{\gamma}{2} = c \sin \left(\frac{a-\beta}{2} \right) \)

Tangenssatz \(\frac{a+b}{a-b} = \frac{\tan \frac{a+\beta}{2}}{\tan \frac{a-\beta}{2}} \)

Halbwinkelsatz \(\tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \)

Tangensformeln \(\tan \alpha = \frac{a \sin \beta}{c-a \cos \beta} = \frac{a \sin \gamma}{b-a \cos \gamma} \)
Beziehungen für halbe Winkel

\[\sin \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}} \]

\[\cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}} \]

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM08, pp. 148])

<table>
<thead>
<tr>
<th>gegeben</th>
<th>Formeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1 Seite und 2 Winkel ((a, \alpha, \beta))</td>
<td>(\gamma = \pi - \alpha - \beta, \quad b = \frac{a \sin \beta}{\sin \alpha}, \quad c = \frac{a \sin \gamma}{\sin \alpha}, \quad S = \frac{1}{2}ab\sin \gamma)</td>
</tr>
<tr>
<td>2. 2 Seiten und der eingeschlossene Winkel ((a, b, \gamma))</td>
<td>(\tan \frac{\alpha-\beta}{2} = \frac{a-b}{a+b} \cot \frac{\gamma}{2}, \quad \tan \frac{\alpha+\beta}{2} = \frac{\pi}{2} - \frac{\gamma}{2} \alpha) und (\beta) werden aus (\alpha + \beta) und (\alpha - \beta) berechnet. (c = \frac{a \sin \gamma}{\sin \alpha}, \quad S = \frac{1}{2}ab\sin \gamma)</td>
</tr>
</tbody>
</table>
| 3. 2 Seiten und der einer von ihnen gegenüberliegenden Winkel \((a, b, \alpha)\) | \(\sin \beta = \frac{b \sin \alpha}{a}\) Für \(a \geq b\) ist \(\beta < \frac{\pi}{2}\) und eindeutig bestimmt. Für \(a < b\) sind die folgenden Fälle möglich:
 1. \(\beta\) hat für \(b \sin \alpha < a\) zwei Werte \(\beta_2 = \pi - \beta_1\)
 2. \(\beta\) hat genau einen Wert \(\left(\frac{\pi}{2}\right)\) für \(b \sin \alpha = a\)
 3. Für \(b \sin \alpha > a\) ist es unmöglich, ein Dreieck zu konstruieren.
 \(\gamma = \pi - \alpha - \beta, \quad c = \frac{a \sin \gamma}{\sin \alpha}, \quad S = \frac{1}{2}ab\sin \gamma\) |
| 4. 3 Seiten \((a, b, c)\) | \(r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}, \quad \tan \frac{a}{2} = \frac{r}{s-a}, \quad \tan \frac{b}{2} = \frac{r}{s-b}, \quad \tan \frac{c}{2} = \frac{r}{s-c}, \quad S = rs = \sqrt{s(s-a)(s-b)(s-c)}\) |

Tabelle G.1.: Formeln für schiefwinklige ebene Dreiecke
H. Berechnung der Ableitung in rotierenden Bezugssystemen

Hier werden Ableitungen in rotierenden Bezugssystemen betrachtet. Der Maple Quelltext ist:

```maple
> with(LinearAlgebra):
> with(VectorCalculus):
> with(tensor):
> SetCoordinates( 'cartesian'[x,y,z] ):
>
> AA := Matrix(3,3,[[cos(omegaz*t), sin(omegaz*t),0],
> [-sin(omegaz*t),cos(omegaz*t),0],
> [0,0,1]]);
>
> AAinv := MatrixInverse(AA);
> omega := <0,0,omegaz>;
> s := <R*cos(3*omegaz*t),R*sin(3*omegaz*t),rz>;
> sp := convert(MatrixVectorMultiply(AA,s),arctrig);
> res1 :=diff(s,t);
> CrossProduct(omega,s);
> tr1 :=diff(sp,t);
> tr2 := simplify(MatrixVectorMultiply(AAinv,tr1));
> res2 := tr2+CrossProduct(omega,s);
> rr :=simplify(res2-res1);
```

Der Mathematica-Quelltext ist
Hier ist angenommen worden, dass der Rotationsvektor ω entlang der z-Richtung des Koordinatensystems angeordnet ist. Dann transformiert die Matrix AA einen Vektor aus dem Laborsystem in das rotierende Bezugssystem. $AAinv$ transformiert zurück. s ist der zeitabhängige Ortsvektor. sp ist der Ortsvektor transformiert in das rotierende Bezugssystem. $tr1$ ist die Ableitung von sp im rotierenden Bezugssystem $tr2$ ist $tr1$ zurücktransformiert in das Laborsystem.

\[
AA = \begin{pmatrix}
\cos(t\omega z) & \sin(t\omega z) & 0 \\
-\sin(t\omega z) & \cos(t\omega z) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

$AAinv = Simplify[MatrixPower[AA, -1]]$

$\omega = \{0, 0, \omega z\}$

$s = \{fx(t), fy(t), fz(t)\}$

$sp = AA.s$

$res1 = \frac{\partial s}{\partial t}$

$cp = \omega \times s$

$tr1 = Simplify[\frac{\partial sp}{\partial t}]$

$tr2 = Simplify[AAinv.tr1]$

$res2 = cp + tr2$

$rr = res2 - res1$

$res3falsch = Simplify[cp + tr1]$

Abbildung H.1.: Beziehung zwischen den Ableitungen

Gleichung

$$dr = \partial r + d\vec{r} = \partial r + \vec{\omega} \times r dt \quad (H.0.1)$$

gilt dann, wenn die Ableitung im rotierenden Bezugssystem zurück nach dem La-
Die Ableitungen im Laborsystem sind

\[
AA = \begin{pmatrix}
\cos(\omega_z t) & \sin(\omega_z t) & 0 \\
-\sin(\omega_z t) & \cos(\omega_z t) & 0 \\
0 & 0 & 1
\end{pmatrix} = A
\]

\[
AA^{-1} = \begin{pmatrix}
\cos(\omega_z t) & -\sin(\omega_z t) & 0 \\
\sin(\omega_z t) & \cos(\omega_z t) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
s = \begin{pmatrix}
R \cos(3\omega_z t) \\
R \sin(3\omega_z t) \\
r_z
\end{pmatrix}
\]

allgemein: \[
s = \begin{pmatrix}
f_x(t) \\
f_y(t) \\
f_z(t)
\end{pmatrix}
\]

Nach der Transformation ins rotierende Bezugssystem erhält man

\[
sp = \begin{pmatrix}
R \cos(2\omega_z t) \\
R \sin(2\omega_z t) \\
r_z
\end{pmatrix}
\]

allgemein: \[
s' = \begin{pmatrix}
\cos(\omega_z t) f_x(t) + \sin(\omega_z t) f_y(t) \\
\cos(\omega_z t) f_y(t) - \sin(\omega_z t) f_x(t)
\end{pmatrix}
\]

Die Ableitungen im Laborsystem sind

\[
\frac{ds}{dt} = 3\omega_z R \begin{pmatrix}
-\sin(3\omega_z t) \\
\cos(3\omega_z t) \\
0
\end{pmatrix}
\]

allgemein: \[
\frac{ds}{dt} = \begin{pmatrix}
\frac{d}{dt} f_x(t) \\
\frac{d}{dt} f_y(t) \\
\frac{d}{dt} f_z(t)
\end{pmatrix}
\]

und im rotierenden Bezugssystem (gestrichenes Bezugssystem)

\[
\frac{dsp}{dt} = 2\omega_z R \begin{pmatrix}
-\sin(2\omega_z t) \\
\cos(2\omega_z t) \\
0
\end{pmatrix}
\]

allgemein:

\[
\frac{ds'}{dt} = \begin{pmatrix}
\cos(\omega_z t) \frac{d}{dt} f_x(t) + \sin(\omega_z t) \frac{d}{dt} f_y(t) - \omega_z \sin(\omega_z t) f_x(t) + \omega_z \cos(\omega_z t) f_y(t) \\
-\sin(\omega_z t) \frac{d}{dt} f_x(t) + \cos(\omega_z t) \frac{d}{dt} f_y(t) - \omega_z \cos(\omega_z t) f_x(t) - \omega_z \sin(\omega_z t) f_y(t)
\end{pmatrix}
\]

Zurücktransformiert ins Laborsystem mit \(A^{-1} \frac{ds'}{dt}\) erhält man

\[
\frac{\partial s}{\partial t} = 2\omega_z R \begin{pmatrix}
-\sin(3\omega_z t) \\
\cos(3\omega_z t) \\
0
\end{pmatrix}
\]

allgemein: \[
\frac{\partial s}{\partial t} = \begin{pmatrix}
\omega_z f_y(t) + \frac{d}{dt} f_x(t) \\
-\omega_z f_x(t) + \frac{d}{dt} f_y(t)
\end{pmatrix}
\]

Das Kreuzprodukt ist

\[
\omega \times s = \omega_z R \begin{pmatrix}
-\sin(3\omega_z t) \\
\cos(3\omega_z t) \\
0
\end{pmatrix}
\]

allgemein: \[
\omega \times s = \begin{pmatrix}
-\omega_z f_y(t) \\
\omega_z f_x(t)
\end{pmatrix}
\]
\[
\frac{\partial \mathbf{s}}{\partial t} + \mathbf{\omega} \times \mathbf{s} = 2 \omega_z R \begin{pmatrix}
-\sin(3 \omega_z t) \\
\cos(3 \omega_z t) \\
0
\end{pmatrix} + \omega_z R \begin{pmatrix}
-\sin(3 \omega_z t) \\
\cos(3 \omega_z t) \\
0
\end{pmatrix} = 3 \omega_z R \begin{pmatrix}
-\sin(3 \omega_z t) \\
\cos(3 \omega_z t) \\
0
\end{pmatrix} = \frac{ds}{dt}
\]

allgemein:

\[
\frac{\partial \mathbf{s}}{\partial t} + \mathbf{\omega} \times \mathbf{s} = \begin{pmatrix}
\omega_z f_y(t) + \frac{d}{dt} f_x(t) \\
-\omega_z f_x(t) + \frac{d}{dt} f_y(t) \\
\frac{d}{dt} f_z(t)
\end{pmatrix} + \begin{pmatrix}
-\omega_z f_y(t) \\
\omega_z f_x(t) \\
0
\end{pmatrix} = \begin{pmatrix}
\frac{d}{dt} f_x(t) \\
\frac{d}{dt} f_y(t) \\
\frac{d}{dt} f_z(t)
\end{pmatrix} = \frac{ds}{dt}
\]

so dass sowohl im Spezialfall wie auch allgemein gilt

\[
\frac{ds}{dt} = \frac{\partial \mathbf{s}}{\partial t} + \mathbf{\omega} \times \mathbf{s}
\]

gilt. Wäre \(\frac{ds'}{dt} \) nicht ins Laborsystem zurücktransformiert worden, hätte man

\[
\frac{\partial \mathbf{s}}{\partial t} + \mathbf{\omega} \times \mathbf{s} = \begin{pmatrix}
\frac{d}{dt} f_x(t) \cos(t \omega_z) - \omega_z f_x(t) \sin(t \omega_z) + \frac{d}{dt} f_y(t) \sin(t \omega_z) + \omega_z f_y(t) (\cos(t \omega_z) - 1) \\
-\frac{d}{dt} f_z(t) \sin(t \omega_z) + f_x(t) \omega_z (1 - \cos(t \omega_z)) + \frac{d}{dt} f_y(t) \cos(t \omega_z) - \omega_z f_y(t) \sin(t \omega_z)
\end{pmatrix}
\]

(H.0.2)

erhalten, was nicht das Resultat im Laborsystem ist.

Wenn mit Vektoren in der Darstellung eines Koordinatensystems gerechnet wird, müssen alle Vektoren im gleichen Koordinatensystem dargestellt werden!
I. Drehungen

I.1. Drehmatrizen

Eine Drehung um die x-Achse beschrieben durch den Vektor $e_x = (1, 0, 0)^T$ um den Winkel α wird durch die Matrix

$$R_x(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

die Transformation ausgeführt. Für eine Drehung um die y-Achse beschrieben durch den Vektor $e_y = (0, 1, 0)^T$ um den Winkel β wird durch die Matrix

$$R_y(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix}$$

die Transformation ausgeführt. Schliesslich wird eine Drehung um die y-Achse beschrieben durch den Vektor $e_z = (0, 0, 1)^T$ um den Winkel γ wird durch die Matrix

$$R_z(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ausgeführt.

Der Vektor $r = (x, y, z)^T$ soll um den Winkel α um die x-Achse gedreht werden. Dies wird mit der Operation

$$r' = R_x(\alpha)r = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y\cos(\alpha) - z\sin(\alpha) \\ y\sin(\alpha) + z\cos(\alpha) \end{pmatrix}$$

bewerkstelligt. Im Allgemeinen wird eine Drehung durch die Multiplikation des Vektors von links mit einer Matrix beschrieben.

Die Drehung zurück wird (antisymmetrische reelle Matrix mit der Determinante 1) wird durch die inverse Matrix oder die transponierte Matrix beschrieben Alternativ kann man auch α durch $-\alpha$ ersetzen.

$$R_x(-\alpha) = R_x^T(\alpha) = R_x^{-1}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & \sin(\alpha) \\ 0 & -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

Eine Drehung um einen beliebigen Vektor $r_\alpha = (x_\alpha, y_\alpha, z_\alpha)^T$ mit $x_\alpha^2 + y_\alpha^2 + z_\alpha^2 = 1$ wird durch
beschrieben[WR14]. Die Drehung ist bei positivem α rechtshändig bezüglich der Richtung von r_α (Der Daumen zeigt in die Richtung von r_α, die Finger geben die Drehrichtung).

I.2. Drehung von Vektoren und Matrizen (oder Tensoren)

Sei $R_{e_\alpha}(\alpha)$ die Drehmatrix. Dann ist der aus r hervorgegangene um die Achse e_α und den Winkel α gedrehte Vektor

$$r' = R_{e_\alpha}(\alpha)r.$$ \hfill (I.2.1)

Ein Beispiel dafür ist in (I.1.4) gezeigt.

Die aus der Matrix

$$A = \begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}$$

hervorgegangene um die Achse e_α und den Winkel α gedrehte Matrix ist

$$A' = R_{e_\alpha}(\alpha)AR_{e_\alpha}^T(\alpha).$$ \hfill (I.2.2)

Die Drehung zurück ist dann

$$R_{e_\alpha}(-\alpha)A'R_{e_\alpha}^T(-\alpha) = R_{e_\alpha}^T(\alpha)A'R_{e_\alpha}(\alpha) = R_{e_\alpha}^T(\alpha)R_{e_\alpha}(\alpha)AR_{e_\alpha}^T(\alpha)R_{e_\alpha}(\alpha) = A$$ \hfill (I.2.3)

Wenn wir als Beispiel die Matrix

$$A = \begin{pmatrix} a & b & 0 \\ -b & c & 0 \\ 0 & 0 & d \end{pmatrix}$$

um $e_\alpha = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^T$ drehen, erhalten wir
Allgemeine Drehung mit Eulerwinkeln

Das Koordinatensystem e_x, e_y, e_z geht durch drei Drehungen aus dem Koordinatensystem e'_x, e'_y, e'_z hervor.
Die Eulerschen Winkel sind

1. Drehung um e^*_z : α
2. Drehung um $0A$: β
3. Drehung um e^*_z : γ

Dabei $0A$ steht senkrecht zur Ebene aufgespannt durch e_z und e^*_z.

Die Reihenfolge der Drehungen ist

1. Drehung: Bringe e^*_x senkrecht zu e_z (In der Abbildung I.3 zeigen die Kreise die Ebenen senkrecht zu e^*_z und senkrecht zu e_z Die Schnittlinie der beiden Kreise ist $0A$.
2. Drehung: Bringe z-Achse in richtige Lage
3. Drehung: Bringe x, y-Achsen in die richtige Lage.
J. Berechnung elektrischer Felder

J.1. In der Nähe eines Leiterstückes

Entlang der x-Achse von $x = 0$ bis $x = \ell$ sei die Ladung Q homogen verteilt. Zu berechnen ist das elektrische Feld für einen Punkt $P = (\xi, 0, 0)$ auf der x-Achse!

Die Linienladungsdichte ist

$$\lambda = \frac{Q}{\ell}$$

Das elektrische Feld bei P ist

$$dE_x(x, \xi) = \frac{1}{4\pi\varepsilon_0} \frac{\lambda(x - \xi)d\xi}{|x - \xi|^3}$$

Wir integrieren über die Länge des Drahtes

$$E_x(\xi) = \int_0^\ell dE_x(x, \xi) = \frac{\lambda}{4\pi\varepsilon_0} \cdot \begin{cases} \int_0^\ell \frac{d\xi}{(x - \xi)^2}, & \text{für } x > \ell \text{ oder } x < 0; \\ \int_0^x \frac{d\xi}{(x - \xi)^2} - \int_x^\ell \frac{d\xi}{(x - \xi)^2}, & \text{für } 0 < x < \ell. \end{cases}$$

Die Lösung dieser Gleichung ist

$$E_x(x) = \frac{\lambda}{4\pi\varepsilon_0 x(x - \ell)} \begin{cases} \frac{\lambda \ell}{4\pi\varepsilon_0 x(x - \ell)}, & \text{für } x > \ell \text{ oder } x < 0; \\ \frac{\lambda (2x - \ell)}{4\pi\varepsilon_0 x(x - \ell)}, & \text{für } 0 < x < \ell. \end{cases}$$
Wir berechnen nun das elektrische Feld entlang der Mittelsenkrechten einer Linienladung der Länge ℓ. Zur Berechnung legen wir das Koordinationssystem so, dass die Ladungsverteilung von $-\frac{\ell}{2}$ bis $\frac{\ell}{2}$ reicht. Aus Symmetriegründen existiert auf der Mittelsenkrechten keine Komponente in x-Richtung. Wir betrachten also die Komponente entlang y. Am Punkt $P = (0, y, 0)$ ist

$$dE_y(y) = \frac{1}{4\pi \varepsilon_0} \frac{\lambda dx}{(x^2 + y^2)^{\frac{3}{2}}} y.$$

Ebenso ist

$$E_y(y) = \int_{-\frac{\ell}{2}}^{\frac{\ell}{2}} \frac{\lambda}{4\pi \varepsilon_0} \frac{y}{(x^2 + y^2)^{\frac{3}{2}}} dx = \frac{\lambda y}{4\pi \varepsilon_0} \int_{-\frac{\ell}{2}}^{\frac{\ell}{2}} \frac{dx}{(x^2 + y^2)^{\frac{3}{2}}}.$$

Nach Bronstein[BSMM08] ist

$$\int \frac{dx}{X^2} = \frac{x}{a^2 \sqrt{X}}.$$
mit \(X = x^2 + a^2 \). Daraus folgt

\[
E_y(y) = \frac{\lambda y}{4 \pi \varepsilon_0} \left(\frac{x}{y^2 \sqrt{x^2 + y^2}} \right) \bigg|_{-\frac{\ell}{2}}^{\frac{\ell}{2}}
\]

\[
= \frac{\lambda}{4 \pi \varepsilon_0 y} \left(\frac{\ell}{2 \sqrt{\frac{\ell^2}{4} + y^2}} + \frac{\ell}{2 \sqrt{\frac{\ell^2}{4} + y^2}} \right)
\]

\[
= \frac{\lambda \ell}{4 \pi \varepsilon_0 y} \frac{1}{\sqrt{y^2 + \frac{\ell^2}{4}}}
\]

\[
= \frac{Q}{4 \pi \varepsilon_0 y} \frac{1}{\sqrt{y^2 + \frac{\ell^2}{4}}}
\]

Für \(y \gg \ell \) bekommt man

\[
E_y = \frac{1}{4 \pi \varepsilon_0 y^2} \frac{\lambda \ell}{y} = \frac{Q}{4 \pi \varepsilon_0 y^2}
\]

Für \(y \ll -\ell \) bekommt man

\[
E_y = -\frac{1}{4 \pi \varepsilon_0 y^2} \frac{\lambda \ell}{y} = -\frac{Q}{4 \pi \varepsilon_0 y^2}
\]

Wenn die Linienladung "unendlich" ausgedehnt ist, gilt \(y \ll \ell \)

Dann ist

\[
E_y \approx \frac{\lambda \ell}{4 \pi \varepsilon_0 y} \frac{1}{\sqrt{\frac{\ell^2}{4}}} = \frac{\lambda}{2 \pi \varepsilon_0 |y|} = \frac{Q}{2 \pi \varepsilon_0 |y|}
\]
J.2. Auf der Symmetrieachse einer Kreisscheibe

Zur Berechnung setzen wir die Flächenladungsdichte auf

\[\sigma = \frac{g}{\pi r^2} \]

Das elektrische Feld auf der Symmetrieachse kann nur parallel zu dieser sein. Wir setzen also an

\[dE_x = \frac{1}{4 \pi \varepsilon_0} \frac{\sigma \hat{r} \hat{r} d\hat{\varphi}}{(\hat{r}^2 + x^2)^{3/2}} \]

Also ist

\[E_x = \int_0^{2\pi} \int_0^r \frac{1}{4 \pi \varepsilon_0} \frac{\sigma \hat{r} \hat{x} d\hat{\varphi}}{(\hat{r}^2 + x^2)^{3/2}} = \frac{\sigma x}{4 \pi \varepsilon_0} \int_0^r \hat{r} d\hat{\varphi} \int_0^{2\pi} \frac{\hat{r} d\hat{r} d\varphi}{(\hat{r}^2 + x^2)^{3/2}} = \frac{\sigma x}{2 \varepsilon_0} \int_0^r \frac{\hat{r} d\hat{r}}{(\hat{r}^2 + x^2)^{3/2}} \]

Nach Bronstein ist

\[\int \frac{r dr}{\sqrt{(r^2 + x^2)^3}} = -\frac{1}{\sqrt{r^2 + x^2}} \]
Also ist

\[E_x = \frac{\sigma x}{2\varepsilon_0} \left(-\frac{1}{\sqrt{r^2 + x^2}} \right) \]

\[= \frac{\sigma x}{2\varepsilon_0} \left(-\frac{1}{\sqrt{r^2 + x^2}} + \frac{1}{|x|} \right) \]

\[= -\frac{\sigma x}{2\varepsilon_0} \cdot \frac{|x| - \sqrt{r^2 + x^2}}{|x| \sqrt{r^2 + x^2}} \]

\[= \frac{\sigma}{2\varepsilon_0} \cdot x \cdot \frac{\sqrt{r^2 + x^2} - |x|}{\sqrt{r^2 + x^2}} \]

Für \(|x| \gg r\) ist

\[\sqrt{r^2 + |x|^2} - |x| = |x| \left(\sqrt{1 + \frac{r^2}{x^2}} \right) - |x| = |x| \left(1 + \frac{r^2}{2x^2} \right) - |x| = \frac{r^2}{2x^2} \]

und damit

\[E_x = \frac{\sigma r^2}{4\varepsilon_0 x^2} = \frac{Q}{4\pi\varepsilon_0 x^2} \]

Abbildung J.3.: \(E\)-Feld einer homogen geladenen Kreisscheibe entlang einer Senkrecht durch den Mittelpunkt.

J.3. Innerhalb und ausserhalb einer geladenen Zylinderfläche

Der Zylindermantel habe den Radius \(R\), die Flächenladungsdichte sei \(\sigma\). Wir betrachten eine Zylinderfläche koaxial zur geladenen Fläche mit dem Radius \(r < R\).
Das \(\mathbf{E} \)-Feld ist aus Symmetriegründen radial symmetrisch. Der Fluss durch die Fläche ist:

\[
\phi = \iint_{\text{Fläche}} E_n \, da = E_r \iint_{\text{Fläche}} da = E_r \cdot 2\pi r \ell = \frac{Q}{\varepsilon_0}
\]

Da keine Ladung umschlossen wird, ist

\[E_r = 0, \quad r < R \]

Für \(r > R \) gilt

\[E_r \cdot 2\pi r \ell = \frac{\sigma \cdot 2\pi R \ell}{\varepsilon_0} \]

oder

\[E_r = \frac{\sigma R}{\varepsilon_0 r} \]

Abbildung J.4.: Ladung senkrecht zu einem Kreiszylinder.

J.4. In allen Bereichen zweier koaxialer zylinderförmiger Leiter

Nach Abschnitt J.3 ist \(E_r = \frac{\sigma R}{\varepsilon_0} \) wenn die Ladungsdichte \(\sigma \) auf der Zylinderschale mit \(R < r \) aufgebracht ist. Wir betrachten zwei konzentrische Zylinder mit den Radien \(R_1 < R_2 \) und deren Oberflächenladungsdichten \(\sigma_1 \) und \(\sigma_2 \). Für \(r < R_1 \) gilt

\[E_r = 0 \text{ für } r < R_1 \]

Für \(R_1 < r < R_2 \) existiert allein das Feld des inneren Kreiszylinders. Also ist dort:

\[E_r = \frac{\sigma_1 R_1}{\varepsilon_0 r} \text{ für } R_1 < r < R_2 \]
Schließlich ist für \(r > R_2 \):
\[
E_r = \frac{\sigma_1 R_1}{\varepsilon_0 r} + \frac{\sigma_2 R_2}{\varepsilon_0 r} = \frac{\sigma_1 R_1 + \sigma_2 R_2}{\varepsilon_0 r} \quad \text{für } r > R_2
\]

wobei hier die Additivität elektrischer Felder benutzt wurde. Wenn für \(r > R_2 \) \(E_r = 0 \) sein soll, muss gelten
\[
\sigma_1 R_1 + \sigma_2 R_2 = 0
\]
or
\[
\frac{\sigma_1}{\sigma_2} = -\frac{R_2}{R_1}
\]

Abbildung J.5.: Elektrische Felder bei einem Koaxialkabel, wobei einmal (dünne Linie) die Oberflächenladungsdichten \(\sigma_i \) vom Betrage nach gleich und einmal (dicke Linie) die Produkte \(R_i \cdot \sigma_i \) dem Betrage nach gleich sind.
K. Lorentztransformationen

K.1. Lorentztransformationen für die magnetische Induktion

Bewegung entlang der x-Richtung

\begin{align*}
E'_x &= E_x \\
E'_y &= \gamma(v_x)(E_y - v_x \cdot B_z) \\
E'_z &= \gamma(v_x)(E_z + v_x \cdot B_y) \\
B'_x &= B_x \\
B'_y &= \gamma(v_x)(B_y + \frac{v_x}{c^2}E_z) \\
B'_z &= \gamma(v_x)(B_z - \frac{v_x}{c^2}E_y)
\end{align*}

Bewegung entlang der y-Richtung

\begin{align*}
E'_x &= \gamma(v_y)(E_x + v_y \cdot B_z) \\
E'_y &= E_y \\
E'_z &= \gamma(v_y)(E_z - v_y \cdot B_x) \\
B'_x &= \gamma(v_y)(B_x - \frac{v_y}{c^2}E_z) \\
B'_y &= B_y \\
B'_z &= \gamma(v_y)(B_z + \frac{v_y}{c^2}E_x)
\end{align*}

Bewegung entlang der z-Richtung

\begin{align*}
E'_x &= \gamma(v_z)(E_x - v_z \cdot B_y) \\
E'_y &= \gamma(v_z)(E_y + v_z \cdot B_x) \\
E'_z &= E_z \\
B'_x &= \gamma(v_z)(B_x + \frac{v_z}{c^2}E_y) \\
B'_y &= \gamma(v_z)(B_y - \frac{v_z}{c^2}E_x) \\
B'_z &= B_z
\end{align*}
K.2. Lorentztransformation für das magnetische Feld

Bewegung entlang der x-Richtung

\[
E'_x = E_x \\
E'_y = \gamma(v_x) \left(E_y - \frac{v_x}{c^2 \varepsilon_0} H_z \right) \\
E'_z = \gamma(v_x) \left(E_z + \frac{v_x}{c^2 \varepsilon_0} \cdot H_y \right) \\
H'_x = H_x \\
H'_y = \gamma(v_x) (H_y + v_x \varepsilon_0 E_z) \\
H'_z = \gamma(v_x) (H_z - v_x \varepsilon_0 E_y)
\]

Bewegung entlang der y-Richtung

\[
E'_x = \gamma(v_y) \left(E_x + \frac{v_y}{c^2 \varepsilon_0} \cdot H_z \right) \\
E'_y = E_y \\
E'_z = \gamma(v_y) \left(E_z - \frac{v_y}{c^2 \varepsilon_0} H_x \right) \\
H'_x = \gamma(v_y) (H_x - v_y \varepsilon_0 E_z) \\
H'_y = H_y \\
H'_z = \gamma(v_y) (H_z + v_y \varepsilon_0 E_x)
\]

Bewegung entlang der z-Richtung

\[
E'_x = \gamma(v_z) \left(E_x - \frac{v_z}{c^2 \varepsilon_0} H_y \right) \\
E'_y = \gamma(v_z) \left(E_y + \frac{v_z}{c^2 \varepsilon_0} \cdot H_x \right) \\
E'_z = E_z \\
H'_x = \gamma(v_z) (H_x + v_z \varepsilon_0 E_y) \\
H'_y = \gamma(v_z) (H_y - v_z \varepsilon_0 E_x) \\
H'_z = H_z
\]
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Thema</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Auslenkung zweier mit identischer Ladung q geladener Kugeln.</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Feldlinien + und -</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Feldlinien bei zwei gleichen positiven Ladungen.</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Feldlinien $+q$ und $-q$</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Integration über eine Kugelfläche mit einer Punktladung im Zentrum</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Allgemeine Oberflächen und beliebige Ladungsverteilung</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Kräfte auf einen Dipol im homogenen elektrischen Feld.</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Berechnung eines Feldes einer Kugelschale</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Die Feldverteilung einer homogen geladenen Kugelschale.</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Elektrisches Feld einer homogen geladenen Kugel</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Integrationsfläche zur Berechnung des elektrischen Feldes einer Ebene</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Elektrisches Feld um eine endliche Platte.</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>Elektrisches Feld entgegengesetzt gleich geladener Platten.</td>
<td>26</td>
</tr>
<tr>
<td>2.14</td>
<td>Elektrisches Feld gleich geladener Platten</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Integrationsfläche</td>
<td>27</td>
</tr>
<tr>
<td>2.16</td>
<td>Feldlinien in der Nähe eines Leiters</td>
<td>28</td>
</tr>
<tr>
<td>2.17</td>
<td>Approximation eines beliebigen Integrationsweges durch Kreissegmente.</td>
<td>29</td>
</tr>
<tr>
<td>2.18</td>
<td>Potential einer homogen geladenen Ebene</td>
<td>32</td>
</tr>
<tr>
<td>2.19</td>
<td>Potential eines Kreisringes</td>
<td>33</td>
</tr>
<tr>
<td>2.20</td>
<td>Potential einer homogen geladenen Kreisscheibe</td>
<td>34</td>
</tr>
<tr>
<td>2.21</td>
<td>Potential einer homogen geladenen Kugelschale</td>
<td>35</td>
</tr>
<tr>
<td>2.22</td>
<td>Potential einer homogenen unendlichen Linienladung</td>
<td>36</td>
</tr>
<tr>
<td>2.23</td>
<td>Integrationsoberfläche an der Grenze Metall-Vakuum.</td>
<td>38</td>
</tr>
<tr>
<td>2.24</td>
<td>Geometrie eines Plattenkondensators.</td>
<td>39</td>
</tr>
<tr>
<td>2.25</td>
<td>Minimierung der Randeffekte in einem Kondensator</td>
<td>40</td>
</tr>
<tr>
<td>2.26</td>
<td>PARALLELSCHALTUNG von Kondensatoren.</td>
<td>40</td>
</tr>
<tr>
<td>2.27</td>
<td>REIHEN-SCHALTUNG oder SERIEN-SCHALTUNG von Kondensatoren.</td>
<td>41</td>
</tr>
<tr>
<td>2.28</td>
<td>Flächenladungsversuch</td>
<td>44</td>
</tr>
<tr>
<td>2.29</td>
<td>Schematisches Bild eines Atoms mit seiner Elektronenhülle.</td>
<td>45</td>
</tr>
<tr>
<td>2.30</td>
<td>Isolatoren in einem Kondensator.</td>
<td>47</td>
</tr>
<tr>
<td>2.31</td>
<td>Anordnung permanenter Dipole ohne und mit elektrischem Feld.</td>
<td>48</td>
</tr>
<tr>
<td>2.32</td>
<td>Induzierte Polarisation</td>
<td>49</td>
</tr>
<tr>
<td>2.33</td>
<td>Berechnung des Gesetzes von Clausius-Mosotti</td>
<td>50</td>
</tr>
<tr>
<td>2.34</td>
<td>Links: Kondensator ohne und rechts: mit Dielektrikum</td>
<td>52</td>
</tr>
<tr>
<td>2.35</td>
<td>Dielektrische Flüssigkeit im Kondensator</td>
<td>53</td>
</tr>
<tr>
<td>2.36</td>
<td>Skizze der Änderungen beim Anlegen einer Spannung</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Kräfte auf Ladungen in einem Leiter</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Berechnung des Stromes in einem Medium</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Fluss eines Stromdichtefeldes</td>
<td>63</td>
</tr>
</tbody>
</table>
3.4 Stromfluss in einem Kondensator 64
3.5 Bahnkurven ohne und mit elektrischem Feld. 66
3.6 Berechnung des Widerstandes bei einem inhomogenen Leiter 69
3.7 Ladungstransport in einem van de Graaff-Generator 70
3.8 Aufladen und Entladen eines Kondensators über einen WIDERSTAND 72
3.9 Ladekurven am Kondensator 73
3.10 Entladekurven am Kondensator 74
3.11 Kennlinie eines 1000Ω-Widerstands. 75
3.12 In Schaltungen übliche Symbole. 75
3.13 Messung der Kennlinie eines Widerstandes. 76
3.14 Bestimmung einer Diodenkennlinie 76
3.15 Typische Diodenkennlinie. 76
3.16 Spannungsteiler. ... 77
3.17 Arbeitspunkt zweier Widerstände 78
3.18 Serieschaltung einer Diode D mit einem WIDERSTAND R 78
3.19 Arbeitspunkt einer Diode. 79
3.20 Kennlinien eines Transistors. 79
3.21 Bestimmung der Ausgangskennlinie eines Transistors 80
3.22 Arbeitskennlinie eines Transistors. 80
3.23 Verstärkung eines Transistors in der Emitterschaltung 81
3.24 Verstärkerschaltung mit BC107. 81
3.25 Strom in zwei parallelen Leitern 83
3.26 Metallischer Gastank mit Ausströmöffnung. 84
3.27 Berechnung der magnetischen Kraft. 85
3.28 Magnetische Induktion relativ zur Geschwindigkeit der Ladung 90
3.29 Berechnung der Kraft auf ein Leiterelement. 93
3.30 Kräfte auf eine Leiterschlaufe im homogenen B-Feld 94
3.31 Drehmoment auf eine Leiterschleife im homogenen Magnetfeld 95
3.32 Drehmoment auf eine Leiterschleife im homogenen Magnetfeld 96
3.33 Tangentiales Magnetfeld eines Linienstromes. 99
3.34 Magnetfeld einer homogenen Stromverteilung 100
3.35 Integrationsfläche zur Analyse der Quellenfreiheit des Magnetfeldes 102
3.36 Integration über die Mantelfläche. 103
3.37 Darstellung von B in einer (x = const)-Ebene. 108
3.38 Vektorpotential einer unendlichen Stromdichte. 109
3.39 HALL-EFFEKT ... 110
3.40 Bewegte Magnetfelder und elektrische Felder. 111
3.41 Lorentztransformation von E und B. 113

4.1 Induktion im inhomogenen Magnetfeld. 119
4.2 Vergleich eines Stabmagneten mit einer Spule. 121
4.3 Induzierte SPANNUNG ... 121
4.4 Vorzeichen des Magnetfeldes und der induzierten SPANNUNG. 122
4.5 SELBSTINDUKTION .. 122
4.6 WIRBELSTRÖME in Metallen 126
4.7 Bewegung eines Leiters aus einem Magnetfeld. 127
4.8 Magnetische Induktion einer langen Spule 128
4.9 Zwei gekoppelte Stromkreise 131
4.10 Symbolische Darstellung eines TRANSFORMATORS 131
4.11 Schematischer Aufbau eines TRANSFORMATORS 132
4.12 Kirchhoffsche Gesetze: links die MASCHENREGEL, rechts die KNOTEN-
REGEL. .. 134
4.13 Definition von Strömen und Spannungen bei Wechselspannungen 135
4.14 Spule mit Wechselspannung .. 136
4.15 Kondensator mit Wechselspannung ... 137
4.16 SCHWINGKREIS ... 138
4.17 SCHWINGKREIS mit WIDERSTAND ... 139
4.18 Bestandteile eines Elektromotors ... 140
4.19 Aufbau eines Elektromotors .. 140
4.20 Bauarten von Elektromotoren .. 143
4.21 Kennlinien von Nebenschluss- und Hauptschlussmotoren 145
4.22 Skizze eines Betatrons ... 146
4.23 Berechnung des Skin-Effektes ... 148
4.24 Berechnung der Energie im Magnetfeld ... 151
4.25 Dia-, Para- und Ferromagnete im inhomegenen Feld. 153
4.26 Kreisströme als Ursache des Dia- und des Paramagnetismus .. 153
4.27 Illustration zum Satz von Larmor ... 154
4.28 Einschalten eines Magnetfeldes für ein Elektron in einem Atom. . 155
4.29 Berechnung der Larmorfrequenz mit einem Kreisel 157
4.30 Berechnung des Diamagnetismus .. 158
4.31 Ein einzelner Kreisstrom ... 159
4.32 Atomare Kreisströme .. 160
4.33 Elektronenspin ... 162
4.34 Schematischer Verlauf der Magnetisierung 164
4.35 Messung der Hysterese eines Ferromagneten. 165
4.36 Hysteresekurve eines Ferromagneten ... 166
4.37 Ferromagnetische Domänen .. 167
4.38 Domänenstruktur im ändernden Magnetfeld. 167
4.39 Löschen des remanenten Magnetismus .. 168

6.1 3 mögliche DOPPELEITERSYSTEME ... 184
6.2 800 MHz-Breitbandverstärker für Fernsehsignale. Auf der Unterseite
die Wellenleiterstrukturen sichtbar (Mittlere Struktur in Abbildung 6.1)
.. 184
6.3 Magnetfelder und elektrische Felder bei einer Lecherleitung 185
6.4 Doppelleitung aus parallelen Platten ... 185
6.5 Ausbreitung von elektromagnetischen Wellen 186
6.6 Integrationspfad zur Anwendung des vierten Maxwellschen Gesetzes 187
6.7 Koaxialkabel, Wellen- und Abschlusswiderstand 188
6.8 Berechnung des Poynting-Vektors ... 189
6.9 Wellenausbreitung .. 191
6.10 Berechnung der Wellenausbreitung ... 192
6.11 Bild einer ebenen Welle .. 195
6.12 Kugelwelle .. 196
6.13 Polarisation durch Absorption in einem Drahtpolarisator 198
6.14 Polarisator und Analysator ... 198
Abbildungsverzeichnis

J.5 Elektrische Felder bei einem Koaxialkabel. 299
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Topic</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Elektrische Felder in der Natur</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Gefüllte Elektronenschale</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>Nicht gefüllte Elektronenschale</td>
<td>46</td>
</tr>
<tr>
<td>2.4</td>
<td>Einige relative Permittivitäten</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Verstärkungen der Schaltung 3.21</td>
<td>81</td>
</tr>
<tr>
<td>3.2</td>
<td>Dimensionierung der Schaltung nach Abbildung 3.24</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>Wirbelstromkräfte in N/m³ von Magneten mit 0.1 T und 1 T auf Platten mit der Geschwindigkeit v aus verschiedenen Materialien</td>
<td>128</td>
</tr>
<tr>
<td>4.2</td>
<td>Skintiefen verschiedener Materialien (nach [Wik16a, Wik16b])</td>
<td>151</td>
</tr>
<tr>
<td>C.1</td>
<td>Beispiele für Ableitungen</td>
<td>237</td>
</tr>
<tr>
<td>C.2</td>
<td>Differentiationsregeln</td>
<td>238</td>
</tr>
<tr>
<td>C.3</td>
<td>Ableitung einiger Funktionen</td>
<td>239</td>
</tr>
<tr>
<td>C.4</td>
<td>Reihenentwicklungen</td>
<td>241</td>
</tr>
<tr>
<td>D.1</td>
<td>Beispiele für Integrale</td>
<td>259</td>
</tr>
<tr>
<td>D.2</td>
<td>Unbestimmte Integrale</td>
<td>261</td>
</tr>
<tr>
<td>G.1</td>
<td>Formeln für schiefwinklige ebene Dreiecke</td>
<td>284</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ-Funktion</td>
<td>263–265</td>
</tr>
<tr>
<td>Übersetzungsfaktor</td>
<td>133</td>
</tr>
<tr>
<td>Ableitung</td>
<td>237–238</td>
</tr>
<tr>
<td>Bezugsystem</td>
<td>255–256</td>
</tr>
<tr>
<td>rotierend</td>
<td>285–288</td>
</tr>
<tr>
<td>drei Dimensionen</td>
<td>250–254</td>
</tr>
<tr>
<td>mitgeführt</td>
<td>255–256</td>
</tr>
<tr>
<td>Ableitung von Vektoren</td>
<td>248–254</td>
</tr>
<tr>
<td>Ableitung:Näherungslösungen</td>
<td>241–244</td>
</tr>
<tr>
<td>Ampèresches Durchflutungsgesetz</td>
<td>97–101</td>
</tr>
<tr>
<td>Ampèresches Gesetz</td>
<td>104</td>
</tr>
<tr>
<td>Amplitude</td>
<td>195–197, 199, 216, 217</td>
</tr>
<tr>
<td>Analysator</td>
<td>198, 199</td>
</tr>
<tr>
<td>Atom</td>
<td>45</td>
</tr>
<tr>
<td>atomare Polarisierbarkeit</td>
<td>46</td>
</tr>
<tr>
<td>B-Feld</td>
<td>89–109</td>
</tr>
<tr>
<td>Barlowsches Rad</td>
<td>97</td>
</tr>
<tr>
<td>Basis</td>
<td>75</td>
</tr>
<tr>
<td>Basis-Emitter-Kennlinie</td>
<td>79</td>
</tr>
<tr>
<td>Bauelemente</td>
<td>74–83</td>
</tr>
<tr>
<td>Betatron</td>
<td>146–147</td>
</tr>
<tr>
<td>Beweglichkeit</td>
<td>67</td>
</tr>
<tr>
<td>Bezugsystem</td>
<td>84</td>
</tr>
<tr>
<td>Bildladung</td>
<td>28</td>
</tr>
<tr>
<td>Biot-Savart</td>
<td>92–97, 107</td>
</tr>
<tr>
<td>Gesetz</td>
<td>93</td>
</tr>
<tr>
<td>Kraft</td>
<td>154</td>
</tr>
<tr>
<td>Biot-Savart-Kraft</td>
<td>154</td>
</tr>
<tr>
<td>Bohrsches Magneton</td>
<td>162</td>
</tr>
<tr>
<td>Boltzmannstatistik</td>
<td>163</td>
</tr>
<tr>
<td>Brechungsindex</td>
<td>196</td>
</tr>
<tr>
<td>Brechzahl</td>
<td>196</td>
</tr>
<tr>
<td>Brewster-Winkel</td>
<td>213</td>
</tr>
<tr>
<td>Cavendish</td>
<td>13</td>
</tr>
<tr>
<td>Clausius</td>
<td>50–52</td>
</tr>
<tr>
<td>Coulomb</td>
<td>14, 56</td>
</tr>
<tr>
<td>Coulombbeichung</td>
<td>105</td>
</tr>
<tr>
<td>Coulombsches Gesetz</td>
<td>12–14</td>
</tr>
<tr>
<td>Curie-Gesetz</td>
<td>164</td>
</tr>
<tr>
<td>Curie-Konstante</td>
<td>164</td>
</tr>
<tr>
<td>D</td>
<td>19</td>
</tr>
<tr>
<td>dielektrische Verschiebung</td>
<td>19</td>
</tr>
<tr>
<td>Diamagnetismus</td>
<td>153, 158–160</td>
</tr>
<tr>
<td>Dichtroismus</td>
<td>198</td>
</tr>
<tr>
<td>Dielektrika</td>
<td>47–53</td>
</tr>
<tr>
<td>dielektrische Suszeptibilität</td>
<td>58</td>
</tr>
<tr>
<td>Dielektrische Verschiebung</td>
<td>19</td>
</tr>
<tr>
<td>dielektrische Verschiebung</td>
<td>56</td>
</tr>
<tr>
<td>Stetigkeit</td>
<td>49, 58</td>
</tr>
<tr>
<td>dielektrizitätskonstanten</td>
<td>205</td>
</tr>
<tr>
<td>Differentiation</td>
<td>239–240</td>
</tr>
<tr>
<td>einfache Funktionen</td>
<td>238</td>
</tr>
<tr>
<td>Regeln</td>
<td>238</td>
</tr>
<tr>
<td>Differentiationsregeln</td>
<td>238</td>
</tr>
<tr>
<td>Dipol</td>
<td>21</td>
</tr>
<tr>
<td>Dipolmoment</td>
<td>21</td>
</tr>
<tr>
<td>induziert</td>
<td>45, 58</td>
</tr>
<tr>
<td>Dirac</td>
<td>263–265</td>
</tr>
<tr>
<td>δ-Funktion</td>
<td>263–265</td>
</tr>
<tr>
<td>Divergenz</td>
<td>20, 251–253</td>
</tr>
<tr>
<td>Domäne</td>
<td>167</td>
</tr>
<tr>
<td>ferromagnetisch</td>
<td>167</td>
</tr>
<tr>
<td>Doppelleitersystem</td>
<td>183–187</td>
</tr>
<tr>
<td>Drehmatrizen</td>
<td>289–290</td>
</tr>
<tr>
<td>Drehmoment</td>
<td>95</td>
</tr>
<tr>
<td>Drehspulinstrument</td>
<td>96</td>
</tr>
<tr>
<td>Drehung</td>
<td>289–292</td>
</tr>
<tr>
<td>Matrix</td>
<td>290–291</td>
</tr>
<tr>
<td>Tensor</td>
<td>290–291</td>
</tr>
<tr>
<td>Vektor</td>
<td>290–291</td>
</tr>
<tr>
<td>Dreibein</td>
<td>183</td>
</tr>
<tr>
<td>rechtshändig</td>
<td>183</td>
</tr>
</tbody>
</table>
Dreieck, 283, 284
schiefwinklig, 283–284
Driftgeschwindigkeit, 59, 66
Durchlassrichtung, 77

Eichung, 105
Einfalls Ebene, 201, 205
Elektrische Eigenschaften
materie, 45–55
elektrische Felder von Leitern, 21–28
Elektrische Feldlinien, 56
Elektrische Ladung, 12–14
Elektrische Ströme, 59–118
elektrischer Fluss, 56
elektrischer Strom, 60
Elektrisches Feld
Fluss, 19
elektrisches Feld, 14–18, 56, 89
Energie, 42–45
Energiedichte, 42, 58
Stetigkeit, 49, 58
elektrisches Potential, 30, 57
Elektrodynamik
Kraftgesetz, 92
elektromagnetische Wellen, 179–224
Elektromotor, 140–145
gemittelte Betrachtung, 142
gemittelte betrachtung, 143
elektromotorische Kraft, 70–71
Elektronen, 90, 161
Hülle, 45
Elektrostatik, 11–58, 105
elektrostatisches Potential, 28–36, 57
kontinuierliche Ladungsverteilung, 57
Emitter, 75
EMK, 70–71, 123, 124, 134
Energie
elektrisches Feld, 42–45
Magnetfeld, 151–152
potentiell, 57
Energiedichte des elektrischen Feldes, 42, 58
Energiefluss, 189–190
ε_0 Permittivität des Vakuums, 13, 55
Eulersche Winkel, 291–292

Fakultät, 243
Faraday

Induktionsgesetz
differentiell, 123–126
integral, 123–126
Michael, 16
Faradaysches Induktionsgesetz, 119–151
Feld
elektrisch, 14–18, 56
magnetisch, 89
Feldlinien, 16
elektrisch, 56
Feldstärke
magnetisch, 89–92
Ferromagnet, 166
Ferromagnetismus, 153, 164–168
Flächenladungsdichte, 43–45
Fluss, 62
elektrisch, 56
magnetisch, 120–123
Fluss des elektrischen Feldes, 19
Fluss des Vektorfeldes, 19
Formel von Laplace, 107
Frequenz
Skineffekt, 151
Fresnelsche Formeln
p-Polarisation, 210, 211
Fresnelschen Formeln, 200
Funkeninduktor, 130
Galilei-Transformation, 180
Gauss
Gesetz, 49
Gauss, 18–21, 56
Gausssesches Gesetz, 18–21, 56
Gegeninduktivitäten, 131
Gesetz
Clausius und Mosotti, 50–52
Clausius-Mosotti, 51
Coulomb, 12–14, 56
Gauss, 18–21, 49, 56
Kirchhoff, 134
Ohm, 65–70
Gesetz von Biot-Savart, 92–97, 107
Gleichung
Poisson, 57
Gleichungen
Maxwell, 173–178
Gradient, 250–251
Graphit, 65
Index

Green, G., 256

H-Feld, 89
Hall-Effekt, 110–111
Hallspannung, 110, 111
Hauptschlussmotor, 143
Helmholtzspulen, 90
Hohlleiter, 188
Hysterese, 167

i Stromdichte, 63
Impedanzen, 134–139
Induktion, 119
magnetisch, 89–92
Induktionsgesetz, 148
Faraday, 119–151
differentiell, 123–126
integral, 123–126
universell, 125
Induktionskonstante, 90
induktiver Widerstand, 137, 235
Induktivität
Selbst-, 130
induzierte Spannung, 126, 132, 136
Inertialsystem, 85
Influenz, 28, 40
Influenzladung, 28
Inhomogenes Magnetfeld, 153–154
Integrale
bestimmt, 261–262
Rechenverfahren, 260
unbestimmt, 261
variable obere Grenze, 261–262
Integration, 259–260
Intensität, 196–199, 201, 207, 216, 217, 220
Joulsche Wärme, 70–71
Kapazität, 37–41, 57
kapazitiver Widerstand, 235
Kartesische Koordinaten, 267–269
Kern, 45
Kernladungszahl, 45
Kirchhoffsche Gesetze, 134
Klebestreifen, 25
Knotenregel, 134
Koaxialkabel, 188
Kollektor, 75
Kollektor-Kennlinienfeld, 80
Kommutator, 140
Kondensator, 74
Reihenschaltung, 41
Kondensatoren, 40
Parallelschaltung, 40
Kontinuitätsgleichung, 60–64
Koordinaten
kartesisch, 267–269
sphärisch, 267–269
zylindrisch, 267–269
Koordinatensystem, 291
Kraft, 13
Biot–Savart, 93
Kraftgesetz der Elektrodynamik, 92
Lösung, allgemein
Wellengleichung, 181–183
elektrisch, 12–14
magnetisch, 104
Proton, 85
Ladungsdichte, 24
Ladungserhaltung, 63, 85
Ladungsinvarianz, 85
relativistisch, 85
Ladungsmenge, 61
Ladungsträger, 59, 61, 62, 67
Ladungstransport, 59
Ladungsverteilung
kontinuierlich, 56
Landé-Faktor, 162
Langévin-Funktion, 164
Laplace
Formel, 107
Larmor
Satz, 154–157
Larmorfrequenz, 157
Larmorwinkelgeschwindigkeit, 156
Lecher-Leitung, 183
Lecherleitungen, 188
Leiter, 56
elektrische Felder, 21–28
Leiterschleife
bewegt, 119–120
Leitfähigkeit, 65
Skineffekt, 151
Leitwert, 65
Lenzsche Regel, 121
Lichtenberg, G.C. 1742–1799, 12
Lichtstrahlen, 195
Linienintegral, 262–263
Lorentz-Beziehung, 51, 58
Lorentz-Kraft, 90
Lorentz-Transformation, 89, 180
\(\mathbf{B} \), 111–115
\(\mathbf{E} \), 111–115
EMK, 123
Lorentzezeichnung, 105
Lorentzkraft, 83–84, 111, 121, 125
Magnetfeld, 83–84
 Eigenschaften, 89–109
 Energie, 151–152
 inhomogen, 153–154
 Quellenfreiheit, 101–104
 zeitlich veränderlich, 119–168
Magnetische Eigenschaften der Materie, 153–168
magnetische Feldstärke, 89–92
magnetische Flussdichte, 91
magnetische Induktion, 89–92
Magnetische Kraft
 Berechnung, 84–89
magnetischer Fluss, 120–123
magnetisches Feld, 89, 92
Magnetisches Moment, 96
 Elektronen, 161–162
 Magnetisierung, 160–161
Maschenregel, 134
Materie
 elektrische Eigenschaften, 45–55
 magnetische Eigenschaften, 153–168
 Magnetisierung, 160–161
Mathematik, 237–247
Maxwell
 Gleichungen, 173–178
Maxwell, James Clerk, 173
Maxwellsche Gleichungen, 173–178
Maxwellsche Verschiebungsstromdichte, 173
Maxwellspannung, 43, 58
mechanische Spannung, 42
Millikan, 14
Moment
 magnetisch, 96
 Elektronen, 161–162
Mosotti, 50–52
Motor, 96
\(\nabla \) Nabla-Operator, 256, 257
Nabla-Operator, 256, 257
Nebenschlussmotor, 142
Oberfläche, 205
Oberflächenladungsdichte, 43
Oberflächenormalen, 205
Ohmscher Leiter, 65
ohmscher Widerstand, 133
Ohmsches Gesetz, 65–70
Optik, 180
optisch aktive Substanz, 199
Orientierung
 \(k, E \) und \(B \), 182
Orientierungspolarisation, 48
\(p \) Dipolmoment, 21
p-Polarisation, 200, 216, 217, 220
p-polarisiert, 201
Parallelschaltung, 40
 Kondensatoren, 40, 57
Paramagnetismus, 153, 162–164
Permeabilität
 Skineffekt, 151
 Vakuum, 89
Permittivität, 50
 Vakuum, 13, 55
\(\Phi \) Fluss, 19
\(\varphi \) Potential, 30
Pointingvektor, 205
Poisson-Gleichung, 36–37, 57
Poissongleichung, 36, 37
Polarisation, 50
 \(p \), 216, 217, 220
 \(s \), 205–208, 216, 217, 220
Polarisationsfilter, 200
Polarisator, 198, 199
Polarisierbarkeit, 50
atomar, 46
Potential
 elektrostatisch, 28–36, 57
kontinuierlich, 57
Stetigkeit, 50, 58
potentielle Energie, 57
Poynting-Vektor, 189–190
Produkte mit Vektoren, 247
Protonen, 45
Punktierung, 13
Quantenelektrodynamik, 162
Quantenfeldtheorie, 106
Quantenmechanik, 105
Quellen, 20
Quellenfreiheit des Magnetfeldes, 101–104
RC-Stromkreise, 72–74
Rechts-Hand-Regel, 121, 122
Reflexion, 200, 207, 223
Regel
Lenz, 121
Reihen, 240–241
Reihenschaltung, 41
Kondensatoren, 41, 57
Relativitätstheorie, 84, 105, 106, 192
retardierte Zeit, 193
ρ_{el} elektrische Ladungsdichte, 15
Rotation, 253–254
Rotor, 140
s-Polarisation, 200, 205–208, 214, 217, 220
s-polarisiert, 201
Satz von Gauss, 256
Satz von Green, 256
Satz von Larmor, 154–157
Satz von Stokes, 256
Schaltungen, 74–83
Schiefwinkliges Dreieck, 283–284
Schwingkreis, 138, 139
elektrisch, 139
gedämpft, 139
Selbstinduktion, 122
Selbstinduktivität, 130, 131
Serienenschaltung, 41
SI-System, 89, 91
Signalfilterung, 139
Skinneffekt, 148–151
Frequenz, 151
Spannung, 30, 31, 39, 41, 42, 44, 47, 53, 54, 57, 60, 70, 72, 76–82,
110, 111, 121, 122, 132, 133, 135–138, 141, 165, 234
induziert, 126, 132, 136
mechanisch, 42
Spannungsquelle, 72
Sperrrichtung, 77
spezifischer Widerstand, 66, 126, 233
Sphärische Koordinaten, 267–269
Spiegelsymmetrie, 24
Spin, 161
Elektronen, 161–162
Spule, 121
unendlich lang, 128–129
Stator, 140
Stehende Wellen, 189
Stetigkeit, 49–50
dielektrische Verschiebung, 49, 58
elektrisches Feld, 49, 58
Potential, 50, 58
Stokes, G. G., 256
Strahlungsfeld, 193
elektrisch, 60
makroskopisch, 115
Stromdichte, 61, 63
Stromdichtefeld, 62
Stromkreise, 72–74
Stromverteilung
Magnetfeld, 104–109
Suszeptibilität
dielektrisch, 58
Symmetriebrecherungen, 24
Taylorreihe, 240–241
Tensor, 37, 65, 190, 230, 234, 235
Transformator, 130–133
Translationsinvarianz, 24
Umrechnung
kartesisch zu sphärisch, 268
ekartesisch zu zylindrisch, 268
sphärisch zu kartesisch, 268
sphärisch zu zylindrisch, 269
zyllndrisch zu kartesisch, 269
zyllindrisch zu sphärisch, 269

Vakuum, 179
Vakuumperrmittivität, 197
van de Graaff-Generator, 70
Vektoren, 244–247
 Ableitung, 248–254
 Vektorprodukt, 247
Vektorfeld, 13, 61, 105, 116, 178, 231, 252
 Stromdichte, 63
Vektoridentitäten, 247–256
Vektorpotential, 104–106, 108, 109, 118
Vektorprodukt, 247
Verschiebung
dielektrisch, 19
Verschiebungspolarisation, 49
Verschiebungsström, 119
Vierervektor, 88
Volumen, 247
Weber, 120
Wechelspannungsquelle, 139
Wechselstromkreise, 134–139
Wellen
 Doppelleiter, 183–187
elektromagnetisch, 179–224
 Raum, 191–194
 stehend, 189
Wellengleichung, 179–180
 allgemeine Lösung, 181–183
 Vakuum, 179–180
Wellenvektor, 195
Wellenwiderstand, 187–188
Wellenzahl, 195
Wideroe-Bedingung, 147
Widerstand, 65, 68–72, 74–76, 78–82, 120, 122, 135, 139, 149, 151, 184, 187, 188, 233, 235
 induktiv, 137, 235
 kapazitiv, 235
 ohmsch, 133
 spezifisch, 66, 126, 233
Winkel
 Euler, 291–292
Wirbelstrom, 126–128
zeitlich veränderliche Magnetfelder, 119–168
Zylinderkoordinaten, 267–269