

Vorlesungsskript

PHYS1100.0 Elektrizität und Magnetismus Bachelor Physik, Wirtschaftsphysik, Lehramt Physik

Othmar Marti

Institut für Experimentelle Physik, Universität Ulm veröffentlicht unter

Lizenzinformationen

7. Juli 2022

2

Inhaltsverzeichnis

1.	Einle	eitung	9
	1.1.	Lizenzinformationen	9
	1.2.	Dank	10
2	Elak	troctatik	11
۷.		Flattrische Ledung und Coulembaches Casatz	10
	2.1.	Des elektrische Feld	12
	2.2.	Zugermenhang gwigshen Ledwag und Feld, des Caugeshe Cosetz	10
	2.3.	2.3.1 Dipolo in olektrischen Foldern	$\frac{10}{21}$
	24	Elektrische Felder von Leitern	$\frac{21}{22}$
	2.4.	2.4.1 Influenz und Bildladung	$\frac{22}{20}$
	25	Elektrostatisches Potential	29
	2.0.2	Poisson Claichung	38
	2.0.27	Kapazität: oino goomotrischo Figonschaft	30
	2.1.	Enorgia des alaktrischen Foldes	
	2.0.	2.8.1 Diskussion Versuch Flächenladungsdichte	44
	29	Elektrische Eigenschaften der Materie	$40 \\ 47$
	2.0.	2.9.1 Dielektrika	50
		2.911 Woher rührt $\varepsilon > 1?$	51
		2.9.1.2 Stetigkeitsbedingungen an der Grenze zweier Di-	01
		elektrika	52
		2.9.1.3 Das Gesetz von Clausius und Mosotti	53
		2.9.1.4 Kondensator gefüllt mit Dielektrikum	55
		2.9.2 Elektrische Phänomene	56
		$2.9.2.$ Elektrisene i hanomene \therefore $2.9.2.$ Elektrisene i hanomene \therefore $2.9.2.$	58
	2.10.	Zusammenfassung: die Grundgleichungen der Elektrostatik	60
_			
3.	Elek	trische Ströme	65
	3.1.	Die Kontinuitätsgleichung und der Begriff des Stromes	66
	3.2.	Das Ohmsche Gesetz	71
	3.3.	Elektromotorische Kraft und Joulsche Wärme	77
	3.4.	RC-Stromkreise	79
	3.5.	Schaltungen und Bauelemente	82
		3.5.1. Grafische Methode zur Bestimmung von Arbeitspunkten	85
		3.5.2. Transistoren	88
	3.6.	Magnetfeld und Lorentzkraft	92
	3.7.	Die magnetische Kraft	93
		3.7.1. Ladungsinvarianz bewegter Bezugssysteme	94
		3.7.2. Relativistische Berechnung	95
	0.0	3.7.3. Magnetisches Feld	98
	3.8.	Eigenschaften des magnetischen Feldes	99
		3.8.1. Eigenschaften des B-Feldes	99

		3.8.2.	Das Biot-Savart-Gesetz	102
			3.8.2.1. Kraft auf Leiterschlaufe im homogenen Magnetfeld	103
		3.8.3.	Das Ampèresche Durchflutungsgesetz	107
			3.8.3.1. Zylindrischer Leiter mit homogenem STROM	109
		3.8.4.	Quellenfreiheit	112
		3.8.5.	Das B-Feld einer beliebigen Stromverteilung	114
	3.9.	Hall-E	ffekt	121
	3.10.	. Die Lo	orentz-Transformation der Felder E und B	122
	3.11.	Lorent	ztransformation für allgemeine Felder und Geschwindigkeiten	127
	3.12.	. Zusam	menfassung: Ströme	128
4.	Elek	trodyn	amik	133
	4.1.	Das Fa	aradaysche Induktionsgesetz	133
		4.1.1.	Eine bewegte Leiterschleife in einem stationären B-Feld	133
		4.1.2.	Der magnetische Fluss	134
		4.1.3.	Induktionsgesetz von Faraday, Integral- und Differentialform	137
		4.1.4.	Wirbelströme	141
		4.1.5.	Unendlich lange Spule	143
		4.1.6.	Endlich lange Spule	145
		4.1.7.	Transformator	147
		4.1.8.	Kirchhoffsche Gesetze	152
		4.1.9.	Wechselstromkreise, Impedanzen	153
			4.1.9.1. Widerstand im Wechselstromkreis	153
			4.1.9.2. Widerstand im Wechselstromkreis, komplex	155
			4.1.9.3. Impedanz einer Spule	156
			4.1.9.4. Impedanz einer Spule: komplex	157
			4.1.9.5. Impedanz eines Kondensators	159
			4.1.9.6. Impedanz eines Kondensators: komplex	160
			4.1.9.7. Idealer elektrischer Schwingkreis	160
			4.1.9.8. Idealer elektrischer Schwingkreis: komplex	161
			4.1.9.9. Gedämpfter elektrischer Schwingkreis	162
			4.1.9.10. Gedämpfter elektrischer Schwingkreis: komplex	163
		4.1.10.	Elektromotoren	166
			4.1.10.1. Rotierende Leiterschlaufe als Generator	167
			4.1.10.2. Rotierende Leiterschlaufe als Nebenschlussmotor	167
			4.1.10.3. Rotierende Leiterschlaufe als Hauptschlussmotor	170
		4.1.11.	Betatron	173
		4.1.12.	Skineffekt	175
	4.2.	Energi	e des Magnetfeldes	178
	4.3.	Magne	etische Eigenschaften der Materie	179
		4.3.1.	Kugeln im inhomogenen Magnetfeld	180
		4.3.2.	Der Satz von Larmor	182
		4.3.3.	Diamagnetismus	186
		4.3.4.	Magnetisierung	188
		4.3.5.	Das magnetische Moment des Elektrons: Spin	189
		4.3.6.	Paramagnetismus	191
		4.3.7.	Ferromagnetismus	193
	4.4.	Zusam	menfassung: zeitlich veränderliche Magnetfelder	197

203

	5.2.	Auflösung des Widerspruchs zur Kontinuitätsgleichung, Maxwell-	
		gleichungen	. 203
	5.3.	Maxwellgleichungen	. 204
	5.4.	Maxwellgleichungen in isotropen zeitunabhängigen Medien	. 206
	5.5.	Anwendung der Maxwellgleichungen	. 207
6.	Elek	tromagnetische Wellen	209
	6.1.	Die Wellengleichung im Vakuum	. 209
	6.2.	Allgemeine Lösung der Wellengleichung	. 211
	6.3.	Elektromagnetische Wellen im Doppelleitersystem	. 213
		6.3.1. Wellenwiderstand	. 218
		6.3.2. Stehende Wellen	. 220
	6.4.	Poynting-Vektor und Energiefluss	. 221
		6.4.1. Energiefluss bei stehenden Wellen	. 222
	6.5.	Elektromagnetische Wellen im Raum	. 222
		6.5.1. Ebene Wellen	. 227
		6.5.2. Kugelwellen	. 228
	6.6.	Lichtgeschwindigkeit im Medium und Intensität	. 229
	6.7.	Polarisation	. 230
		6.7.1. Polarisation durch Absorption (Dichroismus)	. 231
	6.8.	Die Fresnelschen Formeln	. 232
		6.8.1. s-Polarisation	. 238
		6.8.2. p-Polarisation	. 241
		6.8.3. Grenzfall des senkrechten Einfalles	. 245
		6.8.4. Brewster-Winkel	. 248
		6.8.5. Beispielkurven für die Fresnelformeln	. 251
		6.8.6. Energiefluss senkrecht zur Grenzfläche	. 253
		6.8.7. Felder und Intensitäten bei senkrechtem Einfall	. 256
		6.8.8. Evaneszente Wellen	. 257
	6.9.	Zusammenfassung	. 260
Α.	Lite	raturhinweise	265
В.	Beg	riffe	267
C .	Mat	hematische Sätze	275
	C.1.	Ableitung	. 275
	C.2.	Differentiationsregeln	. 276
	C.3.	Differentiation einfacher Funktionen	. 277
	C.4.	Taylorreihe und Reihen	. 278
	C.5.	Einige Reihen	. 279
	C.6.	Ableitungen zur näherungsweisen Berechnung von Funktionswerten	280
	C.7.	Vektoren	. 283
		C.7.1. Gesetze	. 284
		C.7.1.1. Orthogonalität zweier Vektoren testen \ldots	. 284
		C.7.2. Eigenschaften von Kurven im Raum	. 285

5. Die Maxwellschen Gleichungen

	C.8.	Vektoridentitäten	286
		C.8.1. Produkte mit Vektoren	286
		C.8.2. Ableiten von Vektoren	287
		C.8.3. Vektorableitungen bei Skalarfeldern	288
		C.8.4. Vektorableitungen bei Vektorfeldern	288
		C.8.5. Graphische Darstellung der Ableitungen in drei Dimensionen	290
		C.8.5.1. Gradient in kartesischen Koordinaten	290
		C.8.5.2. Divergenz in kartesischen Koordinaten	291
		C.8.5.3. Rotation in kartesischen Koordinaten	292
		C.8.6. Totale Ableitung bei mitgeführten Koordinatensystemen	294
	C.9.	Satz von Gauss	295
	C.10	Satz von Green	296
	C.11	.Satz von Stokes	296
	0.11		_00
D.	Reck	nnen mit Integralen	297
	D.1.	Integration	297
	D.2.	Unbestimmte Integrale	299
		D.2.1. Bestimmte Integrale und Integrale mit variabler oberer Grenze	299
	D.3.	Berechnung von Linienintegralen	300
	D.4.	Die Diracsche Deltafunktion	301
Ε.	Umr	echnung zwischen Koordinatensystemen	305
	E.1.	Vom kartesischen ins sphärische System	306
	E.2.	Vom sphärischen ins kartesische System	306
	E.3.	Vom kartesischen ins zylindrische System	306
	E.4.	Vom zylindrischen ins kartesische System	307
	E.5.	Vom sphärischen ins zylindrische System	307
	E.6.	Vom zylindrischen ins sphärische System	308
F.	Geso	chwindigkeiten und Beschleunigungen in Kugelkoordinaten	309
	F.1.	Geschwindigkeiten	311
	F.2.	Beschleunigung	314
		F.2.1. Interpretation	319
~	Dava	alanan in alanan addiafatialilian Duriadan	201
G.	Dere	conungen in ebenen schiefwinkligen Dreiecken	321
н.	Bere	echnung der Ableitung in rotierenden Bezugssystemen	323
Ι.	Dreł	nungen	327
	I.1.	Drehmatrizen	327
	I.2.	Drehung von Vektoren und Matrizen (oder Tensoren)	328
	I.3.	Allgemeine Drehung mit Eulerwinkeln	329
	D	alanan alaktirahan Faldar	221
J.	Dere	connung elektrischer Felder	331
	J.1.	In der Nane eines Leiterstuckes	პ <u>პ</u> ⊥
	J.2.	Auf der Symmetrieachse einer Kreisscheibe	334
	J.3.	Innerhalb und ausserhalb einer geladenen Zylinderflache	336
	J.4.	In allen Bereichen zweier koaxialer zylinderförmiger Leiter	337

 K. Lorentztransformationen K.1. Lorentztransformationen f ür die magnetische Induktion K.2. Lorentztransformation f ür das magnetische Feld	339 339 340
Liste der Experimente	343
Abbildungsverzeichnis	349
Tabellenverzeichnis	351
Glossar	353
Abkürzungen	355
Referenzen	362
Stichwortverzeichnis	370

1. Einleitung

1.1. Lizenzinformationen

Diese Skript wird unter der Creative Commons Lizenz CC-BY-SA 4.0 veröffentlicht. Dies heisst,

- Sie dürfen das Werk ganz oder in Teilen in allen denkbaren Formaten weiter verwenden, vervielfältigen und weiterverbreiten
- das Werk oder Teile davon neu zusammenstellen, verändern und darauf weitere Werke aufbauen,

sofern Sie

- den Namen der Verfassers dieses Werkes sowie deren Institution, die Universität Ulm, nennen und angemessene Rechte- und Urheberrechtsangaben machen, einen Link zur Lizenz beifügen und angeben, ob Sie Änderungen vorgenommen haben. Dabei darf nicht der Eindruck entstehen, die Verfasser oder die Universität Ulm würden Sie oder Ihre Nutzung unterstützen.
- Wenn Sie Dieses Werk oder Teile davon neu zusammenstellen, verändern und darauf weitere Werke aufbauen, dürfen Sie ihre Beiträge nur unter der gleichen Lizenz wie dieses Werk wie dieses Original verbreiten.

Sie dürfen insbesondere keine weiteren Einschränkungen einsetzen und auch keine technischen Verfahren wie z.B. DRM verwenden, die anderen Nutzern etwas untersagt oder daran hindert, das abgeleitete Werk nach dieser Lizenz zu nutzen. Der Lizenzgeber kann diese Freiheiten nicht widerrufen solange Sie sich an die Lizenzbedingungen halten.

Eine detaillierte Erklärung finden Sie unter

 $\label{eq:http://www.uni-ulm.de/en/einrichtungen/e-learning/blog/article/was-sind-eigentlich-cc-lizenzen.html$

oder unter

http://creativecommons.org/licenses/by-sa/4.0/

oder unter

https://creativecommons.org/licenses/by-sa/4.0/deed.de

Die CC-Icons und -Buttons **BY SA** und **CBY-SA** wurden unter der Lizenz CC BY von http://creativecommons.org/about/downloads veröffent-licht.

1.2. Dank

Ich habe mich über alle Kommentare und Anregungen zu diesem Skript vor allem von Studierenden gefreut. Ich bin Herrn Nils Tobias Krämer sehr dankbar für das sorgfältige Durchlesen des Skripts.

2. Elektrostatik

Elektrostatik wird benötigt, um

- die Wirkung von Klebestreifen,
- die Ladungstrennung beim Ausgiessen,
- die Funktion von Elektronenröhren,
- die Funktion der Braunschen Röhre und
- die Funktion des Kondensators

beschreiben.

Versuch zur Vorlesung: Entfernen eines Klebestreifens von einem Elektrometer

Versuch 1: Versuch zur Vorlesung: Ladungstrennung (Versuchskarte ES-24, Video)

Versuch 2: Versuch zur Vorlesung:

Ladungstrennung (Versuchskarte ES-25, Video)

Die ELEKTROSTATIK befasst sich mit der Wechselwirkung elektrisch geladener Körper. Seit dem Altertum ist bekannt, dass Körper sich durch Reiben aufladen können. Wo haben Sie sich schon aufgeladen? Staub oder kleine Teilchen bleiben an aufgeladenen Körpern hängen. Sie werden auch gegen die Gravitationskraft angezogen.

Die Kraft zwischen LADUNGEN kann stärker als die Gravitationskraft sein.

Es gibt auch Situationen, wo sich durch Reibung geladene Teilchen abstossen.

Es gibt mindestens zwei Arten von LADUNGEN!

Versuch 3: Versuch zur Vorlesung:

Reibungselektrizität (Versuchskarte ES-15, Video)

Genaue Untersuchungen haben gezeigt, dass es **genau zwei Arten von Ladungen** gibt. LICHTENBERG benannte die LADUNGEN so, dass LADUNGEN auf geriebenen Glasstäben positiv genannt werden und LADUNGEN auf geriebenem Bernstein negativ.

- Zwei LADUNGEN ziehen sich an, wenn sie verschiedener Art sind (positiv und negativ oder negativ und positiv)
- Zwei LADUNGEN stossen sich ab, wenn sie gleichnamig sind (positiv und positiv oder negativ und negativ)

LADUNG ist eine **extensive Grösse**, das heisst, sie skaliert mit der Grösse des Systems.

Versuch 4: Versuch zur Vorlesung: Ladungen löffeln (Versuchskarte ES-13, Video)

Genaue Messungen zeigen, dass für Elektronen die elektrostatischen Kräfte etwa $4.1681 \cdot 10^{42}$ mal stärker als die Gravitationskräfte sind¹ ². Die Gravitationskräfte können also nur beobachtet werden, da die LADUNGEN sich im Mittel sehr genau kompensieren.

2.1. Elektrische Ladung und Coulombsches Gesetz

Literatur: (Siehe Tipler, Physik [TM04, pp. 617]) (Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 189])

¹Gravitation: $F_G(r) = G \frac{m_e^2}{r^2} = 6.670 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2 \frac{(9.1091 \cdot 10^{-31} \text{ kg})^2}{r^2} = 5.5345 \cdot 10^{-71} \text{ Nm}^2 r^{-2}.$

²Elektrostatische Kraft: $F_E(r) = \frac{1}{4\pi \varepsilon_0} \frac{q_e^2}{r^2} = \frac{1}{4\pi 8.8544 \cdot 10^{-12} \text{ C}^2/\text{Nm}^2} \frac{\left(1.6021 \cdot 10^{-19} \text{ C}\right)^2}{r^2}$ = 2.3068 · 10⁻²⁸ Nm²r⁻².

Abb. 2.1.: Auslenkung zweier mit identischer LADUNG q geladener Kugeln.

Wenn zwei Kugeln mit der gleichen LADUNG q geladen sind, werden sie nach aussen abgestossen. Wird die LADUNG verändert, ändert sich die KRAFT proportional.

$$\frac{q_1}{q_2} = \frac{F_1}{F_2} \tag{2.1.1}$$

Dabei wird angenommen, dass die LADUNGEN PUNKTLADUNGEN sind.

LADUNGEN werden in **Coulomb**, abgekürzt, **C**, angegeben. Eine Messung der Kräfte mit einer Drehwaage (nach CAVENDISH) ergibt das fol-

$$\boldsymbol{F}(\boldsymbol{r}) = K \frac{q_1 \cdot q_2}{r_{12}^2} \frac{\boldsymbol{r}_{12}}{r_{12}}$$
(2.1.2)

wobei die Konstante vom Masssystem abhängt und im SI-System

$$K = \frac{1}{4\pi\varepsilon_0} \tag{2.1.3}$$

ist. Die Konstante ε_0 heisst PERMITTIVITÄT DES VAKUUMS. Ihre Grösse ist

$$\varepsilon_0 = 8.8544 \cdot 10^{-12} \text{ C}^2/\text{N/m}^2$$
 (2.1.4)

Indem man ε_0 festlegt, legt man die Grösse der Ladungseinheit fest. Im SI-System wurde der Zahlenwert $K = 10^{-7}c^2 = 8.98755 \cdot 10^9 \text{ m}^2/\text{s}^2$ gesetzt, damit die elektrischen Grössen einen handhabbaren Zahlenwert haben. Mit dieser Definition folgt der Wert von ε_0 .

Dieses Gesetz kann durch folgende Überlegung erraten werden:

- F(r) ist ein VEKTORFELD.
- Der mathematische Fluss dieses Vektorfeldes durch ein Flächenelement $d\mathbf{A}$ ist $d\Phi(\mathbf{r}) = d\mathbf{A} \cdot \mathbf{F}(\mathbf{r})$, wobei die Richtung von \mathbf{A} die Richtung der Normalen zu diesem Flächenelement ist.
- Der gesamte Fluss des Kraftfeldes durch die Kugeloberfläche $A(r) = 4\pi r^2$ ist durch $\Phi(r) = \iint_A d\Phi(r) = \iint_A F(r) dA$ gegeben.

gende Gesetz

- Da das Problem kugelsymmetrisch ist, kann F(r) nicht von der Richtung abhängen und muss radial sein. Damit kann die Kraft vor das Integral genommen werden.
- $\Phi(r) = F(r) \iint_A dA = 4\pi r^2 F(r)$
- Wenn der Fluss des Vektorfeldes F unabhängig von r sein soll, so muss die Kraft umgekehrt proportional zu r^2 sein.

Versuch 5: Versuch zur Vorlesung:

Coulomb-Gesetz (Versuchskarte ES-31, Video)

Das COULOMBSCHE GESETZ lautet

$$\boldsymbol{F}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q_1 \cdot q_2}{r_{12}^2} \frac{\boldsymbol{r}_{12}}{r_{12}}$$
(2.1.5)

Das Coulombsche Gesetz ist mathematisch äquivalent zum Gravitationsgesetz. Alle Aussagen über die Gravitation gelten auch für LADUNGEN, mit der Abweichung, dass LADUNGEN zwei Vorzeichen haben können.

Elektrostatische Kräfte sind additiv.

Ladungen sind nicht beliebig teilbar. Versuche von MILLIKAN ergaben, dass die kleinste beobachtbare Ladung den Betrag $1.6022 \cdot 10^{-19}$ C hat. Diese Ladung ist auf

Elektronen $q = -e = -1.6022 \cdot 10^{-19} \text{ C}$ (Masse: $m_e = 9.1096 \cdot 10^{-31} \text{ kg}$) und

Protonen $q = e = 1.6022 \cdot 10^{-19} \text{ C} \text{ (Masse: } m_p = 1.6726 \cdot 10^{-27} \text{ kg})$

zu finden. e heisst die Elementarladung. In Kernbauteilen, den Quarks, gibt es Ladungen vom Betrage e/3. Diese Ladungen sind aber nicht frei zu beobachten. Ladungen werden im SI-System in COULOMB gemessen, [q] = C.

LADUNGEN können nur paarweise entstehen (jeweils die gleiche negative und positive LADUNG). Die Gesamtladung in einem abgeschlossenen System ist konstant.

2.2. Das elektrische Feld

Wir wollen eine Formulierung finden, die die Stärke der elektrostatischen Kraft als eine Feldgrösse mal die LADUNG der Testladung beschreibt, also $\mathbf{F} = q\mathbf{E}$. Damit haben wir eine Beschreibung der Elektrostatik, die unabhängig von der Testladung ist. Genauer formuliert hat man

$$\boldsymbol{E}(\boldsymbol{r}) = \lim_{q \to 0} \frac{\boldsymbol{F}(\boldsymbol{r})}{q}$$
(2.2.1)

Wir definieren:

Das elektrische Feld der LADUNG Q ist durch $\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \frac{\boldsymbol{r}}{r}$ (2.2.2)

gegeben.

E ist das elektrische Feld und somit auch der Feldvektor des elektrischen Feldes³. Die Einheit von E ist $[E] = N C^{-1} = V m^{-1}.^4$

	$E/(N C^{-1} = V m^{-1})$
Stromleitung in Wohnhäusern	10^{-2}
Radiowellen	10^{-1}
Atmosphäre	10^{2}
Sonnenlicht	10^{3}
Unter einer Gewitterwolke	10^{4}
In einer Röntgenröhre	10^{6}
Laser	bis 10^{12}
Am Ort des Elektrons im Wasserstoffatom	$6 \cdot 10^{11}$
Auf der Oberfläche eines Urankerns	$2 \cdot 10^{21}$

Tab. 2.1.: Elektrisches Feld in der Natur

Eine Verteilung von N + 1 Ladungen $q_i(r_i)$ hat das elektrische Feld

$$\boldsymbol{E}(\boldsymbol{r}) = \sum_{i=0}^{N} \boldsymbol{E}(\boldsymbol{r} - \boldsymbol{r}_{i}) = \frac{1}{4\pi\varepsilon_{0}} \sum_{i=0}^{N} \frac{q_{i}}{|\boldsymbol{r} - \boldsymbol{r}_{i}|^{2}} \frac{\boldsymbol{r} - \boldsymbol{r}_{i}}{|\boldsymbol{r} - \boldsymbol{r}_{i}|}$$
(2.2.3)

Die obige Gleichung gilt für alle $\mathbf{r}_i \neq \mathbf{r}, \ i = 0 \dots N$. Für kontinuierliche Ladungsverteilungen führt man eine Ladungsdichte

 $^{^{3}}g$ ist der Feldvektor des Gravitationsfeldes

⁴Es ist V A = W = N m s⁻¹ sowie C s⁻¹ = A. Also ist C V = A s V = J = N m und damit C = N m V⁻¹.

$$\rho_{el}(\boldsymbol{r}) = \lim_{\Delta V \to 0} \frac{\Delta Q(\boldsymbol{r})}{\Delta V}$$
(2.2.4)

ein. Das resultierende elektrische Feld ist dann

$$\boldsymbol{E}(\boldsymbol{r}_{0}) = \frac{1}{4\pi\varepsilon_{0}} \iiint \frac{\rho_{el}(\boldsymbol{r})}{\left|\boldsymbol{r}_{0}-\boldsymbol{r}\right|^{2}} \frac{\boldsymbol{r}_{0}-\boldsymbol{r}}{\left|\boldsymbol{r}_{0}-\boldsymbol{r}\right|} dV \qquad (2.2.5)$$

Versuch 6: Versuch zur Vorlesung: Elektrische Feldlinien (Versuchskarte ES-4, Video)

FELDLINIEN dienen zur Visualisierung des elektrischen Feldes. Formal konstruiert man eine Feldlinie, indem man von einem Ausgangspunkt aus den Vektor des elektrischen Feldes abträgt und dann vom neuen Startpunkt aus wieder gleich verfährt. Zeichnet man quer zu den Feldlinien eine Linie und zählt, wie viele Feldlinien man pro Längeneinheit hat, ist dies ein Mass für die Feldstärke. Das Konzept der Feldlinien stammen von MICHAEL FARADAY.

Feldlinien laufen von der positiven LADUNG zu der negativen LA-DUNG.

Abb. 2.2.: Feldlinien. Links von einer positiven LADUNG, rechts von einer negativen LADUNG. Die Feldlinien zeigen von der positiven LADUNG zu der negativen LADUNG.

Link zur Vorlesung: (Applet: elektrostatische Felder)

Abb. 2.3.: Feldlinien bei zwei gleichen positiven LADUNGEN.

- 1. Elektrische Feldlinien beginnen bei positiven LADUNGEN und enden bei negativen LADUNGEN.
- 2. Um eine einzelne Punktladung herum sind alle Feldlinien kugelsymmetrisch verteilt
- 3. Die Anzahl der Feldlinien, die von positiven LADUNGEN ausgehen, oder auf negativen LADUNGEN enden, ist proportional zu der Grösse der LADUNG.
- 4. An jedem Punkt des Raumes ist die Feldliniendichte proportional zur Feldstärke in diesem Punkt.
- 5. In grosser Entfernung wirkt ein System von LADUNGEN wie eine einzige Punktladung, deren Grösse der Gesamtladung des Systems entspricht.
- 6. Feldlinien schneiden sich nicht.

Abb. 2.4.: Feldlinien bei einer positiven LADUNG und einer vom Betrage her gleichgrossen negativen LADUNG.

Wenn das elektrische Feld die einzige Ursache der Beschleunigung ist, dann gilt

$$\boldsymbol{a} = \frac{q}{m} \boldsymbol{E} \tag{2.2.6}$$

LADUNGEN, die aus der Ruhe durch ein elektrisches Feld beschleunigt werden, folgen den Feldlinien. Elektrische Felder, die eine LADUNG q mit der Masse m ablenken, erlauben q/m zu bestimmen.

2.3. Zusammenhang zwischen Ladung und Feld: das Gausssche Gesetz

Nach der Gleichung (2.2.4) kann die gesamte LADUNG in einem Raumgebiet begrenzt durch die Fläche A durch

$$Q = \iiint_{V(A)} \rho_{el}(\mathbf{r}) dV \tag{2.3.1}$$

ausgedrückt werden.

Abb. 2.5.: Integration über eine Kugelfläche mit einer Punktladung im Zentrum

Wir betrachten eine kugelsymmetrische Situation um eine Punktladung Q. Wir definieren den Normalenvektor am Ort \mathbf{r} als $\mathbf{n} = \mathbf{r}/|\mathbf{r}| = \mathbf{r}/r$. Das Oberflächenelement da ist $da = r^2 \sin \Theta d\Theta d\varphi$.

Das elektrische Feld an der Kugeloberfläche ist

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{Q}{4\pi\varepsilon_0} \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3}$$
(2.3.2)

Wir erhalten damit das GAUSSSCHE GESETZ

$$\int_{\text{Kugeloberfläche}} \boldsymbol{E} \cdot \boldsymbol{n} da = \int_{\text{Kugeloberfläche}} \left(\frac{Q}{4\pi\varepsilon_0 |\boldsymbol{r}|^2} \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|} \right) \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|} r^2 \sin \Theta d\Theta d\varphi$$
$$= \int_{\text{Kugeloberfläche}} \frac{Q r^2}{4\pi\varepsilon_0 |\boldsymbol{r}|^2} \cdot \left(\frac{\boldsymbol{r}}{|\boldsymbol{r}|} \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|} \right) \sin \Theta d\Theta d\varphi$$
$$= \frac{Q}{4\pi\varepsilon_0} \int_{\text{Kugeloberfläche}} \sin \Theta d\Theta d\varphi$$
$$= \frac{Q}{\varepsilon_0} \qquad (2.3.3)$$

Die Grösse

$$\Phi_{\boldsymbol{E}} = \int_{A} \boldsymbol{E} \cdot d\boldsymbol{a} \tag{2.3.4}$$

ist der FLUSS DES ELEKTRISCHEN FELDES E durch die Fläche A. A kann offen oder geschlossen sein. Das Integral aus Gleichung (2.3.3) kann vereinfacht werden, indem wir die DIELEKTRISCHE VERSCHIEBUNG oder die ELEKTRISCHE FLUSS-DICHTE

$$\boldsymbol{D}(\boldsymbol{r}) = \varepsilon_0 \boldsymbol{E}(\boldsymbol{r}) \tag{2.3.5}$$

einführen. Die Gleichung (2.3.5) gilt im Vakuum. Die allgemeingültige Formulierung finden Sie in der Gleichung (2.9.15). Die Einheit der dielektrischen Verschiebung oder der elektrischen Flussdichte ist $[\mathbf{D}] = C/m^2 = As/m^2$. Weiter ist

$$\int_{\text{Kugeloberfläche}} \boldsymbol{D} \cdot d\boldsymbol{a} = \int_{\text{Kugeloberfläche}} \boldsymbol{D} \cdot \boldsymbol{n} da = Q \quad (2.3.6)$$

Allgemein gilt die obige Gleichung für beliebige geschlossene Flächen S, die das Volumen V(S) einschliesst.

Abb. 2.6.: Approximation von beliebigen Oberflächen durch Kugelsegmente. Approximation einer kontinuierlichen Ladungsverteilung durch Punktladungen.

$$\iint_{A} \boldsymbol{D}(\boldsymbol{r}) \cdot d\boldsymbol{a}(\boldsymbol{r}) = \iint_{A} \boldsymbol{D}(\boldsymbol{r}) \cdot \boldsymbol{n}(\boldsymbol{r}) d\boldsymbol{a}(\boldsymbol{r})$$
(2.3.7)
$$= Q_{\text{in A}} = \iiint_{V(A)} \rho_{el}(\boldsymbol{r}) dV$$

Mit dem Gaussschen Satz (Gleichung (C.9.1)) kann die Gleichung umgeschrieben werden in

$$\iint_{A} \boldsymbol{D}(\boldsymbol{r}) \cdot d\boldsymbol{a}(\boldsymbol{r}) = \iiint_{V(A)} \text{ div } \boldsymbol{D}(\boldsymbol{r}) dV = \iiint_{V(A)} \rho_{el}(\boldsymbol{r}) dV \qquad (2.3.8)$$

Diese Gleichung muss für alle Oberflächen S gelten. Deshalb müssen die Integranden gleich sein

$$\operatorname{div} \boldsymbol{D}(\boldsymbol{r}) = \rho_{el}(\boldsymbol{r}) \tag{2.3.9}$$

Dies ist die Differentialform der Gleichung für die elektrische Verschiebung. Die physikalische Interpretation ist: die LADUNGEN sind die QUELLEN (DIVERGENZ) der elektrischen Verschiebung und damit des elektrischen Feldes.

Im ladungsfreien Raum lautet Gleichung (2.3.9): div $D(\mathbf{r}) = 0$. Diese Gleichung ist mathematisch äquivalent zur Kontinuitätsgleichung strömender inkompressibler Flüssigkeiten. Für deren Geschwindigkeitsfeld $v(\mathbf{r})$ gilt nämlich div $v(\mathbf{r}) = 0$.

Die Grösse

$$\Phi_e = \Phi_D = \iint_A \boldsymbol{D}(\boldsymbol{r}) \cdot d\boldsymbol{a}(\boldsymbol{r})$$
(2.3.10)

über eine beliebige, nicht notwendigerweise geschlossene Fläche A heisst der ELEK-TRISCHE FLUSS. Dies ist zu unterscheiden vom Fluss des elektrischen Feldes Φ_E aus Gleichung (2.3.4).

Bei einer geschlossenen Fläche A ist nach den Gleichungen (2.3.7) und (2.3.10) der elektrische Fluss

$$\Phi_{e}|_{\text{durch geschlossene Fläche }A} = \Phi_{D}|_{\text{durch geschlossene Fläche }A} = Q|_{\text{innerhalb der geschlossenen Fläche }A}.$$
 (2.3.11)

2.3.1. Dipole in elektrischen Feldern

Es gibt Moleküle, bei denen die negativen und die positiven LADUNGEN getrennte Schwerpunkte haben. Eine negative LADUNG -q im Abstand ℓ von einer positiven LADUNG q heisst DIPOL mit dem DIPOLMOMENT

$$\boldsymbol{p} = q\boldsymbol{\ell} \tag{2.3.12}$$

Die Einheit des Dipolmoments ist [p] = C m. Der Vektor des Dipole zeigt von -q nach +q.

Abb. 2.7.: Kräfte auf einen DIPOL im homogenen elektrischen Feld.

Im homogenen elektrostatischen Feld E wirkt auf die positive LADUNG die Kraft F und auf die negative LADUNG -F. Zusammen bilden diese beiden Kräfte ein Kräftepaar und erzeugen damit ein Drehmoment

$$\boldsymbol{T} = \boldsymbol{\ell} \times \boldsymbol{F} = (q\boldsymbol{\ell}) \times (\boldsymbol{F}/q) = \boldsymbol{p} \times \boldsymbol{E}$$
(2.3.13)

Versuch 7: Versuch zur Vorlesung:

Drehmoment auf einen elektrischen Dipol (Versuchskarte ES-30, Video)

2.4. Elektrische Felder von Leitern

Literatur: (Siehe Tipler, Physik [TM04, pp. 645])

Versuch 8: Versuch zur Vorlesung: Elektrische Feldlinien (Versuchskarte ES-4, Video)

Die elektrischen Felder

- in der Nähe eines ausgedehnten Leiters
- auf der Symmetrieachse eines Kreisrings
- auf der Symmetrieachse einer Kreisscheibe
- innerhalb und ausserhalb einer geladenen Zylinderfläche
- in allen Bereichen zweier koaxialer zylinderförmiger Leiter

werden im Anhang berechnet.

Versuch 9: Versuch zur Vorlesung: Faraday-Becher (Versuchskarte ES-9, Video)

Versuch 10: Versuch zur Vorlesung: Faraday-Käfig (Versuchskarte ES-21, Video)

Versuch 11: Versuch zur Vorlesung: Van-de-Graaff-Generator (Versuchskarte ES-19, Video)

Wir berechnen das elektrische Feld innerhalb und ausserhalb einer Kugelschale.

Abb. 2.8.: Berechnung eines Feldes einer Kugelschale

Abbildung 2.8 zeigt die betrachtete Geometrie. Die gesamte Ladung Q ist homogen auf einer infinitesimal dünnen Kugelschale mit dem Radius R verteilt. Sowohl für r > R wie auch für r < R ist die elektrische Ladungsdichte $\rho_{el} = 0$. Auf der Kugelschale mit dem Radius R gibt es also eine Flächenladungsichte $\sigma = Q_{/}(4\pi R^2)$.

Aus der Definition des elektrischen Feldes in Gleichung (2.2.2), dem Gauss'schen Gesetz in Gleichung (2.3.3) und aus der Tatsache, dass wir eine kugelsymmetrische Situation haben ergibt sich für die eingeschlossene LADUNG aus dem ELEKTRI-SCHEN FLUSS durch die Kugelfläche mit dem Radius r > R

$$Q = \iint_{\text{Kugel mit Badius } r} \varepsilon_0 E_r da = \varepsilon_0 E_r 4\pi r^2 \tag{2.4.1}$$

Somit haben wir auch

$$\frac{Q}{\varepsilon_0} = E_r 4\pi r^2 \tag{2.4.2}$$

Damit ist für r > R

$$E_r(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \tag{2.4.3}$$

Das elektrische Feld einer homogen geladenen Kugelschale ist also ununterscheidbar vom elektrischen Feld einer Punktladung. Für r < R ist die eingeschlossene LADUNG Q = 0. Damit ist auch $\Phi_{ges} = E_r 4\pi r^2 = 0$ und folglich für r < R

$$E_r = 0 \tag{2.4.4}$$

Abb. 2.9.: Die Feldverteilung einer homogen geladenen Kugelschale.

Das elektrische Feld einer homogen geladenen Kugel mit dem Radius R wird analog berechnet. Ausserhalb der Kugel für r > R ist wie oben $\Phi_{ges} = E_r 4\pi r^2 = Q/\varepsilon_0$. Also ist für r > R

$$E_r(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \tag{2.4.5}$$

Wenn die Ladungsdichte $\rho_{el}=Q/V=Q/(\frac{4\pi}{3}R^3)$ ist, ist die von einer zur homogen geladenen Kugel konzentrischen Kugelschale mit r< Rumschlossene LADUNG $Q'=\rho_{el}V(r)=\rho_{el}\frac{4\pi}{3}r^3$

$$Q(r) = \frac{Q}{\frac{4\pi}{3}R^3} \frac{4\pi}{3} r^3 = Q \frac{r^3}{R^3}$$
(2.4.6)

Weiter haben wir $E_r \cdot 4\pi\varepsilon_0 r^2 = Q$. Also ist für r < R

$$E_r(r) = \frac{1}{4\pi\varepsilon_0} \frac{Qr}{R^3} \tag{2.4.7}$$

Abb. 2.10.: elektrisches Feld einer homogen geladenen Kugel

Abb. 2.11.: Integrationsfläche zur Berechnung des elektrischen Feldes einer Ebene

Das elektrische Feld einer homogen geladenen Platte kann wie folgt berechnet werden.

• Da wir TRANSLATIONSINVARIANZ für jede Richtung in der Plattenebene haben, muss das elektrische Feld senkrecht auf der Platte stehen.

- Die elektrischen Felder auf den beiden gegenüberliegenden Seiten der Platte müssen entgegengesetzt gerichtet sein, da die Platte eine Ebene mit SPIE-GELSYMMETRIE darstellt.
- Wir verwenden eine zylinderförmige Fläche parallel zur Platte. Die Seitenflächen können beliebig hoch sein, da die SYMMETRIEÜBERLEGUNGEN besagen, dass sie keinen Beitrag zum elektrischen Fluss liefern.

Wenn σ die LADUNGSDICHTE auf der Platte ist, dann ist

$$\frac{\sigma A}{\varepsilon_0} = \Phi_E = \iint E_n \, da = 2AE_n \tag{2.4.8}$$

da sowohl die Unterseite wie auch die Oberseite einen Beitrag liefern. Also ist

$$E_r = \frac{\sigma}{2\varepsilon_0} \tag{2.4.9}$$

homogen im Raum.

Abb. 2.12.: Elektrisches Feld um eine endliche Platte.

Wir betrachten eine endliche ebene leitfähige Platte mit der Ausdehnung $\ell.$ Wir können drei Fälle unterscheiden:

- $r \ll \ell\,$ Das elektrische Feld ist von dem einer unendlich ausgedehnten ebenen leitfähigen Platte nicht unterscheidbar.
- $r\approx\ell\,$ Das elektrische Feld befindet sich in einem Zwischenzustand.

 $R \gg \ell$ Das elektrische Feld ist von dem einer Punktladung im Kugelmittelpunkt nicht unterscheidbar.

Ein Beispiel für diese Art Flächenladungen sind KLEBESTREIFEN. Andreas Döring [Dör01] gibt an, dass Haftklebematerialien spezifische Haftenergien von $E_t = (30...300) \text{ J/m}^2$ haben. Die Definition von E_t ist

$$E_t = \frac{v_s}{A} \int F(t) dt \approx \frac{v_s F \Delta t}{A}$$

wobei $v_s = 0.01 \text{ m s}^{-1}$ die Geschwindigkeit ist, mit der der Klebestreifen abgezogen wird und A die Kontaktfläche ist. $\Delta t = 0.1$ s ist die Loslösezeit. Die Haftkraft rührt von LADUNGEN her. Bei einer Flächenladungsdichte σ ist $E = \sigma/\varepsilon_0$. Die Kraft auf eine Flächenladungsdichte σ ist dann $F/A = \sigma^2/\varepsilon_0$. Mit den Daten von Herrn Döring erhalten wir

$$\frac{F}{A} = \frac{\sigma^2}{\varepsilon_0} = \frac{E_t}{v_s \Delta t}$$

und daraus die Flächenladungsdichte

$$\sigma = \frac{e}{d^2} = \sqrt{\frac{\varepsilon_0 E_t}{v_s \Delta t}}$$

Dabei haben wir angenommen, dass Elementarladungen eim Abstandd angebracht sind. dist dann

$$d = \sqrt{e\sqrt{\frac{v_s\Delta t}{\varepsilon_0 E_t}}}$$

Wenn wir E_t einsetzen erhalten wir $d \approx (10 \dots 18)$ nm. Dieser Abstand korreliert gut mit den bekannten Moleküldurchmessern.

Bei zwei homogen geladenen Platten, deren Flächenladungsdichte vom Betrage her gleich sind, aber unterschiedliches Vorzeichen haben, heben sich die Felder ausserhalb der Platten auf. Gleichzeitig verstärken sich die Felder im Inneren: Die elektrische Feldstärke wird $E = \sigma/\varepsilon_0$.

Abb. 2.13.: Elektrisches Feld entgegengesetzt gleich geladener Platten.

Sind die Platten jedoch gleich geladen (oder ist die Oberflächenladung der Platten gleich), kompensieren sich die elektrischen Felder im Innern der Platte, verstärken sich aber im Aussenraum. Wieder ist im Aussenraum $E = \sigma/\varepsilon_0$.

Abb. 2.14.: Elektrisches Feld gleich geladener Platten

Leiter haben in ihrem Inneren keine statischen elektrischen Felder.

Da LADUNGEN im Inneren eines Leiters beweglich sind, folgt, dass das elektrische Feld an einer beliebigen Oberfläche, die sich ganz im Inneren eines Leiters befindet, null ist. Damit ist die umschlossene LADUNG ebenso null. Daraus folgt, dass LADUNGEN sich nur an der Oberfläche eines Leiters befinden können.

Das elektrische Feld an der Oberfläche eines Leiters kann mit dem Gaussschen Gesetz berechnet werden. Wir betrachten eine zylinderförmige Fläche, deren eine Kreisfläche unter der Oberfläche des Leiters und deren andere über der Oberfläche des Leiters ist.

Abb. 2.15.: Integrationsfläche

Der gesamte Fluss des elektrischen Feldes ist

$$\Phi_{\text{ges, } E} = \iint E_n da = \frac{Q}{\varepsilon_0} \tag{2.4.10}$$

da das elektrische Feld im Inneren des Leiters null ist und die Höhe der Seitenflächen verschwinden soll, haben wir

$$\iint E_n da = E_n \oint_{\text{obere Fläche}} da = E_n A = \frac{1}{\varepsilon_0} A \sigma \qquad (2.4.11)$$

und

$$E_n = \frac{\sigma}{\varepsilon_0} \tag{2.4.12}$$

Aus dem Gaussschen Gesetz werden die zwei folgenden Schlüsse gezogen:

- Die makroskopisch beobachtbare elektrische LADUNG eines Leiters befindet sich auf seiner Oberfläche.
- Das elektrische Feld an der Oberfläche eines Leiters steht senkrecht zu dieser Oberfläche und hat die Grösse $E_r = \sigma/\varepsilon_0$

2.4.1. Influenz und Bildladung

Abb. 2.16.: Links: Feldlinien in der Nähe eines Leiters. Rechts: Diese Feldlinien können mit einer Bildladung erklärt werden.

Da elektrische Feldlinien immer senkrecht auf der Oberfläche eines Leiters stehen müssen, sieht das Feldlinienbild einer Punktladung in der Nähe eines Leiters wie die Hälfte des Feldlinienbildes eines **Dipols** aus. Das elektrische Feld der Punktladung erzeugt an der Oberfläche die INFLUENZLADUNG $\sigma(\mathbf{r})$, die das äussere Feld im Leiter abschirmt. Formal kann das Feldlinienbild berechnet werden, indem man zu einer LADUNG q im Abstand a von der Oberfläche eines Leiter im Leiter innen eine Bildladung -q auch im Abstand a von der Oberfläche verwendet. Das Konzept der Bildladung zeigt, dass eine LADUNG q im Abstand a von einem Leiter mit der Kraft

$$F(a) = -\frac{1}{4\pi\varepsilon_0} \frac{q^2}{4a^2}$$
(2.4.13)

angezogen wird. Die Senkrechtkomponente (z-Komponente) des elektrischen Feldes ist im Abstand r vom Aufpunkt in der Leiteroberfläche

$$E_{z}(r,a) = -\frac{2}{4\pi\varepsilon_{0}} \frac{qa}{(r^{2}+a^{2})^{3/2}}$$
(2.4.14)

Damit ist die Oberflächenladungsdichte

$$\sigma(r) = -\frac{1}{2\pi} \frac{qa}{\left(r^2 + a^2\right)^{3/2}}$$
(2.4.15)

Mit analogen Überlegungen kann auch die Bildladungsdichte von kontinuierlichen Ladungsverteilungen berechnet werden⁵.

2.5. Elektrostatisches Potential

Literatur: (Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 192]) (Siehe Tipler, Physik [TM04, pp. 681])

Die Arbeit ist durch

$$W(\boldsymbol{r_1} \to \boldsymbol{r_2}) = \int_{\boldsymbol{r_1}}^{\boldsymbol{r_2}} \boldsymbol{F}(\boldsymbol{r}) \cdot d\boldsymbol{r}$$
(2.5.1)

definiert.

Die potentielle Energie eines Kraftfeldes F(r) ist die Arbeit gegen diese Feldkraft. Nach dem 3. Newtonschen Axiom ist $F_{ext} = -F$. Also

$$E_{pot}(\boldsymbol{r}_2) = E_{pot}(\boldsymbol{r}_1) + \int_{\boldsymbol{r}_1}^{\boldsymbol{r}_2} \boldsymbol{F}_{ext}(\boldsymbol{r}) \cdot d\boldsymbol{r}$$
(2.5.2)

$$= E_{pot}\left(\boldsymbol{r}_{1}\right) - \int_{\boldsymbol{x}_{1}}^{\boldsymbol{r}_{2}} \boldsymbol{F}\left(\boldsymbol{r}\right) d\boldsymbol{r} = E_{pot}\left(\boldsymbol{r}_{1}\right) - W\left(\boldsymbol{r}_{1} \rightarrow \boldsymbol{r}_{2}\right)$$
(2.5.3)

Eine potentielle Energie existiert, wenn

- Die Arbeit $W(\mathbf{r}_1 \rightarrow \mathbf{r}_2)$ unabhängig vom Weg ist.
- Die Arbeit für jede geschlossene Bahn null ist (Die Bahn darf keine Singularitäten des Feldes umschliessen).
- rot $\boldsymbol{F}(\boldsymbol{r}) = 0$ für alle \boldsymbol{r}

⁵Auch bei Dielektrikas gibt es Bildladungen

(2.5.4)

Die potentielle Energie einer Probeladung q im Feld der LADUNG Q ist

$$E_{pot}(\mathbf{r}_{2}) = E_{pot}(\mathbf{r}_{1}) - \int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \frac{1}{4\pi\varepsilon_{0}} \frac{qQ}{r^{2}} \frac{\mathbf{r}}{r} \cdot d\mathbf{r}$$
(2.5.4)

Abb. 2.17.: Approximation eines beliebigen Integrationsweges durch Kreissegmente. Auf den Kreissegmenten (grün) ist $\int \boldsymbol{E} \cdot d\boldsymbol{s} = 0$, entlang der radialen Teile ist $\int \boldsymbol{E} \cdot d\boldsymbol{s} = \int E(r) ds$.

Da wir jede Bahnkurve durch Stücke in radialer Richtung und durch Bahnen mit r = const approximieren können, und da die Bahnen auf den Kugelflächen keinen Beitrag geben (sie sind senkrecht zur Kraft) können wir das Integral vereinfachen.

$$E_{pot}(\mathbf{r}_{2}) = E_{pot}(\mathbf{r}_{1}) - \frac{qQ}{4\pi\varepsilon_{0}} \int_{r_{1}}^{r_{2}} \frac{dr}{r^{2}}$$

$$= E_{pot}(r_{1}) - \frac{qQ}{4\pi\varepsilon_{0}} \left(-\frac{1}{r}\right)_{r_{1}}^{r_{2}} = E_{pot}(r_{1}) + \frac{qQ}{4\pi\varepsilon_{0}} \left(\frac{1}{r_{2}} - \frac{1}{r_{1}}\right)$$
(2.5.5)

Üblicherweise setzt man $E_{pot}(r = \infty) = 0$. Damit wird

$$E_{pot}\left(\boldsymbol{r}\right) = \frac{qQ}{4\pi\varepsilon_0} \cdot \frac{1}{r} \tag{2.5.6}$$

Aus der potentiellen Energie kann die Kraft mit dem Gradienten

$$\boldsymbol{F}(\boldsymbol{r}) = -\operatorname{grad} E_{pot}(\boldsymbol{r}) \qquad (2.5.7)$$

berechnet werden. Für die potentielle Energie der Coulomb-Kraft bekommen wir

$$\boldsymbol{F}(\boldsymbol{r}) = -\operatorname{\mathbf{grad}} \left(\frac{qQ}{4\pi\varepsilon_0}\frac{1}{r}\right) = -\frac{qQ}{4\pi\varepsilon_0}\operatorname{\mathbf{grad}} \frac{1}{r} = -\frac{qQ}{4\pi\varepsilon_0} \cdot \left(-\frac{1}{r^2}\right)\operatorname{\mathbf{grad}} r$$
$$= \frac{qQ}{4\pi\varepsilon_0}\frac{\boldsymbol{r}}{r^3} \quad (2.5.8)$$

In Komponenten ist $r = \sqrt{x^2 + y^2 + z^2}$ und **grad** $= \boldsymbol{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$

Also

$$\begin{aligned} \operatorname{\mathbf{grad}} \left(\frac{1}{r}\right) &= \left(\begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right) \frac{1}{\sqrt{x^2 + y^2 + z^2}} \\ &= -\frac{1}{2} \frac{1}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} \left(\begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right) \left(x^2 + y^2 + z^2\right) \\ &= -\frac{1}{2} \frac{1}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} \left(\begin{array}{c} 2x \\ 2y \\ 2z \end{array}\right) \\ &= -\frac{1}{r^3} \cdot \mathbf{r} \end{aligned}$$
(2.5.9a)

oder direkt

$$\mathbf{grad} \ \left(\frac{1}{r}\right) = -\frac{1}{r^2} \, \mathbf{grad} \ (r) = \begin{pmatrix} \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} \\ \frac{\partial}{\partial y} \sqrt{x^2 + y^2 + z^2} \\ \frac{\partial}{\partial z} \sqrt{x^2 + y^2 + z^2} \end{pmatrix} = \left(-\frac{1}{r^2}\right) \begin{pmatrix} -\frac{2x}{2\sqrt{x^2 + y^2 + z^2}} \\ -\frac{2y}{2\sqrt{x^2 + y^2 + z^2}} \\ -\frac{2z}{2\sqrt{x^2 + y^2 + z^2}} \end{pmatrix} \\ = \left(-\frac{1}{r^2}\right) \left(-\frac{1}{\sqrt{x^2 + y^2 + z^2}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \left(-\frac{1}{r^2}\right) \frac{\mathbf{r}}{r}$$
(2.5.9b)

Ergänzend zu Coulomb-Kraft hatten wir das elektrische Feld als auf eine Einheitsladung normierte Grösse eingeführt.

$$\boldsymbol{E}\left(\boldsymbol{r}\right) = \frac{Q}{4\pi\varepsilon_{0}}\frac{\boldsymbol{r}}{r^{3}} \tag{2.5.10}$$

Die potentielle Energie der LADUNG q im Feld der LADUNG Q, normiert auf q = 1 ist das ELEKTRISCHE POTENTIAL φ , auch SPANNUNG U genannt. Ich verwende in diesem Skript die Begriffe ELEKTRISCHES POTENTIAL und SPANNUNG austauschbar.

$$\varphi(\mathbf{r}) = U(\mathbf{r}) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r} = \frac{E_{pot}(\mathbf{r})}{q}$$
(2.5.11)

Wichtig ist die Beziehung

$$E_{pot}(r) = q\varphi(\mathbf{r}) = qU(\mathbf{r}) \qquad (2.5.12)$$

Wie die Kraft aus der potentiellen Energie über die Gradientenbildung hervorgeht, wird das elektrische Feld mit

$$\boldsymbol{E} = -\operatorname{\mathbf{grad}} \varphi = -\operatorname{\mathbf{grad}} U \tag{2.5.13}$$

berechnet.

Folgende Relationen gelten

Wir merken uns

$$U(\boldsymbol{r}_{2}) = U(\boldsymbol{r}_{1}) - \int_{\boldsymbol{r}_{1}}^{\boldsymbol{r}_{2}} \boldsymbol{E}(\boldsymbol{r}) \cdot d\boldsymbol{r} \qquad (2.5.15)$$

analog zur potentiellen Energie.

Die Einheit des elektrostatischen Potentials oder der SPANNUNG ist

1 Volt =
$$1 \frac{\text{Joule}}{\text{Coulomb}} = 1 \frac{J}{As} = 1 \frac{W}{A}$$

Bem.: Beim elektrischen Feld ist der Feldvektor \boldsymbol{E} , bei der Gravitation \boldsymbol{g} Das Gravitationspotential ist $U_{grav}(r) = -G\frac{m}{r}$.

Da die Coulomb-Kräfte additiv sind, ist auch das elektrostatische Potential oder die elektrostatische potentielle Energie additiv. Das Potential von LADUNGEN q_i an den Orten r_i ist also

$$U(\mathbf{r}) = \sum_{i=0}^{N} U_i(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=0}^{N} \frac{q_i}{|\mathbf{r} - \mathbf{r}_i|}$$
(2.5.16)

Für kontinuierliche Ladungsverteilungen $\rho_{el}(\mathbf{r})$ ist das Potential

$$U(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\rho_{el}(\mathbf{r}_i)}{|\mathbf{r} - \mathbf{r}_i|} dV = \frac{1}{4\pi\varepsilon_0} \iiint \frac{dq(\mathbf{r}_i)}{|\mathbf{r} - \mathbf{r}_i|}$$
(2.5.17)

Versuch zur Vorlesung:

Flächenladungsdichte (Versuchskarte ES-08, Video)

Eine homogen mit der Flächenladungsdichte σ geladene Ebene erzeugt ein konstantes elektrisches Feld $E = \sigma/(2\varepsilon_0)$. Das elektrostatische Potential eines Punktes P im Abstand x > 0 von der Platte kann gefunden werden, indem wir entlang des Lots vom Punkt P auf die Ebene integrieren.

$$U(x) = U(0) - \int_{0}^{x} Ed\xi = U(0) - \frac{\sigma}{2\varepsilon_0} \int_{0}^{x} d\xi = U(0) - \frac{\sigma}{2\varepsilon_0} x \qquad \text{für } x > 0 \quad (2.5.18)$$

Für x < 0 be
rechnet man

$$U(x) = U(0) - \left(-\frac{\sigma}{2\varepsilon_0}\right)x = U(0) + \frac{\sigma}{2\varepsilon_0}x \qquad \text{für } x < 0 \qquad (2.5.19)$$

Abb. 2.18.: Potential senkrecht zu einer homogen geladenen Ebene mit $U_0 = 2$ und $\sigma = 2\varepsilon_0$.

Das elektrostatische Potential eines Kreisringes mit der LADUNG Q und dem Radius Rim Abstandxauf der Symmetrieachse soll berechnet werden. Wir verwenden, dass

$$dU(x) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} dq$$

ist, mit

$$\int_{0}^{2\pi} dq = Q$$

Wir erhalten

$$U(x) = \frac{1}{4\pi\varepsilon_0} \int_0^{2\pi} \frac{dq}{r} = \frac{1}{4\pi\varepsilon_0} \int_0^{2\pi} \frac{dq}{\sqrt{x^2 + R^2}} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\sqrt{x^2 + R^2}}$$
(2.5.20)

Abb. 2.19.: Potential eines Kreisringes entlang der Symmetrieachse für eine positive LADUNG $Q = 4\pi\varepsilon_0$ und dem Radius R = 2.

Analog kann das Potential einer homogen geladenen Scheibe mit dem Radius Rentlang ihrer Symmetrieachse x berechnet werden. Die Ladungsdichte der Scheibe sei $\sigma = Q/(\pi R^2)$. Ein Kreisring mit dem Radius a trägt die LADUNG $dq = 2\pi a\sigma da$ und erzeugt dann das Potential

$$dU(a,x) = \frac{1}{4\pi\varepsilon_0} \frac{dq}{\sqrt{x^2 + a^2}}$$
(2.5.21)

Durch Integration über die gesamte Scheibe erhalten wir

$$U(x) = \frac{1}{4\pi\varepsilon_0} \int_0^R \frac{2\pi a\sigma da}{\sqrt{x^2 + a^2}} = \frac{\sigma}{2\varepsilon_0} \int_0^R \frac{a\,da}{\sqrt{x^2 + a^2}}$$
(2.5.22)

Dieses Integral ergibt nach Bronstein Bro+08, Seite 309, Nr. 193]

$$U(x) = \frac{\sigma}{2\varepsilon_0} \sqrt{x^2 + a^2} \Big|_0^R = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + R^2} - x \right)$$
(2.5.23)

Asymptotisch verläuft auch dieses Potential für $x \to \infty$ wie das Potential einer Punktladung, da

$$U(x) = \frac{\sigma}{2\varepsilon_0} \left(x\sqrt{1 + \frac{R^2}{x^2}} - x \right) \approx \frac{\sigma}{2\varepsilon_0} \left(x + \frac{R^2}{2x} - x \right) = \frac{\sigma}{4\varepsilon_0} \frac{R^2}{x}$$

Für den anderen Grenzfall berechnen wir die Taylorreihe um 0 bis zum ersten Glied.

$$U(0) = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{0^2 + R^2} - 0 \right)$$
$$\frac{d}{dx} U(x) \Big|_{x=0} = \frac{\sigma}{2\varepsilon_0} \left(\frac{1}{2} \frac{2x}{\sqrt{x^2 + R^2}} - 1 \right) \Big|_{x=0} \qquad \qquad = -\frac{\sigma}{2\varepsilon_0}$$
$$U(x) \approx \left(U(0) + \frac{d}{dx} U(x) \Big|_{x=0} x \right) \qquad \qquad = \frac{\sigma}{2\varepsilon_0} (R - x)$$

Die beiden Grenzfälle zeigen, dass sich die geladene Kreisplatte für $x \gg R$ wie eine Punktladung und für $x \ll R$ wie eine unendlich ausgedehnte Platte verhält.

Abb. 2.20.: Elektrostatisches Potential einer homogen geladenen Kreisscheibe entlang ihrer Symmetrieachse mit R = 2 und $\sigma = 2\varepsilon_0$.

Das Potential einer homogen geladenen Kugelschale wird mit dem elektrischen Feld berechnet. Das radiale elektrische Feld ist $E_r(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$. Damit ist das Potential

$$U(r) = U(\infty) - \int_{\infty}^{r} \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{r^{2}} dr$$

$$= U(\infty) - \frac{Q}{4\pi\varepsilon_{0}} \int_{\infty}^{r} \frac{dr}{r^{2}}$$

$$= U(\infty) - \frac{Q}{4\pi\varepsilon_{0}} \left(-\frac{1}{r}\right)\Big|_{\infty}^{r}$$

$$= U(\infty) + \frac{Q}{4\pi\varepsilon_{0}} \frac{1}{r}$$
(2.5.24)
Oder mit $U(\infty) = 0$

$$U(r) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r} \qquad \text{für } r > R \tag{2.5.25}$$

Innerhalb der Kugelschale ist das elektrische Feld null, das Potential also konstant.

$$U(r) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{R} \qquad \text{für } r < R \tag{2.5.26}$$

Abb. 2.21.: Potential einer homogen geladenen Kugelschale mit R = 1 und $Q = 8\pi\varepsilon_0$.

Schliesslich berechnen wir das elektrostatische Potential in der Nähe einer unendlich ausgedehnten Linienladung mit der Ladungsdichte λ . Das radiale elektrische Feld ist $E = \lambda/(2\pi\varepsilon_0 x)$. Das Potential ist dann

$$U(r) = U(r_0) - \int_{r_0}^r \frac{\lambda \, dx}{2\pi\varepsilon_0 x} = U(r_0) - \frac{\lambda}{2\pi\varepsilon_0} \ln\left(\frac{r}{r_0}\right)$$
(2.5.27)

Wir setzen $U(r_0) = 0$ und erhalten

$$U(r) = -\frac{\lambda}{2\pi\varepsilon_0} \ln\left(\frac{r}{r_0}\right) \tag{2.5.28}$$

Abb. 2.22.: Potential in der Nähe einer unendlich ausgedehnten homogenen Linienladung mit $r_0 = 1$ und $\lambda = 2\pi\varepsilon_0$.

2.6. Poisson-Gleichung

Literatur: (Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 197]) (Siehe Tipler, Physik [TM04, pp. 703])

Wir hatten in Gleichung (2.3.9) gesehen, dass

div
$$\boldsymbol{D}(\boldsymbol{r}) = \rho_{el}(\boldsymbol{r})$$
 (2.6.1)

ist.

Gleichung (2.5.13) besagt, dass

$$\boldsymbol{E}\left(\boldsymbol{r}\right) = -\operatorname{\mathbf{grad}}\,\varphi\left(\boldsymbol{r}\right) \tag{2.6.2}$$

ist. Mit der im Vakuum geltenden Beziehung $D = \varepsilon_0 E$ erhalten wir die Poisson-Gleichung.

$$-\varepsilon_0 \operatorname{div} \operatorname{\mathbf{grad}} \varphi(\mathbf{r}) = \rho_{el}(\mathbf{r}) = -\varepsilon_0 \Delta \varphi(\mathbf{r})$$
 (2.6.3)

oder

$$\Delta\varphi\left(\boldsymbol{r}\right) = -\frac{\rho_{el}\left(\boldsymbol{r}\right)}{\varepsilon_{0}} \tag{2.6.4}$$

Dabei haben wir den Laplace-Operator $\Delta = \text{div } \mathbf{grad} = \nabla \cdot \nabla$ verwendet. In Komponentenschreibweise in einem kartesischen Koordinatensystem ist dies

$$\left(\begin{array}{cc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right) \cdot \left(\begin{array}{cc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
(2.6.5)

Die POISSONGLEICHUNG ermöglicht eine Berechnung der Potentiale ausgehend von Ladungsverteilungen.

Bemerkung:

Im allgemeinen Falle bei beliebigen Materialien lautet die Beziehung zwischen der dielektrischen Verschiebung D und dem elektrischen Feld E

$$\boldsymbol{D}(\boldsymbol{r}) = \underline{\varepsilon}\varepsilon_0 \boldsymbol{E}(\boldsymbol{r}) \tag{2.6.6}$$

Dabei ist die relative Dielektrizitätszahl $\underline{\varepsilon}$ im einfachsten Falle eine Zahl und im allgemeinen Falle ein TENSOR zweiter Stufe. Die allgemeine POISSONGLEICHUNG (Gleichung (2.6.4)) wird dann wie folgt geschrieben

div
$$(\underline{\varepsilon}\varepsilon_0 \operatorname{\mathbf{grad}} \varphi(\mathbf{r})) = -\rho_{el} = \nabla \cdot (\underline{\varepsilon}\varepsilon_0 \nabla \varphi(\mathbf{r}))$$
 (2.6.7)

Beispiel: Ebene

Bei einer geladenen Ebene ist $\rho_{el}(x, y, z) = \delta(z) \sigma(x, y) = \delta(z) \sigma_0$ mit $\sigma(x, y) = \sigma_0$. Die Poissongleichung wird, wegen der Translationssymmetrie in x und y zu

$$\Delta U = \frac{\partial^2}{\partial z^2} U = -\frac{\sigma_0 \delta(z)}{\varepsilon_0}$$
(2.6.8)

Daraus folgt, dass $\frac{\partial U}{\partial z} = \text{const} \neq 0$ für $z \neq 0$. Bei z = 0 haben wir einen Sprung der Grösse $\frac{\sigma_0}{\varepsilon_0}$ der symmetrisch von $+\frac{\sigma_0}{2\varepsilon_0}$ bis $-\frac{\sigma_0}{2\varepsilon_0}$ reichen muss. Nochmals integrieren ergibt

$$U(z) = \begin{cases} U_0 + \frac{\sigma_0}{2\varepsilon_0} z & \text{für} & z < 0\\ U_0 - \frac{\sigma_0}{2\varepsilon_0} z & \text{für} & z > 0 \end{cases}$$
(2.6.9)

 U_0 ist eine frei wählbare Integrationskonstante.

Das Innere eines Leiters ist ein Äquipotentialraum, da in einem Leiter LADUNGEN sich frei bewegen können. Da Feldlinien $d\mathbf{E}$ senkrecht zu einer Metalloberfläche, die immer eine Äquipotentialfläche ist, stehen kann man schliessen (und mathematisch beweisen), dass Feldlinien senkrecht auf Äquipotentialflächen stehen.

An Luft kann man nicht beliebige Potentialunterschied aufrechterhalten. Die möglichen Potentialdifferenzen werden durch Funkenüberschläge begrenzt. Für Luft unter Normalbedingungen muss

$$E < 3 \cdot 10^6 \text{ V m}^{-1}$$
 (2.6.10)

sein.

2.7. Kapazität: eine geometrische Eigenschaft

Literatur: (Siehe Tipler, Physik [TM04, pp. 722]) (Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 202])

Versuch 12: Versuch zur Vorlesung: Kapazität von Kugeln (Versuchskarte ES-27)

Wir wollen das folgende Problem lösen:

• Wieviel LADUNG kann auf einer Leiteranordnung gespeichert werden?

Wir wissen: Im Inneren der Leiter ist U = const und $\rho_{el} = 0$

- An der Oberfläche sind die ${\pmb E} ext{-Felder senkrecht zur Oberfläche}$
- Zwischen den Leitern ist $\rho_{el} = 0$, also $\Delta U = 0$
- Die LADUNGEN auf den Leitern sind Oberflächenladungsdichten.

Abb. 2.23.: Integrationsoberfläche an der Grenze Metall-Vakuum.

Wir betrachten eine kleine zylinderförmige Oberfläche und verwenden

$$\iint_{a} \boldsymbol{E} \cdot d\boldsymbol{a} = \frac{q_{\text{eingeschlossen}}}{\varepsilon_{0}}$$
(2.7.1)

Da das Feld im Inneren des Leiters verschwindet und die Seitenflächen keinen Beitrag geben, ist

$$\varepsilon_0 \boldsymbol{E}_\perp = \sigma \tag{2.7.2}$$

Bei einer genügend grossen ebenen Fläche A ist die LADUNG dann

$$Q = \int_{A} \sigma da = \int_{A} \varepsilon_0 \boldsymbol{E}_{\perp} da \approx \varepsilon_0 \boldsymbol{E}_{\perp} A \qquad (2.7.3)$$

A repräsentiert hier die Geometrie, so dass man schliessen kann, dass die gesamte LADUNG von der Geometrie der Leiter abhängt[Jac75, S. 48]. Wenn wir die Leiter $1, 2, \ldots n$ betrachten, ist

$$U_{j} - U_{i} = \frac{Q_{j} - Q_{i}}{C_{ji}} = U_{ji} = \varphi_{ji}$$
(2.7.4)

mit U_j dem Potential auf dem Leiter j und U_i dem Potential auf dem Leiter i. C_{ji} ist die Kapazität zwischen den Leitern i und j.

Da die Nummerierung in der Gleichung (2.7.4) willkürlich ist, muss $C_{ij} = C_{ji}$ gelten.

Die Einheit der Kapazität ist

Als erstes Beispiel betrachten wir den Plattenkondensator

Abb. 2.24.: Geometrie eines Plattenkondensators. Wir betrachten auf beiden Seiten eine Fläche A die jeweils in eine unendlich ausgedehnte Fläche eingebettet ist.

Wir benutzen, dass das elektrische Feld einer unendlich ausgedehnten homogenen Flächenladung konstant $E_{Ebene} = \frac{\sigma}{2\varepsilon_0}$ ist (Gleichung (2.4.8)).

Auf den Kondensatorplatten ist die LADUNG $Q = A\sigma = 2\varepsilon_0 E_{Ebene} A$.

Das elektrische Feld zwischen den beiden Platten stammt von beiden Platten, also ist

$$\boldsymbol{E} = 2\boldsymbol{E}_{Ebene} \tag{2.7.6}$$

Also ist $Q = A\sigma = \varepsilon_0 EA$. Deshalb ist das Potential am Ort der zweiten Platte gemessen von der ersten Platte

$$U_{2,1} = -\boldsymbol{E} \cdot \boldsymbol{d} \Longrightarrow |U_{2,1}| = 2E_{Ebene} \cdot \boldsymbol{d} = 2\frac{\sigma}{2\varepsilon_0} \boldsymbol{d} = \frac{\sigma \boldsymbol{d}}{\varepsilon_0}$$
(2.7.7)

Damit ist die Potentialdifferenz zwischen den beiden Platten oder die angelegte SPANNUNG

$$U = \frac{\sigma d}{\varepsilon_0} = \frac{Qd}{A\varepsilon_0} \tag{2.7.8}$$

oder

$$\frac{Q}{U} = \varepsilon_0 \frac{A}{d} = C \tag{2.7.9}$$

Damit haben wir die Kapazität eines Plattenkondensators berechnet. Wir haben dabei benutzt, dass σ die Flächenladungsdichte einer dünnen Platte ist. Hätten wir einen dicken Leiter genommen, mit den Oberflächenladungsdichten σ_+ und $\sigma_- = -\sigma_+$ auf jeweils leitenden Halbräumen, wäre das Resultat mit $E_{\text{Halbraum}} = \frac{\sigma}{\epsilon_0}$

$$U_{2,1,\text{Halbräume}} = (E_{\text{Halbraum},+} - E_{\text{Halbraum},-}) \cdot d = \frac{\sigma_+}{\varepsilon_0} - \frac{\sigma_-}{\varepsilon_0} = \frac{2\sigma_+}{\varepsilon_0} \qquad (2.7.10)$$

Dies ist kompatibel mit Gleichung (2.7.4). Bei realen, nicht unendlichen Platten gibt es auch eine Wechselwirkung der Rückseiten. Weiter ist wegen der INFLUENZ die Ladung nicht gleichverteilt.

Beachte, dass wir einen endlichen Plattenkondensator, der in einen unendlichen Plattenkondensator eingebettet ist, betrachtet haben, um Randeffekte auszuschliessen.

Abb. 2.25.: Durch die Dreiteilung des Kondensators können bei einem realen Kondensator die Randeffekte minimiert werden. Die kleine Lücke stört das homogene Feld nur unwesentlich.

Beispiel: Ein Kondensator mit $d = 0.1 \ \mu\text{m}$, $A = 1 \ \text{m}^2$ sei auf die Spannung U = 10 V geladen. Dann ist $C = 88.5 \ \mu\text{F}$, $Q = 0.885 \ \text{mC}$, $\sigma = \frac{Q}{A} = 0.885 \ \text{mC/m}^2$ und $E = 10^8 \text{ V} \ \text{m}^{-1}$.

Aus der Additivität der Ladung folgt, dass bei der PARALLELSCHALTUNG von KONDENSATOREN sich die Kapazitäten addieren.

Versuch 13: Versuch zur Vorlesung: Reihen- und Parallelschaltung von Kapazitäten (Versuchskarte EM-48)

Abb. 2.26.: PARALLELSCHALTUNG von Kondensatoren.

$$Q_{1} = C_{1}U$$

$$Q_{2} = C_{2}U$$

$$Q_{3} = C_{3}U$$
(2.7.11)

$$Q_{ges} = Q_1 + Q_2 + Q_3 = (C_1 + C_2 + C_3)U$$
(2.7.12)

 oder

$$\frac{Q_{ges}}{U} = C_{ges} = \frac{Q_1 + Q_2 + Q_3}{U} = C_1 + C_2 + C_3$$
(2.7.13)

bei Parallelschaltung

$$C = \sum_{i=1}^{n} C_i \tag{2.7.14}$$

Bei der REIHENSCHALTUNG wird die angelegte SPANNUNG U auf die in Reihe geschalteten Kondensatoren aufgeteilt.

	C ₁	C ₂	C ₃
U	U ₁	U ₂	0

Abb. 2.27.: REIHENSCHALTUNG oder SERIENSCHALTUNG von Kondensatoren.

Auf den Kondensatoren sind die LADUNGEN

 $Q = Q_1 = (U - U_1) C_1 = Q_2 = (U_1 - U_2) C_2 = Q_3 = U_2 C_3$ gespeichert, da in diesem System nur LADUNGEN verschoben, aber nicht erzeugt oder vernichtet

werden können. Also ist

$$\frac{Q}{C_{1}} = U - U_{1}
\frac{Q}{C_{2}} = U_{1} - U_{2}
\frac{Q}{C_{3}} = U_{2}$$
(2.7.15)

 oder

$$U = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3} = Q\left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}\right) = \frac{Q}{C_{ges.}}$$
(2.7.16)

Für die Reihenschaltung gilt
$$\frac{1}{C_{ges}} = \sum_{i=1}^{n} \frac{1}{C_i}$$
(2.7.17)

2.8. Energie des elektrischen Feldes

Literatur: (Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 204]) (Siehe Tipler, Physik [TM04, pp. 729])

Versuch 14: Versuch zur Vorlesung: Energieumwandlung (Versuchskarte EM-157)

Ein Plattenkondensator der Kapazität C sei auf die SPANNUNG $U = \frac{Q}{C}$ aufgeladen. Wir transportieren die LADUNG ΔQ von einer Seite zur anderen. Die Arbeit ist

$$W(Q, Q + \Delta Q) = U \cdot \Delta Q = \frac{Q \Delta Q}{C}$$
(2.8.1)

Dabei haben wir die LADUNG ΔQ über die Potentialdifferenz U transportiert.

$$W(0,Q) = \int_{0}^{Q} \frac{QdQ}{C} = \frac{Q^2}{2C}$$
(2.8.2)

also

$$E_{pot}\left(C\right) = \frac{Q^2}{2C} \tag{2.8.3}$$

oder mit $C = \frac{\varepsilon_0 A}{d}$

$$E_{pot}\left(d\right) = \frac{Q^2 d}{2\varepsilon_0 A} \tag{2.8.4}$$

oder mit $Q = U \cdot C$

$$E_{pot}\left(U\right) = \frac{U^2 \cdot C}{2} \tag{2.8.5}$$

Das Integral über die Oberfläche eines Leiters verknüpft die Ladung $Q = EA\varepsilon_0$ mit dem elektrischen Feld. Das Volumen ist $V = A \cdot d$. Zusammen ergibt sich

$$E_{pot} = \frac{E^2 \cdot A \cdot d \cdot \varepsilon_0}{2} = \frac{E^2 \cdot V \cdot \varepsilon_0}{2} = \frac{E \cdot D \cdot V}{2}$$
(2.8.6)

oder mit $w_{el} = \lim_{V \to 0} \frac{E_{pot}}{V}$ der ENERGIEDICHTE DES ELEKTRISCHEN FELDES

$$w_{el} = \frac{\varepsilon_0 E^2}{2} = \frac{\boldsymbol{E} \cdot \boldsymbol{D}}{2} \tag{2.8.7}$$

Die Kraft $\Delta \mathbf{F}_V$ auf ein Volumenelement ΔV wird durch

$$\boldsymbol{F}_{V}(\boldsymbol{r}) = \lim_{\Delta V \to 0} \frac{\Delta \boldsymbol{F}_{V}(\boldsymbol{r})}{\Delta V} = \rho_{el}(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r})$$
(2.8.8)

beschrieben, da

$$\Delta \boldsymbol{F}_{V}(\boldsymbol{r}) = \boldsymbol{E}(\boldsymbol{r}) \cdot \Delta Q = \boldsymbol{E}(\boldsymbol{r}) \cdot \rho_{el} \cdot \Delta V \qquad (2.8.9)$$

Das elektrische Feld übt eine MECHANISCHE SPANNUNG aus

$$\sigma_{Maxwell} = \lim_{\Delta V \to 0} \frac{\Delta \boldsymbol{F}(\boldsymbol{r}) \cdot \boldsymbol{n}}{\Delta V}$$
(2.8.10)

Diese Spannung wird MAXWELLSPANNUNG genannt. Sie hat die Einheit des Druckes. \boldsymbol{n} ist der Normalenvektor der Oberfläche.

Die OBERFLÄCHENLADUNGSDICHTE eines Metalls sei die Ursache des elektrischen Feldes. Wir hatten die potentielle Energie im Feld des Plattenkondensators ausgerechnet: $E_{pot} = \frac{Q^2}{2C}$. Die Arbeit, den Kondensator von d auf $d + \Delta d$ zu bringen ist.

$$W(d, d + \Delta d) = F\Delta d \qquad = E_{pot} (d + \Delta d) - E_{pot} (d)$$

$$= \frac{Q^2}{2\varepsilon_0 A} (d + \Delta d) - \frac{Q^2 d}{2\varepsilon_0 A} \qquad = \frac{Q^2 \Delta d}{2\varepsilon_0 A}$$

$$= \frac{Q^2}{A^2} \cdot \frac{\Delta d A}{2\varepsilon_0} \qquad = \sigma^2 \frac{\Delta d A}{2\varepsilon_0}$$

$$= \varepsilon_0^2 E^2 \cdot \frac{A\Delta d}{2\varepsilon_0} \qquad = \frac{\varepsilon_0}{2} E^2 A\Delta d \qquad (2.8.11)$$

und damit

$$\sigma_{Maxwell} = \frac{F}{A} = \frac{\varepsilon_0}{2} E^2 = \frac{\boldsymbol{D} \cdot \boldsymbol{E}}{2}$$
(2.8.12)

Beispiel: In einem Laser können Felder von $10^{12}~V~m^{-1}$ auftreten. Dies entspricht einer Maxwell-Spannung von $4.43\cdot10^{12}~\mathrm{Pa}\simeq4.43\cdot10^{7}$ bar.

Wichtig: Energiedichten haben die Einheit des Druckes. In jedem Raumgebiet, in dem Energie gespeichert wird, herrscht Druck.

Versuch 15: Versuch zur Vorlesung:

Spannungswaage (Kirchhoffsche Waage) (Versuchskarte ES-16, Video)

2.8.1. Diskussion Versuch Flächenladungsdichte

Im Versuch Flächenladungsdichte wird die Flächenladungsdichte gemessen, indem eine kleine Kugel in Kontakt mit verschieden grossen Kugeln auf einem konstanten Potential $\varphi = U$ gebracht werden.

Abb. 2.28.: Schematische Darstellung des Flächenladungsversuches.

In der Abbildung 2.28 wird der Messprozess schematisch gezeigt. Eine Kugel mit dem Radius R wird auf die SPANNUNG U aufgeladen. Die kleine Kugel mit dem Radius r wird mit der grossen Kugel in Kontakt gebracht. Nach kurzer Zeit haben beide Kugeln gegen Erde (unendlich) das Potential $\varphi_0 = U$. Wenn wir annehmen, dass die kleine Kugel eine unwesentliche Störung der grossen Kugel ist, ist die Kapazität der beiden Kugeln

$$C_{\text{gemeinsam}} \approx C_R = 4\pi\varepsilon_0 R$$
 (2.8.13)

Die Flächenladungsdichte der beiden Kugeln im Kontakt ist durch

$$Q_R = 4\pi \left(R^2 + r^2\right) \sigma_{\text{gemeinsam}} = C_{\text{gemeinsam}} U \approx C_R U = 4\pi\varepsilon_0 R U \qquad (2.8.14)$$

gegeben. Durch die Trennung der beiden Kugeln wird die Flächenladungsdichte $\sigma_{\text{gemeinsam}}$ auf beiden Kugeln eingefroren. Für die kleine Kugel haben wir dann

$$q_r = 4\pi r^2 \sigma_{\text{gemeinsam}} \tag{2.8.15}$$

Die Kugel hat nach der Trennung ein anderes Potential gegen unendlich, nämlich

$$q_r = 4\pi r^2 \sigma_{\text{gemeinsam}} = C_r U_r = 4\pi \varepsilon_0 r U_r \Rightarrow U_r = \frac{r \sigma_{\text{gemeinsam}}}{\varepsilon_0}$$

Aus dem Potential an der grossen Kugel $U=\frac{R\sigma_{\rm gemeinsam}}{\varepsilon_0}$ bekommt man

$$\sigma_{\text{gemeinsam}} = \frac{\varepsilon_0 U}{R} \tag{2.8.16}$$

und

$$U_r = U \frac{r}{R} \tag{2.8.17}$$

Aus Gleichung (2.8.15) und Gleichung (2.8.16) erhalten wir

$$q_r = 4\pi r^2 \frac{\varepsilon_0 U}{R} = \frac{4\pi \varepsilon_0 r^2}{R} U = 4\pi r^2 \sigma_{\text{gemeinsam}}$$
(2.8.18)

Die Kugel wird schliesslich auf das Ladungsmessgerät (eigentlich ein Strom-Integrierer) aufgebracht. Die gemessene Ladung ist proportional zu 1/R und damit proportional zu $\sigma_{\text{gemeinsam}}$.

2.9. Elektrische Eigenschaften der Materie

Versuch 16: Versuch zur Vorlesung: Influenzversuch: Verschiebungsdichte im Kondensator (Versuchskarte ES-018, Video)

Wir betrachten ein Modellatom bestehend aus einem KERN der LADUNG Ze und einer Elektronenwolke der LADUNG -Ze. Ohne äusseres Feld liegen die Ladungsschwerpunkte übereinander. Dabei ist hier Z die Anzahl der PROTONEN im Kern, die KERNLADUNGSZAHL.

Abb. 2.29.: Schematisches Bild eines ATOMS mit seiner ELEKTRONENHÜLLE.

Auf den positiven Kern wirkt die Kraft

$$\boldsymbol{F}_{+} = Z \, e \, \boldsymbol{E} \tag{2.9.1}$$

Auf die negative Elektronenwolke wirkt

$$\boldsymbol{F}_{-} = -Z \, e \, \boldsymbol{E} \tag{2.9.2}$$

Die Federkraft wirkt auf die positive Ladung wie

$$\boldsymbol{F}_{+,\text{Feder}} = -k\boldsymbol{x} \tag{2.9.3}$$

Auf die negative Ladung wirkt die Federkraft

$$\boldsymbol{F}_{-,\text{Feder}} = -k\left(-\boldsymbol{x}\right) \tag{2.9.4}$$

Das Kräftegleichgewicht für die positive Ladung lautet:

$$F_{+} + F_{+,\text{Feder}} = 0 = ZeE - kx \Rightarrow ZeE = kx$$
(2.9.5)

Alternativ kann das Kräftegleichgewicht für die negative Ladung angegeben werden:

$$\boldsymbol{F}_{-} + \boldsymbol{F}_{-,\text{Feder}} = 0 = -Ze\boldsymbol{E} - k(-\boldsymbol{x}) \Rightarrow Ze\boldsymbol{E} = k\boldsymbol{x}$$
(2.9.6)

Das induzierte Dipolmoment ist

$$\boldsymbol{p}_{ind} = Ze\boldsymbol{x} \tag{2.9.7}$$

und damit

$$\boldsymbol{p}_{ind} = \frac{(Ze)^2}{k} \cdot \boldsymbol{E} = \alpha \boldsymbol{E}$$
(2.9.8)

Dabei ist α die atomare Polarisierbarkeit (Einheit $[\alpha]={\rm Fm}^2={\rm Cm}^2/{\rm V}=$

 $\mathrm{Asm}^2/\mathrm{V}$).

Atom oder Molekül	$\alpha / \left(10^{-40} \text{ Asm}^2 / \text{V} \right)$
He	0.2
Li^+	0.03
Ne	0.4
K^+	0.9
Xe	3.5
0	3.5
CCl_4	10
Cl ⁻	4
I-	7

Tab. 2.2.: Gefüllte Elektronenschale

Atom oder Molekül	$\alpha/\left(10^{-40} \text{ Asm}^2/\text{V}\right)$
Н	0.7
Li	13
К	38
\mathbf{Cs}	46

Tab. 2.3.: Nicht gefüllte Elektronenschale

Die potentielle Energie des induzierten Dipols im homogenen Feld ${\pmb E}$ ist

$$E_{pot} = \frac{\alpha}{2} \boldsymbol{E}^2 = \frac{\boldsymbol{p}_{ind}^2}{2\alpha} = \frac{1}{2} \boldsymbol{E} \, \boldsymbol{p}_{ind}$$
(2.9.9)

da

$$\Delta E_{pot} = W(\boldsymbol{p}, \boldsymbol{p} + \Delta \boldsymbol{p}) = Q\boldsymbol{E} \cdot \Delta \boldsymbol{x} = \boldsymbol{E} \cdot \Delta \boldsymbol{p} = \frac{\boldsymbol{p}}{\alpha} \cdot \Delta \boldsymbol{p}$$
(2.9.10)

und damit

$$E_{pot} = \int_{0}^{p} \frac{\boldsymbol{p}}{\alpha} d\boldsymbol{p} = \frac{\boldsymbol{p}^{2}}{2\alpha}$$
(2.9.11)

2.9.1. Dielektrika

Versuch 17: Versuch zur Vorlesung:

Plattenkondensator mit Dielektrikum (Versuchskarte ES-3, Video)

Bis jetzt haben wir angenommen, dass das elektrische Feld im Vakuum gemessen wurde. Dann gilt

$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} \tag{2.9.12}$$

Abb. 2.30.: Isolatoren in einem Kondensatoren

Die Beziehung zwischen angelegter SPANNUNG und dem elektrischen Feld ist

$$E = \frac{U}{d} \tag{2.9.13}$$

unabhängig von den Eigenschaften des Isolationsmaterials. Andererseits ist

$$D = \varepsilon_0 E = \frac{\varepsilon_0 U}{d} = \frac{\varepsilon_0 Q}{Cd} = \frac{\varepsilon_0 Q}{\varepsilon_0 \frac{A}{d}d} = \frac{Q}{A}$$
(2.9.14)

abhängig von der gespeicherten LADUNG. Am Kondensator können D und E unabhängig bestimmt werden.

In vielen Fällen sind D und E linear voneinander abhängig. $D = \varepsilon \varepsilon_0 E = (1 + \chi_e) \varepsilon_0 E$ (2.9.15) mit $\varepsilon \ge 1$ und $\chi_e \ge 0$.

 ε heisst die Permittivität, χ_e die dielektrische Suszeptibilität.

Material	ε	$\alpha/(10^{-40} \text{ Asm}^2/\text{V})$
Vakuum	1	0
Luft	1.0006	2.00332
Paraffin	2.1	38.7601
Diamant	5.6	0.912181
Glas	5-9	5.71864 - 7.27827
Silizium	11.9	4.16924
Wasser $(291K, 0Hz)$	81	7.65901
Wasser $(291K, 1PHz)$	1.77	1.62297
Rutil (\perp)	90	7.9997
Rutil ()	170	8.12512

Im Allgemeinen sind ε und χ_e Tensoren.

Tab. 2.4.: Einige relative Permittivitäten

Alle Formeln der Elektrostatik können auf isotrope und homogene DIELEKTRIKA angewandt werden, indem ε_0 durch $\varepsilon\varepsilon_0$ ersetzt wird.

2.9.1.1. Woher rührt $\varepsilon > 1$?

Wenn ein Material ortsfeste permanente elektrische **Dipole** besitzt, dann werden diese im extremen Feld ausgerichtet. Die LADUNGEN im Inneren des Materials kompensieren sich. An der Oberfläche treten LADUNGEN auf, die das äussere Feld schwächen.

Abb. 2.31.: Anordnung permanenter Dipole ohne und mit elektrischem Feld.

Dabei werden die positiven LADUNGEN an der Oberfläche angereichert, in die das elektrische Feld zeigt. Die negativen LADUNGEN werden auf der Gegenseite angereichert. Diese Polarisation heisst ORIENTIERUNGSPOLARISATION.

Abb. 2.32.: Links: unpolares Medium ohne äusseres elektrisches Feld. Rechts: mit einem nach links gerichteten elektrischen Feld.

Ein unpolares Medium wird durch das äussere Feld nach Gleichung (2.9.8) polarisiert. Die Ladungsschwerpunkte der Elektronen verschieben sich und wieder entsteht ein inneres elektrisches Feld, das dem äusseres Feld entgegen wirkt. Diese Polarisation ist die VERSCHIEBUNGSPOLARISATION.

2.9.1.2. Stetigkeitsbedingungen an der Grenze zweier Dielektrika

Wir verwenden das GAUSSSCHE GESETZ. Im ladungsfreien Raum gilt div D = 0 (siehe Gleichung (2.3.9)). Da das elektrostatische Feld ein konservatives Feld ist, gilt auch **rot** E = 0. Wir betrachten eine Oberfläche A, die ein Stück ΔA der Grenzfläche umschliesst. Dann ist

$$\int_{A} \boldsymbol{D} \cdot d\boldsymbol{a} = -D_{1\perp} \Delta A + D_{2\perp} \Delta A = 0$$

und damit gilt für die DIELEKTRISCHE VERSCHIEBUNG die folgende Stetigkeitsbedingung

$$D_{1\perp} = D_{2\perp} \tag{2.9.16}$$

Wir verwenden weiter eine Schlaufes, die die Grenzfläche zweimal durchdringt und erhalten

$$\int_{A(s)} \operatorname{rot} \boldsymbol{E} \cdot d\boldsymbol{a} = \oint_{s} \boldsymbol{E} \cdot d\boldsymbol{s} = E_{1||} \frac{s}{2} - E_{2||} \frac{s}{2} = 0$$

und damit gilt für das ELEKTRISCHES FELD die folgende Stetigkeitsbedingung

$$E_{1||} = E_{2||} \tag{2.9.17}$$

52

An der Grenzfläche zweier Dielektrika gilt

• die Komponente der dielektrischen Verschiebung senkrecht zur Grenzfläche und

• die Komponente des elektrischen Feldes parallel zur Grenzfläche

sind stetig.

Mit grad $\varphi = -E$ können diese Stetigkeitsbedingungen auch für das POTENTIAL φ umgeschrieben werden

$$\begin{aligned}
\varphi_1 &= \varphi_2\\ \varepsilon_1 \frac{\partial \varphi_1}{\partial n} &= \varepsilon_2 \frac{\partial \varphi_2}{\partial n}
\end{aligned} (2.9.18)$$

2.9.1.3. Das Gesetz von Clausius und Mosotti

In diesem Abschnitt wollen wir aus einer mikroskopische Betrachtung einen Zusammenhang zwischen der relativen PERMITTIVITÄT und der POLARISIERBARKEIT ableiten. Die POLARISATION eines Atoms oder Moleküls hängt von der POLARI-SIERBARKEIT α sowie vom lokalen elektrischen Feld E_{lokal} ab. Dieses lokale Feld ist die Summe aus dem externen Feld E sowie dem Feld aller anderen Dipole am Beobachtungsort, E_i .

$$\boldsymbol{E}_{lokal} = \boldsymbol{E} + \boldsymbol{E}_i \tag{2.9.19}$$

Die POLARISATION hängt vom lokalen Feld E_{lokal} wie folgt ab:

$$\boldsymbol{P} = n\boldsymbol{p}_{ind} = n\alpha \boldsymbol{E}_{lokal} \tag{2.9.20}$$

wobei *n* die Dichte der induzierten Dipole ist. Die Polarisation \boldsymbol{P} hat dann die Einheit $[\boldsymbol{P}] = C/m^2$.

Abb. 2.33.: Berechnung des Gesetzes von Clausius-Mosotti

Zur Berechnung von E_i und damit E_{lokal} betrachten wir ein homogenes Dielektrikum mit ε , bei dem ein kugelförmiges kleines Volumen mit dem Radius R entfernt wurde. In diesem Volumen berechnen wir das lokale Feld[Som78, S. 68],[LL85], das von einem externen Feld E in der x-Richtung hervorgerufen wird.

Das externe elektrische Feld erzeugt im Inneren des Dielektrikums eine Polarisation, die das externe elektrische Feld schwächt. Deshalb gibt es an der Oberfläche eine Oberflächenladungsdichte, die durch die Polarisation im Inneren des Dielektrikums hervorgerufen wird.

Die Polarisation steht senkrecht auf der Kugeloberfläche (analoge Argumentation wie bei E). Das Die Polarisation des Dielektrikums erzeugt deshalb an der Oberfläche des Hohlraums eine Ladungsdichte $\sigma(\Theta) = P_n = P_x \cos \theta$, analog wie eine Ladungsdichte und ein elektrisches Feld mit $E = \sigma/\varepsilon_0$ zusammenhängt. Nach dem Coulombgesetz (Gleichung (2.1.5)) ist der Beitrag von σda gegeben durch

$$dE_{i,r} = \frac{\sigma da}{4\pi\varepsilon_0 R^2} = \frac{P_x \cos\theta}{4\pi\varepsilon_0 R^2} da \qquad (2.9.21)$$

gegeben. Die x-Komponente ist dann

$$dE_{i,x} = \frac{P_x \cos^2 \theta}{4\pi\varepsilon_0 R^2} da, \qquad (2.9.22)$$

da $dE_{i,r}$ auf die *x*-Achse projiziert werden muss. Wir integrieren über die ganze Kugel und beachten, dass $da = r^2 \sin \theta d\theta d\varphi$ ist. Die Integration über φ (Faktor 2π) und diejenige über *r* (Faktor 1, da die LADUNG an der Oberfläche konzentriert ist) sind sofort ausführbar, so dass wir mit $\int \cos^2(\theta) \sin(\theta) d\theta = -\frac{1}{3} \cos^3(\theta)$

$$E_{i,x} = \frac{P_x}{4\pi\varepsilon_0} 2\pi \int_0^{\pi} \cos^2\theta \sin\Theta d\theta = \frac{1}{3\varepsilon_0} P_x$$
(2.9.23)

erhalten. Da die x-zufällig gewählt wurde, gilt die LORENTZ-BEZIEHUNG auch

allgemein

$$E_i = \frac{1}{3\varepsilon_0}P\tag{2.9.24}$$

Mit

$$\boldsymbol{P} = (\varepsilon - 1)\,\varepsilon_0 \boldsymbol{E} = \chi_e \varepsilon_0 \boldsymbol{E} \tag{2.9.25}$$

wird aus der Kombination von Gleichung (2.9.20) und Gleichung (2.9.24) die CLAUSIUS-MOSOTTI-BEZIEHUNG

$$\frac{\chi_e}{\chi_e+3} = \frac{\varepsilon - 1}{\varepsilon + 2} = \frac{n\alpha}{3\varepsilon_0}$$
(2.9.26)

die die Polarisierbarkeit α mit der relativen Permittivität ε verknüpft. nist die Dichte der induzierten Dipole.

Die Rechnung verläuft folgendermassen

$$P = (\varepsilon - 1)\varepsilon_0 E \qquad \qquad E = \frac{P}{(\varepsilon - 1)\varepsilon_0}$$

$$P = n\alpha E_{lokal}$$

$$E_{lokal} = \frac{P}{n\alpha} \qquad \qquad E_{lokal} = E + E_i$$

$$\frac{P}{n\alpha} = \frac{P}{(\varepsilon - 1)\varepsilon_0} + \frac{P}{3\varepsilon_0} \qquad \qquad = \frac{1}{\varepsilon_0} \left(\frac{1}{(\varepsilon - 1)} + \frac{1}{3}\right)$$

$$= \frac{1}{\varepsilon_0} \left(\frac{3 + \varepsilon - 1}{3(\varepsilon - 1)}\right) \qquad \qquad = \frac{1}{\varepsilon_0} \left(\frac{2 + \varepsilon}{3(\varepsilon - 1)}\right)$$

$$\frac{n\alpha}{3\varepsilon_0} = \frac{\varepsilon - 1}{\varepsilon + 2} \qquad \qquad \varepsilon = \frac{3\varepsilon_0 + 2n\alpha}{3\varepsilon_0 - n\alpha}$$

2.9.1.4. Kondensator gefüllt mit Dielektrikum

Abb. 2.34.: Links: Kondensator ohne und rechts: mit Dielektrikum

Wir betrachten einen Kondensator, dessen Platten die konstante LADUNG Q tragen. Das Feld im Inneren des Kondensators sei um den Faktor ε geringer als das Feld E_0 ohne Dielektrikum

$$E = \frac{E_0}{\varepsilon} \tag{2.9.27}$$

Bei einem Plattenkondensator mit dem Abstand d ist

$$U = Ed = \frac{E_0 d}{\varepsilon} = \frac{U_0}{\varepsilon}$$
(2.9.28)

Die Kapazität ist

$$C = \frac{Q}{U} = \frac{Q}{\frac{U_0}{\varepsilon}} = \varepsilon \frac{Q}{U_0} = \varepsilon C_0$$
(2.9.29)

Also ist beim Plattenkondensator

$$C = \varepsilon \varepsilon_0 \frac{A}{d} \tag{2.9.30}$$

Die dielektrische Verschiebung ist im obigen Falle konstant

$$D = \frac{Q}{A} \tag{2.9.31}$$

Hält man die SPANNUNG fest, wenn ein Dielektrikum in den Kondensator eingebracht wird ist,

$$Q = \varepsilon Q_0 \tag{2.9.32}$$

2.9.2. Elektrische Phänomene

Versuch 18: Versuch zur Vorlesung: Steighöhe im Kondensator (Versuchskarte ES-12)

Die Energiedichte im Kondensator ist

$$w_{el} = \frac{1}{2} \boldsymbol{D} \cdot \boldsymbol{E} \tag{2.9.33}$$

56

Wenn wir das obige Experiment durchführen, steigt die dielektrische Flüssigkeit. Dabei erhöht sich die im elektrischen Feld gespeicherte Energie und auch die potentielle Energie.

Wie geht das?

Abb. 2.36.: Skizze der Änderungen beim Anlegen einer SPANNUNG

Zur Berechnung müssen wir auch die Batterie oder Spannungsquelle mit betrachten [Kän78].

1. Mechanische Arbeit:

$$dW_{mech} = Fdx$$

2. Elektrostatische Energie im Volumen a b dx: Die SPANNUNG U wird konstant gehalten, und damit auch

$$E = \frac{U}{a}$$

Dabei nehmen wir ein homogenes Feld an

$$dW_{el} = \left(\frac{1}{2}\varepsilon\varepsilon_0 E^2 - \frac{1}{2}\varepsilon_0 E^2\right)abdx$$

$$= \frac{1}{2}(\varepsilon - 1)\varepsilon_0 \frac{U^2}{a^2}abdx$$

$$= \frac{1}{2}(\varepsilon - 1)\varepsilon_0 U^2 \frac{b}{a}dx \qquad (2.9.34)$$

3. Die **Batterie** liefert elektrische Energie, da die Ladungsmenge sich ändert. Die Kapazität ändert sich um

$$dC = \varepsilon \varepsilon_0 \frac{bdx}{a} - \varepsilon_0 \frac{bdx}{a}$$
$$= (\varepsilon - 1) \varepsilon_0 \frac{bdx}{a}$$
(2.9.35)

Die SPANNUNG U₀ wird aufrecht erhalten und die LADUNG dQ transportiert $(E_{pot} = qU)$ Also

$$dW_{Batt} = UdQ \qquad (2.9.36)$$
$$= U \cdot UdC$$
$$= (\varepsilon - 1) \varepsilon_0 U^2 \frac{bdx}{a}$$

4. Die **Energiebilanz** ist

$$dW_{mech} + dW_{el} = dW_{Batt} \tag{2.9.37}$$

$$Fdx + \frac{1}{2}\left(\varepsilon - 1\right)\varepsilon_0 U^2 \frac{b}{a} dx = \left(\varepsilon - 1\right)\varepsilon_0 U^2 \frac{b}{a} dx \qquad (2.9.38)$$

und somit

$$F = \frac{1}{2} \left(\varepsilon - 1\right) \varepsilon_0 \frac{b}{a} U^2 \tag{2.9.39}$$

2.9.2.1. Dielektrische Flüssigkeit im Kondensator bei konstanter Ladung

Wenn der Kondensator von allen Spannungsquellen getrennt ist, bleibt die Ladung auf seinen Platten, Q, konstant. Die dielektrische Verschiebung D und nicht das elektrische Feld E bleiben konstant.

1. Mechanische Arbeit:

$$dW_{mech} = Fdx$$

2. Elektrostatische Energie im Volumen a b dx: Die Ladung Q wird konstant gehalten, und damit auch

$$D = \frac{Q}{A}$$

 ${\cal A}$ ist die effektive Plattenfläche des Kondensators. Dabei nehmen wir ein homogenes Feld an

$$dW_{el} = \left(\frac{1}{2\varepsilon\varepsilon_0}D^2 - \frac{1}{2\varepsilon_0}D^2\right)abdx$$
$$= \frac{1-\varepsilon}{2\varepsilon\varepsilon_0}\frac{Q^2}{A^2}abdx \qquad (2.9.40)$$

 dW_{el} ist negativ, da $1 - \varepsilon < 0$ ist.

3. Die Energiebilanz ist

$$dW_{mech} + dW_{el} = 0 \tag{2.9.41}$$

$$Fdx + \frac{1-\varepsilon}{2\varepsilon\varepsilon_0}\frac{Q^2}{A^2}abdx = 0$$
(2.9.42)

und somit

$$F = \frac{1}{2} \frac{(\varepsilon - 1)}{\varepsilon \varepsilon_0} \frac{Q^2}{A^2} ab$$
(2.9.43)

Der alternative Weg zur Lösung geht so: Der Kondensator habe eine gesamte Fläche von A = L b. Auf der Länge x ist das Dielektrikum, Dann ist die Kapazität (Parallelschaltung)

$$C = \varepsilon \varepsilon_0 \frac{x \, b}{a} + \varepsilon_0 \frac{(L-x)b}{a} \tag{2.9.44}$$

Wenn die Ladung Q = const auf den Platten ist, ist die resultierende Spannung

$$U = \frac{Q}{C} = \frac{aQ}{b\varepsilon_0 \left(L + x(\varepsilon - 1)\right)}$$
(2.9.45)

Die Platten sind Äquipotentialflächen, also können wir das elektrische Feld berechnen

$$E = \frac{U}{a} = \frac{Q}{b\,\varepsilon_0\,(L + x(\varepsilon - 1))}\tag{2.9.46}$$

Dieses ist gleich im leeren wie im gefüllten Bereich. Damit können wir die Energiedichten mit und ohne Dielektrikum bestimmen:

$$w_{el,D} = \frac{1}{2} \varepsilon \varepsilon_0 E^2 = \frac{\varepsilon \varepsilon_0 Q^2}{b^2 \varepsilon_0^2 (L + x(\varepsilon - 1))^2} = \frac{\varepsilon Q^2}{b^2 \varepsilon_0 (L + x(\varepsilon - 1))^2}$$
(2.9.47a)

$$w_{el,o} = \frac{1}{2} \varepsilon_0 E^2 = \frac{\varepsilon_0 Q^2}{b^2 \varepsilon_0^2 (L + x(\varepsilon - 1))^2} = \frac{Q^2}{b^2 \varepsilon_0 (L + x(\varepsilon - 1))^2}$$
(2.9.47b)

Die gesamte Energie im Kondensator ist die Summe aus den potentiellen Energien im leeren und gefüllten Teil.

$$E_{tot} = w_{el,D} x a b + w_{el,o} (L - x) a b = \frac{a Q^2}{2b \varepsilon_0 (L + x(\varepsilon - 1))}$$
(2.9.48)

Schliesslich kann die Kraft am Ort ℓ berechnet werden

$$F = -\left. \frac{d}{dx} E_{pot} \right|_{x=\ell} = \frac{(\varepsilon - 1)Q^2 a}{2\varepsilon_0 b \left(L - \ell(\varepsilon - 1)\right)^2}$$
(2.9.49)

2.10. Zusammenfassung: die Grundgleichungen der Elektrostatik

Ladung Symbol q oder Q, Einheit [q] = C = A s = Coulomb

Permittivität Gleichung (2.1.4)

$$\varepsilon_0 = 8.8544 \cdot 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

Coulomb-Gesetz Gleichung (2.1.5)

$$\boldsymbol{F}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q_1 \cdot q_2}{r_{12}^2} \frac{\boldsymbol{r}_{12}}{r_{12}}$$

Elektrisches Feld Gleichung (2.2.2)

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r_{12}^2} \frac{\boldsymbol{r}_{12}}{r_{12}}$$

Symbol \boldsymbol{E} , Einheit $[\boldsymbol{E}] = N C^{-1} = V m^{-1}$

- **Elektrische Feldlinien** Elektrische Feldlinien beginnen bei der positiven LA-DUNG und enden bei der negativen LADUNG.
 - Die Anzahl der von einer LADUNG ausgehenden oder auf einer LADUNG endenden Feldlinien ist proportional zur Ladungsmenge.
 - Ihre Dichte ist proportional zum elektrischen Feld.

Elektrisches Feld einer kontinuierlichen Ladungsverteilung Gleichung (2.2.5)

$$\boldsymbol{E}(\boldsymbol{r}_0) = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\rho_{el}(\boldsymbol{r})}{|\boldsymbol{r}_0 - \boldsymbol{r}|^2} \frac{\boldsymbol{r}_0 - \boldsymbol{r}}{|\boldsymbol{r}_0 - \boldsymbol{r}|} dV$$

Ladung in einem Raumgebiet Gleichung (2.3.1)

$$Q = \int_{V(S)} \rho_{el}(\boldsymbol{r}) dV$$

dielektrische Verschiebung Gleichung (2.3.5)

$$\boldsymbol{D}(\boldsymbol{r}) = \varepsilon \varepsilon_0 \boldsymbol{E}(\boldsymbol{r})$$

elektrische Flussdichte Gleichung (2.3.5)

$$oldsymbol{D}(oldsymbol{r})=arepsilonarepsilon_0oldsymbol{E}(oldsymbol{r})$$

elektrischer Fluss Gleichung $(2.3.10)\Phi_e = \Phi_D = \int_A D \cdot da$

Fluss des elektrischen Feldes Gleichung (2.3.4) $\Phi_E = \int_A E \cdot da$

Gauss'sches Gesetz für eine Punktladung Gleichung (2.3.3)

$$\int_{\text{Kugeloberfläche}} \boldsymbol{E} \cdot \boldsymbol{n} da = \int_{\text{Kugeloberfläche}} \left(\frac{Q}{4\pi\varepsilon_0 |\boldsymbol{r}|^2} \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|} \right) \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|} r^2 \sin \Theta d\Theta d\varphi$$
$$= \int_{\text{Kugeloberfläche}} \frac{Q r^2}{4\pi\varepsilon_0 |\boldsymbol{r}|^2} \cdot \left(\frac{\boldsymbol{r}}{|\boldsymbol{r}|} \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|} \right) \sin \Theta d\Theta d\varphi$$
$$= \frac{Q}{4\pi\varepsilon_0} \int_{\text{Kugeloberfläche}} \sin \Theta d\Theta d\varphi$$
$$= \frac{Q}{\varepsilon_0}$$

Gauss'sches Gesetz für eine Ladungsverteilung Gleichung (2.3.7)

$$\iint_{A} \boldsymbol{D}(\boldsymbol{r}) \cdot d\boldsymbol{a}(\boldsymbol{r}) = \iint_{A} \boldsymbol{D}(\boldsymbol{r}) \cdot \boldsymbol{n}(\boldsymbol{r}) d\boldsymbol{a}(\boldsymbol{r})$$
$$= Q_{\text{in A}}$$
$$= \iiint_{V(A)} \rho_{el}(\boldsymbol{r}) dV$$

Differentialform des Gaussschen Gesetzes Gleichung (2.3.9)

div
$$\boldsymbol{D}(\boldsymbol{r}) = \rho_{el}(\boldsymbol{r})$$

Leiter Leiter haben in ihrem Inneren keine statischen elektrischen Felder.

Potentielle Energie einer Probeladung Gleichung (2.5.4)

$$E_{pot}\left(\boldsymbol{r}_{2}\right) = E_{pot}\left(\boldsymbol{r}_{1}\right) - \int_{\boldsymbol{r}_{1}}^{\boldsymbol{r}_{2}} \frac{1}{4\pi\varepsilon_{0}} \frac{qQ}{r^{2}} \frac{\boldsymbol{r}}{r} \cdot d\boldsymbol{r}$$

Elektrostatisches Potential und Spannung Gleichung (2.5.11)

$$\varphi(\boldsymbol{r}) = U(\boldsymbol{r}) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r} = \frac{E_{pot}(\boldsymbol{r})}{q}$$

Potentielle Energie und Potential Gleichung (2.5.14)

$$egin{aligned} & \displaystyle egin{aligned} & \displaystyle egin{align$$

Potential einer kontinuierlichen Ladungsverteilung Gleichung (2.5.17)

$$U(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho_{el}(\boldsymbol{r})}{|\boldsymbol{r} - \boldsymbol{r}_i|} dV = \frac{1}{4\pi\varepsilon_0} \int \frac{dq(\boldsymbol{r})}{|\boldsymbol{r} - \boldsymbol{r}_i|}$$

Poisson-Gleichung Gleichung (2.6.4)

$$\Delta U\left(\boldsymbol{r}\right) = -\frac{\rho_{el}\left(\boldsymbol{r}\right)}{\varepsilon_{0}}$$

Kapazität Gleichung (2.7.4)

$$U_j - U_i = \frac{Q}{C_{ji}} = U_{ji} = \varphi_{ij}$$

Parallelschaltung von Kondensatoren Gleichung (2.7.14)

$$C = \sum_{i=1}^{n} C_i$$

Reihenschaltung von Kondensatoren Gleichung (2.7.17)

$$\frac{1}{C_{ges}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

Energiedichte des elektrostatischen Feldes Gleichung (2.8.7)

$$w_{el} = rac{arepsilon_0 E^2}{2} = rac{oldsymbol{E} \cdot oldsymbol{D}}{2}$$

Maxwell-Spannung Gleichung (2.8.10) und Gleichung (2.8.12)

$$\sigma_{Maxwell} = \lim_{\Delta V \to 0} \frac{\Delta \boldsymbol{F}(\boldsymbol{r}) \cdot \boldsymbol{n}}{\Delta V}$$

$$\sigma_{Maxwell} = \frac{F}{V} = \frac{\varepsilon_0}{2}E^2 = \frac{\boldsymbol{D}\cdot\boldsymbol{E}}{2}$$

induziertes Dipolmoment Gleichung (2.9.8)

$$oldsymbol{p}_{ind} = rac{(Ze)^2}{k} \cdot oldsymbol{E} = lpha oldsymbol{E}$$

Lorentz-Beziehung Gleichung (2.9.24)

$$E_i = \frac{1}{3\varepsilon_0}P$$

dielektrische Suszeptibilität Gleichung $\left(2.9.15\right)$

$$\boldsymbol{D} = \varepsilon \varepsilon_0 \boldsymbol{E} = (1 + \chi_e) \, \varepsilon_0 \boldsymbol{E}$$

Stetigkeit der Feldkomponenten An der Grenzfläche zweier Dielektrika gilt

- die Komponente der dielektrischen Verschiebung senkrecht zur Grenzfläche und
- die Komponente des elektrischen Feldes parallel zur Grenzfläche sind stetig.

Stetigkeitsbedingung für das Potential

$$\begin{array}{rcl} \varphi_1 &=& \varphi_2 \\ \varepsilon_1 \frac{\partial \varphi_1}{\partial n} &=& \varepsilon_2 \frac{\partial \varphi_2}{\partial n} \end{array}$$

3. Elektrische Ströme

Ströme und Magnetfelder beschreiben

- die Funktionsweise von Motoren,
- die Funktionsweise von Fernsehröhren,
- die Funktionsweise von Beschleunigern,
- die Arbeitsweise von Magnetbändern und Festplatten und
- die Funktionsweise von Lautsprechern

Abb. 3.1.: Kräfte auf LADUNGEN in einem Leiter

Bei Anlegen eines elektrischen Feldes werden LADUNGEN beschleunigt. Die Wechselwirkung der LADUNGEN mit dem Medium ergibt eine Begrenzung der DRIFT-GESCHWINDIGKEIT. Medien für den LADUNGSTRANSPORT können sein:

- Metalle
- Ionische Materialien
- Plasmen

Die LADUNGSTRÄGER sind

- Elektronen
- Ionen
- Positronen

• Protonen

also alle geladenen Teilchen oder Moleküle.

Der Strom wird als

$$I = \left. \frac{\Delta Q}{\Delta t} \right|_{\text{Fläche}} \tag{3.0.1}$$

die in einer bestimmten Zeit durch eine Fläche ${\cal A}$ fliessende Ladungsmenge definiert.¹

Der ELEKTRISCHE STROM I beschreibt den Fluss von Ladung. Deshalb fliesst der STROM von "+" nach "-". Der ELEKTRISCHE STROM I darf nicht mit dem Massenstrom \dot{m} verwechselt werden. Bei positiver Ladung ist die Geschwindigkeit des die Ladung tragenden Masseteilchens **parallel** zur Stromrichtung. Bei negativer Ladung ist die Geschwindigkeit des die Ladung tragenden Masseteilchens **antiparallel** zur Stromrichtung.

Man beobachtet, dass I proportional zu $U=E\ell,$ der angelegten SPANNUNG über der Strecke ℓ ist.

3.1. Die Kontinuitätsgleichung und der Begriff des Stromes

(Siehe Leisi, Klassische Physik II [Lei98, pp. 64])

¹Der an Gymnasien propagierte physikalische Strom von "-" nach "+" ist ein Massenstrom, aber nicht ein Strom von Ladung. Wir beschäftigen uns hier mit Ladungsströmen und nicht mit Massenströmen. Die gymnasiale Unterscheidung von von physikalischer und technischer Stromrichtung ist unsinnig. Die physikalische Stromrichtung ist das gleiche wie die technische Stromrichtung, also so wie hier definiert.

Abb. 3.2.: Berechnung des Stromes in einem Medium

Wir betrachten LADUNGSTRÄGER mit der einheitlichen LADUNG q. Die Ladungsträgerdichte n_j habe die Geschwindigkeit v_j . Der STROM δI_j durch das Flächenelement $d\mathbf{a}$ ist

$$\delta I_j = \frac{\delta Q_j}{dt} \tag{3.1.1}$$

Die Ladungsmenge ist

$$\delta Q_j = qn_j \mid \boldsymbol{v}_j \mid \cdot dt \cdot \cos \alpha \cdot \mid d\boldsymbol{a} \mid$$
(3.1.2)

und damit

$$\delta I_j = qn_j \mid \boldsymbol{v}_j \mid \cos \alpha \mid d\boldsymbol{a} \mid = qn_j \boldsymbol{v}_j \cdot d\boldsymbol{a}$$
(3.1.3)

Der gesamte STROM der LADUNGSTRÄGER q ist dann

$$dI(d\boldsymbol{a}) = nq \ \frac{1}{n} \left(\sum_{j} n_{j} \boldsymbol{v}_{j} \right) \cdot d\boldsymbol{a}$$
(3.1.4)

wobei $n = \sum n_j$ ist.

Die mittlere Geschwindigkeit der LADUNGSTRÄGER ist

$$\langle \boldsymbol{v} \rangle = \frac{1}{n} \sum_{j} n_{j} \cdot \boldsymbol{v}_{j} \tag{3.1.5}$$

Wir definieren das VEKTORFELD der STROMDICHTE

$$\boldsymbol{i} = nq \langle \boldsymbol{v} \rangle \tag{3.1.6}$$

 \pmb{i} ist abhängig vom Ort, da auch nund $\langle \pmb{v} \rangle$ ortsabhängig sind. Der Strom bezüglich $d\pmb{a}$ ist dann

$$dI(d\boldsymbol{a}) = \boldsymbol{i} \cdot d\boldsymbol{a} \tag{3.1.7}$$

und, integriert,

$$I(A) = \int_{A} \boldsymbol{i} \cdot d\boldsymbol{a}$$
(3.1.8)

Diese Gleichung besagt, dass der STROM gleich dem FLUSS des STROMDICHTEFELDES durch eine Fläche A ist.

Wird der STROM durch mehrere Arten von LADUNGSTRÄGERN gebildet, schreibt man

$$\boldsymbol{i} = \sum_{k} n_{k} q_{k} \left\langle \boldsymbol{v}_{k} \right\rangle \tag{3.1.9}$$

Beispiel:

Driftgeschwindigkeit in einem Kupferdraht mit 10 mm Durchmesser und I = 100 A

Annahme: 1 Elektron pro Cu - Atom

Anzahl Cu - Atome pro Volumen

$$n_a = \frac{\rho N_A}{M_{Mol}} = \frac{8930 \text{ kg m}^{-3} \cdot 6.02 \cdot 10^{23} \text{ mol}^{-1}}{0.0635 \text{ kg mol}^{-1}}$$
$$= 8.47 \cdot 10^{28} \text{ m}^{-3} = n_e$$
(3.1.10)

Und mit $q_k = e$

$$\langle v \rangle = \frac{I}{n_e e A} = \frac{100 \text{ A}}{8.47 \cdot 10^{28} \text{ m}^{-3} \cdot \frac{\pi}{4} (0.01 \text{ m})^2 \cdot 1.6 \cdot 10^{-19} \text{ C}}$$
$$\approx 1 \text{ µm s}^{-1}$$
(3.1.11)

Mit $v(t) = v_0 \cos(2\pi\nu t)$ und $x(t) = \int v(t)dt$ hat man

$$x(t) = \frac{v_0}{2\pi\nu}\sin(2\pi\nu t) + \text{const}$$

Die maximale Strecke erhält man wenn der Sinus von -1 nach +1 geht.

Folgerung: bei $\nu = 50$ Hz Wechselstrom zittern die Elektronen einige $\frac{1 \text{ } \mu \text{m } \text{s}^{-1}}{2\pi \cdot 50 \text{ } \text{Hz}} \cdot 2 \approx 6.4 \text{ nm weit.}$

Abb. 3.3.: Berechnung des Flusses eines Stromdichtefeldes durch ein geschlossenes Gebiet

Wir betrachten eine geschlossene Fläche A, die wir in zwei Teilflächen A' und A'' aufteilen, so dass auf der Fläche A' die Feldlinie aus der Fläche austreten und auf der Fläche A'' sie eindringen.

Die LADUNGSERHALTUNG fordert:

$$I_{aus} - I_{ein} = -\frac{d}{dt}Q_{innen} \tag{3.1.12}$$

Wir schreiben die Gleichung mit der STROMDICHTE um

$$\iint_{A'} \boldsymbol{i} \cdot d\boldsymbol{a}' - \iint_{A''} \boldsymbol{i} \left(-d\boldsymbol{a}'' \right) = -\frac{d}{dt} \iint_{V(A)} \rho_{el} dV \qquad (3.1.13)$$

 oder

$$\iint_{A} \boldsymbol{i} \cdot d\boldsymbol{a} = -\frac{d}{dt} \iiint_{V} \rho_{el} \, dV \tag{3.1.14}$$

Dies ist die Integralform der KONTINUITÄTSGLEICHUNG. Mit dem Gaussschen Satz bekommen wir

$$\iint_{A} \boldsymbol{i} \cdot d\boldsymbol{a} = \iiint_{V} \operatorname{div} \boldsymbol{i} \, dV = - \iiint_{V} \frac{d}{dt} \rho_{el} \, dV \qquad (3.1.15)$$

Die Differentialform der Kontinuitätsgleichung lautet demnach:

div
$$\boldsymbol{i}(\boldsymbol{x},t) = -\frac{d}{dt}\rho_{el}(\boldsymbol{x},t)$$
 (3.1.16)

Bei stationären Strömen hängen i und ρ_{el} nicht von der Zeit ab, so dass

$$\operatorname{div} \, \boldsymbol{i} = 0 \tag{3.1.17}$$

 $\operatorname{ist.}$

©2005-2020 Ulm University, Othmar Marti, COBY-SA

$$\iint\limits_{A} \boldsymbol{i} \cdot d\boldsymbol{a} = 0 \tag{3.1.18}$$

Beispiel:

Abb. 3.4.: Stromfluss in einem Kondensator

Wir betrachten eine quasistationäre Änderung am Kondensator

$$\iint_{A_1} \mathbf{i} \cdot d\mathbf{a} = \iint_{a_1} \mathbf{i} \cdot d\mathbf{a} + \iint_{a_2} \mathbf{i} \cdot d\mathbf{a} = 0$$
(3.1.19)
Mit $I_1 = -\iint_{a_1} \mathbf{i} \cdot d\mathbf{a}$ und $I_2 = \iint_{a_2} \mathbf{i} d\mathbf{a}$ folgt
 $I_1 = I_2$ (3.1.20)

d.h. es scheint, als ob der STROM durch den Kondensator hindurch fliessen würde. Wenn wir die Kontinuitätsgleichung auf A_2 anwenden, bekommen wir

$$\iint_{a_3} \boldsymbol{i} d\boldsymbol{a} = -I_1(t) = -\frac{dQ(t)}{dt}$$
(3.1.21)

 oder

$$I(t) = \frac{dQ(t)}{dt}$$
(3.1.22)

Die Einheit der Stromstärke ist Ampère $\left[I\right]=\mathbf{A}$

$$1 A = 1 C s^{-1}$$
(3.1.23)

3.2. Das Ohmsche Gesetz

Literatur: (Siehe Leisi, Klassische Physik II [Lei98, pp. 71]) (Siehe Tipler, Physik [TM04, pp. 751])

Versuch 19: Versuch zur Vorlesung:

Strom-Spannungs-Kennlinie (Versuchskarte EM-83, Video (VPN oder intern))

Allgemein gilt für einen Leiter, dass

$$\boldsymbol{i}\left(\boldsymbol{E}\right) = f\left(\boldsymbol{E}\right) \tag{3.2.1}$$

eine beliebige Funktion des angelegten Feldes \boldsymbol{E} ist. Im linearen Fall

$$\boldsymbol{i}\left(\boldsymbol{E}\right) = \sigma \boldsymbol{E} \tag{3.2.2}$$

spricht man von einem OHMSCHEN LEITER.

P T

Versuch 20: Versuch zur Vorlesung:

Ohmscher Leiter (Versuchskarte EM-117, Video (VPN oder intern))

 σ ist die Leitfähigkeit. Ihre Einheit ist

$$[\sigma] = A m^{-2} \cdot m V^{-1} = A V^{-1} m^{-1} = \Omega^{-1} m^{-1}$$

Das Gesetz nach Gleichung (3.2.2) heisst das lokale Ohmsche Gesetz. Für homogene Medien ist σ eine Zahl. Für inhomogene Medien wie GRAPHIT ist σ ein TENSOR. Indem wir die differentielle Form des Ohmschen Gesetzes integrieren, erhalten wir

$$\int_{A} \boldsymbol{i} d\boldsymbol{a} = I = \int_{A} \sigma \boldsymbol{E} d\boldsymbol{a} = \int_{A} \sigma \frac{U}{d} d\boldsymbol{a} = \sigma \frac{A}{d} U \qquad (3.2.3)$$

Dabei haben wir angenommen, dass \boldsymbol{i} und σ konstant über A sind. Das integrale Ohmsche Gesetz kann auch als

$$I = G \cdot U \tag{3.2.4}$$

geschrieben werden. G ist der Leitwert. Die Einheit ist

$$[G] = \text{Siemens} = \text{S} = \text{A V}^{-1} \text{ m}^{-1} \cdot \text{m}^2 \text{ m}^{-1} = \text{A V}^{-1}$$

G und σ stehen in der Beziehung

$$G = \sigma \frac{A}{\ell},\tag{3.2.5}$$

wobe
i ℓ die Länge des zylinderförmigen Leiters und
 A dessen Querschnitt ist. Bekannter ist die Form

$$U = \frac{1}{G} \cdot I = R \cdot I \tag{3.2.6}$$

 $R = \frac{1}{G}$ ist der WIDERSTAND. Seine Einheit ist das Ohm

$$[R] = \Omega = \mathbf{S}^{-1} = \mathbf{V} \ \mathbf{A}^{-1} = \mathbf{W} \ \mathbf{A}^{-2}$$

Die zu R gehörende mikroskopische Grösse ist der SPEZIFISCHE WIDERSTAND

$$\rho = \frac{1}{\sigma} \tag{3.2.7}$$

R und ρ hängen über

$$R = \rho \frac{\ell}{A} \tag{3.2.8}$$

zusammen. Dabei ist ℓ die Länge des zylinderförmigen Leiters und A dessen Querschnitt.

Die Einheit des spezifischen Widerstandes ist

$$[\rho] = \mathbf{V} \mathbf{m} \mathbf{A}^{-1} = \mathbf{\Omega} \mathbf{m} = \mathbf{m} \mathbf{S}^{-1}$$

sowie die der Leitfähigkeit

$$[\sigma] = A V^{-1} m^{-1} = S m^{-1} = \Omega^{-1} m^{-1}$$

Versuch 21: Versuch zur Vorlesung: Ohmsches Gesetz (Versuchskarte Applet)

Um einen Zusammenhang zwischen einem mikroskopischen Bild und makroskopischen Grössen zu bekommen betrachten wir die Bewegung von Ionen ($\langle v \rangle \approx 100 \text{ m s}^{-1}$) in einer Umgebung von nicht ionisierten Molekülen

Abb. 3.5.: Bahnkurven ohne und mit elektrischem Feld.
Die Masse eines Ions sei M, ihre LADUNG q und die Gesamtzahl im betrachteten Volumenelement N.

Die Newtonsche Bewegungsgleichung lautet

$$\boldsymbol{F} = q\boldsymbol{E} = \frac{d\boldsymbol{p}}{dt} \tag{3.2.9}$$

oder

$$\Delta \boldsymbol{p} = q \boldsymbol{E} \Delta t \tag{3.2.10}$$

wobei Δt die freie Flugzeit ist. Der mittlere Impuls eines Ions ist

$$M \langle \boldsymbol{v} \rangle_t = \frac{1}{N} \sum_{j=1}^N \left[M \boldsymbol{v}_j^{(k)} + q \boldsymbol{E} \Delta t_j \right]$$
(3.2.11)

 $\langle \bm{v} \rangle$ ist die mittlere DRIFTGESCHWINDIGKEIT, $\bm{v}_j^{(k)}$ die Geschwindigkeit nach dem letzten Stoss.

Sind die Geschwindigkeiten $v_j^{(k)}$ isotrop verteilt, mittelt sich der erste Summand zu null. Unter dieser Annahme ist

$$M \cdot \langle \boldsymbol{v} \rangle_t = q \boldsymbol{E} \left(\frac{1}{N} \sum \Delta t_j \right) = q \boldsymbol{E} \cdot \langle \Delta t \rangle_t$$
 (3.2.12)

wobe
i $\langle \Delta t \rangle_t = \tau$ die mittlere Zeit zwischen den Zusammenstössen ist. Mit
 $i=nq\,\langle \bm{v} \rangle_t$ bekommen wir

$$\langle \boldsymbol{v} \rangle_t = \frac{q \cdot \langle \Delta t \rangle_t}{M} \boldsymbol{E} = \frac{q\tau}{M} \boldsymbol{E} = \mu \, \boldsymbol{E}.$$
 (3.2.13)

Hier ist $\mu = \frac{q \cdot \langle t \rangle}{M} = \frac{q \tau}{M}$ die BEWEGLICHKEIT der Ladungsträger mit der Ladung qund der Masse M. Die Einheit der Beweglichkeit ist

$$[\mu] = m^2 V^{-1} s^{-1} = C s kg^{-1}$$

Weiter ist

$$\boldsymbol{i} = n \frac{q^2 \cdot \langle \Delta t \rangle_t}{M} \boldsymbol{E} = n \frac{q^2 \tau}{M} \boldsymbol{E} = n q \, \mu \, \boldsymbol{E}$$
(3.2.14)

Dabei ist n die Dichte der LADUNGSTRÄGER. Somit ist bei einer Mischung verschiedener LADUNGSTRÄGER

$$\sigma = \sum_{k} n_k \frac{q_k^2 \tau_k}{M_k} = \sum_{k} n_k \, q_k \, \mu_k \tag{3.2.15}$$

Von Gleichung (3.2.13) an wurde $\tau = \langle t \rangle$ gesetzt.

Das Ohmsche Gesetz gilt, wenn τ_k , n_k und μ_k unabhängig vom elektrischen Feld E sind.

Beispiel: Metall

Wir nehmen an, dass $m_e \ll m_{Kern}$ ist. Dann sind die Geschwindigkeiten nach dem Stossen isotrop verteilt. Die mittlere Geschwindigkeit der Elektronen ist $\langle v_e \rangle = 10^5 \text{ m s}^{-1}$ (kinetische Gastheorie [Mar15, Kap. 2.2.]). Mit

$$\frac{1}{\rho_{\exp}} = \sigma = n_e \frac{e^2 \tau}{m_e} \tag{3.2.16}$$

bekommen wir

$$\tau = \frac{m_e}{\rho_{\exp} n_e e^2} = 3.3 \cdot 10^{-14} \text{ s}$$
(3.2.17)

 (mit $\rho_{\rm exp}=4.3\cdot 10^{-8}~\Omega$ m und $n_e=2.5\cdot 10^{28}~{\rm m}^{-3}$ für Na-Metall) Die mittlere freie Weglänge ist dann

$$\lambda = \langle v_e \rangle \, \tau = 3.3 \text{ nm} \tag{3.2.18}$$

im Widerspruch zum Ionenabstand von $0.1 \text{ nm} \implies$ Lösung: Quantenmechanik

Versuch 22: Versuch zur Vorlesung:

Leitfähigkeit (Versuchskarte EM-172, Video)

Versuch 23: Versuch zur Vorlesung:

Temperaturabhängigkeit der Leitfähigkeit (Versuchskarte TH-122, Video)

Bei einem homogenen Ohmschen Leiter mit einer stationären Stromverteilung ist $\rho_{el} = 0$ im Inneren. Dies folgt aus

- 1. Ohmsches Gesetz $i(x, y, z) = \sigma E(x, y, z)$
- 2. Kontinuitätsgleichung div i = 0, also div $(\sigma E) = 0$ und damit div E = 0
- 3. das Gausssche Gesetz sagt div $E = \frac{\rho_{el}}{\epsilon_0}$
- 4. damit folgt die Behauptung, dass $\rho_{el} = 0$.

Aus der Eigenschaft

$$\boldsymbol{E} = -\operatorname{\mathbf{grad}} \varphi = -\operatorname{\mathbf{grad}} U \tag{3.2.19}$$

erhalten wir im Inneren eines Leiters

div
$$\boldsymbol{E} = -\operatorname{div} \operatorname{\mathbf{grad}} \varphi = -\Delta \varphi = 0$$
 (3.2.20)

Dies bedeutet, dass φ im Inneren eines homogenen Ohmschen Leiters das Potential eines Potentialfeldes ist. Die Lösung von

$$\Delta \varphi = 0 \tag{3.2.21}$$

ist durch die Randbedingungen

- 1. $U = \varphi = \text{const}$ an den Elektrodenflächen (bei den Anschlüssen nach aussen)
- 2. $i_{\perp} = 0$ sonst (entlang des Leiters, Drahtoberfläche!)

gegeben².

Mit diesen Gleichungen kann man zum Beispiel den WIDERSTAND eines homogenen Leiters berechnen. Bei inhomogenen Leitern müssen wir das Ohmsche Gesetz in seiner Differentialform verwenden. Aus der Kontinuitätsgleichung für stationäre Stromverteilungen Gleichung (3.1.17) und dem lokalen Ohmschen Gesetz Gleichung (3.2.2) bekommen wir

div
$$\boldsymbol{i}(x, y, z) = \operatorname{div} \left[\sigma(x, y, z) \boldsymbol{E}(x, y, z)\right] = 0$$
 (3.2.22)

Wir ersetzen nun \boldsymbol{E} und erhalten

div
$$[\sigma(x, y, z) \text{ grad } U(x, y, z)] = 0$$
 (3.2.23)

Bei einem homogenen Leiter könnte $\sigma(x, y, z)$ vor die Divergenz gezogen werden.

Abb. 3.6.: Berechnung des Widerstandes bei einem inhomogenen Leiter

Wir verwenden die Definition des Stromes in Gleichung (3.1.8) und wenden Sie auf die Fläche A, beziehungsweise auf den Teil, der den Leiter durchschneidet a, an.

$$\iint_{A} \sigma \boldsymbol{E} \cdot d\boldsymbol{a} = \iint_{a} \sigma \boldsymbol{E} \cdot d\boldsymbol{a} = I \qquad (3.2.24)$$

wobe
iadie durch Aaus dem Leiter herausgeschnitten
e Fläche ist. Die Spannungsdifferenz ist

$$U_2 - U_1 = \int_s \boldsymbol{E} \cdot d\boldsymbol{s} \tag{3.2.25}$$

²Im Gegensatz zum Kondensator ist hier $E \neq 0$ in einem endlichen Gebiet.

Wenn nun $\varphi_1(x, y, z)$ eine Lösung von Gleichung (3.2.23) ist, dann ist aufgrund der Linearität dieser Gleichung auch

$$U_2(x, y, z) = kU_1(x, y, z)$$
(3.2.26)

eine Lösung. Dabei kann k eine beliebige, auch komplexzahlige Zahl sein. Da $E = -\operatorname{grad} U$ auch eine lineare Gleichung ist, muss also auch

$$\boldsymbol{E}_2 = -\operatorname{\mathbf{grad}} U_2 = -k \operatorname{\mathbf{grad}} U_1 = k \boldsymbol{E}_1 \tag{3.2.27}$$

eine Lösung sein. Nach Gleichung (3.2.24) ist dann auch

$$I_2 = \iint_a \sigma \boldsymbol{E}_2 \cdot d\boldsymbol{a} = \iint_a \sigma k \boldsymbol{E}_1 \cdot d\boldsymbol{a} = k \iint_a \sigma \boldsymbol{E} \cdot d\boldsymbol{a} = k I_1 \qquad (3.2.28)$$

Damit haben wir, dass bei einem beliebigen inhomogenen Leiter

$$\frac{U_2}{I_2} = \frac{U_1}{I_1} = \text{const} = R \tag{3.2.29}$$

ist. Die Proportionalitätskonstante ist der WIDERSTAND R. Um den WIDERSTAND eines beliebigen Leiters zu berechnen, muss man E(x, y, z) im Inneren kennen. Dies kann man erreichen, indem man die Laplacegleichung löst.

Im statischen Falle ist $\boldsymbol{E}(x, y, z) = 0$ im Inneren eines Leiters. Bei einem stromdurchflossenen Leiter liefert die Batterie die notwendige Energie, um das elektrische Feld im Inneren des Leiters aufrecht zu erhalten.

Versuch 24: Versuch zur Vorlesung: Kombination von Widerständen (Versuchskarte Applet)

Aus den Gesetzen dieses Kapitels können die folgenden Berechnungen für Ersatzwiderstände abgeleitet werden:

Reihenschaltung von Widerständen Wenn zwei Widerstände in Reihe oder Serie geschaltet werden, fliesst durch beide der gleiche Strom, aber die Spannungen teilen sich auf. Wenn wir uns Widerstände als Drähte mit gleichem Querschnitt A und gleichem spezifischen Widerstand ρ vorstellen, haben wir $R_1 = \frac{\rho}{A} \ell_1$ und $R_2 = \frac{\rho}{A} \ell_2$. Die Serieschaltung heisst, dass wir einen Draht der Länge $\ell = \ell_1 + \ell_2$ haben. Damit ist $R = \frac{\rho}{A} \ell_1 + \frac{\rho}{A} \ell_2 = \frac{\rho}{A} \ell$.

$$R_{\text{Serie}} = R_1 + R_2$$
 bei *N* Widerständen in Serie $R_{\text{Serie}} = \sum_{i=1}^{N} R_i$ (3.2.30)

Mit ${\cal N}$ Leitwerten in Serie:

$$\frac{1}{G_{\text{Serie}}} = \sum_{i=1}^{N} \frac{1}{G_i}$$
(3.2.31)

Parallelschaltung von Widerständen Wenn zwei Widerstände parallel geschaltet werden, ist die anliegende Spannung bei beiden Widerständen gleich. Die Ströme addieren sich. Wenn wir uns Widerstände als Drähte mit gleicher Länge ℓ und gleichem spezifischen Widerstand ρ vorstellen, haben wir $R_1 = \rho \ell \frac{1}{A_1}$ und $R_2 = \rho \ell \frac{1}{A_2}$. Die Parallelschaltung heisst nun, dass die Flächen addiert werden. Die Rechnung ist einfacher mit Leitwerten $G_1 = \frac{\sigma}{\ell} A_1$ und $G_2 = \frac{\sigma}{\ell} A_2$ (mit $\sigma = 1/\rho$). dann wird die Fläche addiert $A = A_1 + A_2$. Damit ist $G = \frac{\sigma}{\ell} A_1 + \frac{\sigma}{\ell} A_2 = \frac{\sigma}{\ell} A$.

$$G_{\text{parallel}} = G_1 + RG_2$$
 bei N Leitwerten in Serie $G_{\text{parallel}} = \sum_{i=1}^{N} G_i$ (3.2.32)

Mit N Widerständen in Serie:

$$\frac{1}{R_{\text{parallel}}} = \sum_{i=1}^{N} \frac{1}{R_i}$$
(3.2.33)

3.3. Elektromotorische Kraft und Joulsche Wärme

(Siehe Leisi, Klassische Physik II [Lei98, pp. 85]) (Siehe Tipler, Physik [TM04, pp. 756])

Ein elektrisches Feld im Inneren eines Leiters bewirkt einen STROM. Wird dieses elektrische Feld durch LADUNGEN erzeugt, bewirkt der resultierende STROM einen Ausgleich dieser LADUNG. Durch Influenz werden die Oberflächenladungen so umgeschichtet, dass der STROM abnimmt und schliesslich verschwindet.

Abb. 3.7.: Ladungstransport in einem mit einem WIDERSTAND R kurzgeschlossenen VAN DE GRAAFF-GENERATOR.

Nehmen wir an, dass im stationären Betrieb eine SPANNUNG U zwischen der Kugel und dem Fuss des van-de-Graaff-Generators liegen. Das elektrische Feld entlang des Bandes ist dann, in erster Näherung,

$$E = U/\ell \tag{3.3.1}$$

Die Arbeit, eine Ladungseinheit dQgegen dieses elektrische Feld zur Halbkugel zu bringen, ist³

$$dW_M = dQ \cdot U \tag{3.3.2}$$

Die Leistung des Motors, der hier als Spannungsquelle wirkt, ist

$$P_M = \frac{dW_M}{dt} = \frac{dQ}{dt}U = I \cdot U \tag{3.3.3}$$

Das elektrische Feld leistet im WIDERSTAND auf der anderen Seite in der Zeitdt die Arbeit

$$dW_E = E \cdot dQ \cdot \ell \tag{3.3.4}$$

oder, mit Gleichung (3.3.1),

$$dW_E = dQ \cdot U \tag{3.3.5}$$

Damit ist die Leistung des E-Feldes

$$P_E = \frac{dW_E}{dt} = \frac{dQ}{dt}U = I \cdot U = P_M \tag{3.3.6}$$

Die Energie des elektrischen Stromes wird im WIDERSTAND in JOULSCHE WÄRME umgesetzt, also ist die Leistung der Wärmequelle auch

$$P_J = P_M = P_E = I \cdot U \tag{3.3.7}$$

³Wir vernachlässigen dabei die Gravitationsarbeit. Frage: Ist dies für das Problem wichtig (prinzipiell und praktisch)?

Bei einem Ohmschen Leiter erhalten wir

$$P = R \cdot I^2 = \frac{U^2}{R} \tag{3.3.8}$$

Wenn wir eine Probeladung q_0 langsam um den Stromkreis herumführen, ist die geleistete Arbeit grösser als null. Diese Arbeit nennen wir ELEKTROMOTORISCHE KRAFT der Stromquelle. Wir definieren also

$$U_{EMK} = \frac{1}{q_0} \int \boldsymbol{F} \cdot d\boldsymbol{s} \tag{3.3.9}$$

Diese elektromotorische Kraft⁴ ist die Arbeit, die beim Herumführen einer kleinen LADUNG q_0 von der Stromquelle geleistet wird. Beim van-de-Graaff-Generator besteht diese Arbeit aus zwei Teilen:

- Auf dem Band wird an jedem Punkt die Kraft des elektrostatischen Feldes durch die Kraft des Motors kompensiert. Auf diesem Zweig ist die Arbeit null.
- Die Arbeit, die im WIDERSTAND in JOULSCHE WÄRME umgewandelt wird.

Die elektromotorische Kraft einer Stromquelle ist die Quelle der Energie (Arbeit), die einen konstanten Stromfluss in einem Stromkreis aufrecht erhält. Neben der elektromotorischen Kraft können auch magnetische Kräfte und andere Quellen einen Stromfluss in einem Leiter aufrecht erhalten.

Versuch 25: Versuch zur Vorlesung:

EMK des Daniell-Elementes (Versuchskarte TH-44, Video)

3.4. RC-Stromkreise

(Siehe Leisi, Klassische Physik II [Lei98, pp. 88]) (Siehe Tipler, Physik [TM04, pp. 761]) (Siehe Tipler, Physik [TM04, pp. 790])

Versuch 26: Versuch zur Vorlesung:

Entladen eines Kondensators (Versuchskarte EM-145, Video)

Ohne ein Verständnis von Stromkreisen sind moderne elektronische Schaltungen nicht verständlich. Wir betrachten deshalb Schaltungen aus Kondensatoren und Widerständen. Zur Erinnerung: die relevanten Gleichungen sind

⁴Die elektromotorische Kraft ist keine Kraft im Sinne der Mechanik!

- $U = R \cdot I = R \cdot \frac{dQ}{dt}$ für Widerstände
- $Q = \int I dt = U \cdot C$ für Kondensatoren

Wir betrachten die folgende Schaltung

Abb. 3.8.: Aufladen und Entladen eines Kondensators über einen WIDERSTAND.

Für die Zeit t < 0 soll der Schalter S in der gezeigten Stellung sein. Die SPANNUNG am Kondensator ist $U_C = 0$. Damit ist auch Q = 0 und I(t) = 0. Für $t \ge 0$ wird der Kondensator C mit der SPANNUNGSQUELLE U verbunden. Da Spannungen im quasistationären Falle sich wie potentielle Energien verhalten, kann man für

$$U_R(t) = U - U_C(t) = I(t) \cdot R$$
(3.4.1)

schreiben. Ebenso gilt

$$U_{C}(t) = \frac{Q(t)}{C} = \frac{\int_{0}^{t} I(\tau) d\tau}{C}$$
(3.4.2)

Zusammen erhalten wir die Differentialgleichung

$$\dot{Q}(t) \cdot R + \frac{Q(t)}{C} = U \tag{3.4.3}$$

oder

$$\dot{Q}(t) + \frac{Q(t)}{C \cdot R} = \frac{U}{R} \tag{3.4.4}$$

mit der Anfangsbedingung $U_C(0) = 0 = Q(0)$. Zur Lösung dieser Differentialgleichung machen wir den Ansatz

Partikuläre Lösung $Q = C \cdot U$

Allgemeine Lösung $Q(t) = C \cdot U \cdot e^{-t/(RC)}$

Die Lösung der Differentialgleichung ist

$$Q(t) = U \cdot C \left(1 - e^{-t/(RC)} \right)$$
 (3.4.5)

für $U_C(t)$ ist also

$$U_C(t) = \frac{Q(t)}{C} = U\left(1 - e^{-t/(RC)}\right)$$
(3.4.6)

und

$$U_R(t) = I(t) \cdot R = \dot{Q}(t) \cdot R = Ue^{-t/(RC)}$$
(3.4.7)

Abb. 3.9.: Ladekurven am Kondensator. Die verwendeten Werte sind U = 10 V und $R \cdot C = 0.001$ s.

Die Differentialgleichung für das Entladen lautet

$$\dot{Q}(t) \cdot R + \frac{Q(t)}{C} = 0$$
 (3.4.8)

wobei die Anfangsbedingung nun $U_C(0) = U$ oder $Q(0) = C \cdot U$ ist. Die Lösung dieser Differentialgleichung ist

Partikuläre Lösung Q = 0

Allgemeine Lösung $Q(t) = C \cdot U \cdot e^{-t/(RC)}$

Damit erhalten wir

$$U_C(t) = \frac{Q(t)}{C} = U \cdot e^{-t/(RC)}$$
(3.4.9)

und

$$U_R(t) = I(t) \cdot R = \dot{Q}(t) \cdot R = -U \cdot e^{-t/(RC)}$$
(3.4.10)

Abb. 3.10.: Entladekurven am Kondensator. Die verwendeten Werte sind U = 10 V und $R \cdot C = 0.001$ s.

Die Grösse $\tau = R \cdot C$ ist die Zeitkonstante der Schaltung. In der Zeit τ steigt U_C beim Einschalten von 0 auf 63 %. Ebenso fällt beim Ausschalten die Spannung in der Zeit τ von 100 % auf 37 % ab.

Eine alternative Ableitung dieser Gleichung verwendet eine Leistungsbetrachtung. Die Leistung der Joulschen Wärme im WIDERSTAND und die zeitliche Änderung der Energie im Kondensator müssen gleich der von der Batterie gelieferten Leistung sein.

$$U \cdot I \cdot = R \cdot I^2 + \frac{d}{dt} \left(\frac{Q^2}{2C}\right) \tag{3.4.11}$$

oder

$$U \cdot \frac{dQ}{dt} = R \cdot \left(\frac{dQ}{dt}\right)^2 + \frac{1}{C} \cdot Q \cdot \frac{dQ}{dt}$$
(3.4.12)

und damit

$$U = R \cdot \frac{dQ}{dt} + \frac{1}{C} \cdot Q \tag{3.4.13}$$

3.5. Schaltungen und Bauelemente

Wir kennen bis jetzt zwei Typen von BAUELEMENTEN, den WIDERSTAND und den KONDENSATOR. Beim WIDERSTAND haben wir die Beziehung

$$I(U) = \frac{1}{R}U$$

Abb. 3.11.: Kennlinie eines 1000Ω -Widerstands.

Abbildung 3.11 zeigt die Kennlinie eines Widerstandes. Neben Widerständen und Kondensatoren gibt es andere passive und aktive Bauelemente. Die Kennlinien sind meistens nicht linear. Abbildung 3.12 zeigt verschiedene Bauelemente.

Abb. 3.12.: Symbole für einen WIDERSTAND (Zeichen: R), einen Kondensator (Zeichen: C), eine Diode (Zeichen: D), einen NPN-Transistor (Zeichen: T) und eine Lampe (Zeichen: L). Bei der Diode zeigt der Pfeil von der Anode zur Kathode (mit Querstrich). Beim Transistor heisst der Anschluss mit Pfeil EMITTER, derjenige links BASIS und der Anschluss oben KOLLEKTOR. Die Lampe, der WIDERSTAND und der Kondensator sind symmetrische Objekte.

Diese Bauelemente sind sowohl linear wie nichtlinear. Wenn man die genaue physikalische Funktionsweise eines Bauelementes nicht kennt, dann helfen Kennlinien, trotzdem mit dem Bauelement Schaltungen zu berechnen.

Abb. 3.13.: Messung der Kennlinie eines Widerstandes.

Abbildung 3.13 zeigt wie die Messung geht. Die SPANNUNG U wird über das Potentiometer R_V , ein gebräuchlicher Name für einen veränderbaren WIDERSTAND, an den zu testenden WIDERSTAND R angeschlossen. Mit einem (idealen) Voltmeter wird die SPANNUNG U_R am WIDERSTAND R gemessen. Das ideale Ampèremeter misst den Strom durch I_R durch den WIDERSTAND R. Diese beiden Grössen werden denn wie in Abbildung 3.11 aufgezeichnet.

Abb. 3.14.: Messschaltung zur Bestimmung der Kennlinie einer Diode vom Typ 1N4148.

Abb. 3.15.: Kennlinie einer Diode vom Typ 1N4148 gemessen mit der Schaltung nach Abbildung 3.14.

Als Beispiel eines nichtlinearen Bauelementes zeigt Abbildung 3.14 die Messschaltung und Abbildung 3.15 die Kennlinie der Diode 1N4148. Für positive Spannungen U ist die Diode in DURCHLASSRICHTUNG gepolt. Deshalb sind die Ströme bei kleinen Spannungen sehr gross. In der SPERRICHTUNG Sind die Ströme viel kleiner. Diese können an der rechten Skala abgelesen werden.

Versuch 27: Versuch zur Vorlesung: Dioden-Kennlinie: Halbleiterdiode, Germanium (Versuchskarte EM-024, Video (VPN oder intern))

3.5.1. Grafische Methode zur Bestimmung von Arbeitspunkten

Versuch 28: Versuch zur Vorlesung: Potentiometerschaltung (Versuchskarte Applet)

Abb. 3.16.: Spannungsteiler.

Abbildung 3.16 zeigt einen Spannungsteiler bestehend aus den Widerständen R_1 und R_2 . Die Spannung an R_1 und die Spannung an R_2 sind in Serie. Es muss gelten

$$U = U_{R_1} + U_{R_2} \tag{3.5.1}$$

Andererseits fliesst der gleiche STROM durch R_1 und R_2 und durch den Ersatzwiderstand $R = R_1 + R_2$. Also hat man

$$I = \frac{U}{R} = \frac{U}{R_1 + R_2} = \frac{U_{R_2}}{R_2} = \frac{U_{R_1}}{R_1}$$
(3.5.2)

und daraus

$$U_{R_2} = \frac{R_2}{R_1 + R_2} U \tag{3.5.3}$$

$$U_{R_1} = \frac{R_1}{R_1 + R_2} U \tag{3.5.4}$$

Die SPANNUNG an der Batterie U ist vorgegeben. Wenn die SPANNUNG U_{R_2} an R_2 steigt, muss die SPANNUNG U_{R_1} an R_1 um den gleichen Betrag sinken. Wenn $U_{R_1} = 0$ ist, ist $U_{R_2} = U$, und umgekehrt. Dies bedeutet, dass

$$U_{R_2} = U - U_{R_1} \tag{3.5.5}$$

ist. Wir können also beide Kennlinien in einem Diagramm aufzeichnen.

Abb. 3.17.: Gemeinsame Auftragung der Kennlinien zweier in Reihe geschalteter Widerstände $R_1 = 1 \ k\Omega$ und $R_2 = 4 \ k\Omega$ mit einer Batteriespannung $U = 10 \ V.$

Die beiden Kennlinien in Abbildung 3.17 schneiden sich bei $U_{R_1} = 2$ V und $U_{R_2} = 8$ V. Nur an diesem Punkt stimmt an beiden Widerständen die Beziehung zwischen STROM und SPANNUNG (Ohmsches Gesetz) und gleichzeitig ist die Summer der Spannungsabfälle gleich der Batteriespannung. Setzt man in Gleichung (3.5.3) und Gleichung (3.5.4) die Werte für U, R_1 und R_2 ein, erhält man das gleiche Ergebnis. Das Verfahren zur Bestimmung des Arbeitspunktes ist unabhängig von der Tatsache, dass Widerstände lineare Bauelemente sind. Es funktioniert auch mit Dioden und jeglichen anderen nichtlinearen Bauelementen.

Um grafisch die Spannungsabfälle an zwei in Serie geschalteten Bauelementen zu bestimmen, trägt man die Kennlinien einmal mit zunehmender und für das andere Bauelement mit abnehmender SPAN-NUNG übereinander auf. Der Schnittpunkt ist der gesuchte Arbeitspunkt. Die Spannungen an den zwei Bauelementen können an der entsprechenden Skala direkt abgelesen werden.

Abb. 3.18.: Serieschaltung einer Diode D mit einem WIDERSTAND R.

Abb. 3.19.: Arbeitspunkt einer Diode vom Typ 1N4148 in Serie mit einem WI-DERSTAND $R_1 = 1 \ k\Omega$ (Schaltung nach Abbildung 3.18).

Aus der Abbildung 3.19 liest man ab, dass am Arbeitspunkt der Schaltung nach Abbildung 3.18 die SPANNUNG $U_D = 0.376$ V und an dem WIDERSTAND die SPANNUNG $U_{R_1} = 9.624$ V abfällt. Durch beide Bauteile fliesst der STROM I = 9.57 mA. Das Verfahren nach Abbildung 3.19 ist universell anwendbar.

3.5.2. Transistoren

Ein Transistor hat drei Anschlüsse, den Emitter (E), den Kollektor (C) und die Basis (B). Im Schaltschema ist der Anschluss mit dem Pfeil der Emitter, derjenige auf der gleichen Seite ohne Pfeile der Kollektor und derjenige auf der anderen Seite die Basis.

Abb. 3.20.: Links: Basis-Emitter-Kennlinie des Transistors BC107, rechts: Kollektor-Kennlinie des Transistors BC107 mit dem Basisstrom I_B .

Die BASIS-EMITTER-KENNLINIE in Abbildung 3.20 ist die gewöhnliche Diodenkennlinie. Die rechte Seite von Abbildung 3.20 zeigt das KOLLEKTOR-KENNLINIENFELD des Transistors. Dieses Kennlinienfeld wird manchmal auch das Ausgangskennlinienfeld genannt. Beim Ausgangaskennlinienfeld wird der Basisstrom I_B als Parameter verwendet. Die Abbildung 3.20 zeigt die Kennlinien bei festgehaltenem Basuisstrom, wobei die Basisströme von $I_B = 0.5$ µA bis $I_B = 4$ µA in Schritten von 0.5 µA variieren.

Bei vorgegebener Kollektor-Emitter-Spannung U_{CE} kann man so den Ausgangsstrom am Kollektor bestimmen. Analog kann bei vorgegebenem Kollektorstrom die SPANNUNG zwischen Emitter und Kollektor als Funktion des Basisstroms abgelesen werden. Dies ist wichtig, wenn der Transistor als Schalter verwendet werden soll.

Abb. 3.21.: Schaltung zur Messung des Ausgangskennlinie des Transistors BC107 mit einem Kollektorwiderstand von $5k\Omega$.

Abb. 3.22.: Arbeitskennlinie des Transistors BC107 mit einem Kollektorwiderstand von 5 k Ω gemessen mit der Schaltung nach Abbildung 3.21.

Die Abbildung 3.21 zeigt die Schaltung eines Transistorverstärkers. Der STROM in die Basis I_B steuert den STROM im Kollektor I_C .Der Kollektorstrom fliesst durch den WIDERSTAND R. Die Summe der Spannungsabfälle an beiden Bauelementen muss der Batteriespannung U entsprechen. Wir können also analog wie bei der Diode vorgehen (siehe Abbildung 3.19): Wir zeichnen die Kennlinie des Widerstandes wie bei der Diode rückläufig ein. Die Schnittpunkte der Kennlinie des Widerstandes mit den verschiedenen, basisstromabhängigen Ausgangskennlinien des Transistors sind die Kurve, die die Storm- oder Spannungsverstärkung angibt.

Abb. 3.23.: Verstärkung eines Transistors in der Emitterschaltung (Der Emitter wird sowohl vom Eingang wie vom Ausgang verwendet.)

Abbildung 3.23 zeigt sowohl die Kolektor-Emitterspannung $U_{CE}(I_B)$ wie auch den Kollektorstrom $I_C(I_B)$. Die Verstärkung ist für den Basisstrombereich 0.5 $\mu A < I_B < 3 \ \mu A$ linear. Die Verstärkungswerte sind in Tabelle 3.1 angegeben.

Stromverstärkung $\frac{I_C}{I_B} = 0.252 \text{ mA } \mu \text{A}^{-1} = 252 \mu \text{A} \mu \text{A}^{-1} = 252 \text{ A} \text{A}^{-1}$ Spannungsverstärkung $\frac{U_{CE}}{I_B} = 1.28 \text{ V} \mu \text{A}^{-1}$

Wenn das Eingangssignal nicht ein STROM, sondern eine SPANNUNG sein soll, muss die SPANNUNG mit einem WIDERSTAND in einen STROM umgewandelt werden.

Abb. 3.24.: Verstärkerschaltung mit BC107.

Zum Schluss dieses Abschnittes wollen wir die Schaltung nach Abbildung 3.24 besprechen. Wir verwenden die Daten aus Abbildungen 3.22 und 3.23. Der WI-DERSTAND R_2 ist der Arbeitswiderstand R aus Abbildung 3.21. Wir hatten immer eine SPANNUNG von 5 V über dem Arbeitswiderstand R (oder R_2 hier) und dem Transistor. Wir wollen dies beibehalten und gleichzeitig einen Spannungsabfall von 0.2 V über R_3 haben. Bei unseren vorherigen Berechnungen war $R_2 = 5 \text{ k}\Omega$. Den Arbeitspunkt setzen wir in etwa in die Mitte des linearen Bereiches, bei $I_B = 2 \text{ }\mu\text{A}$ und bei $I_C = 500 \text{ }\mu\text{A}$. Damit ist

$$R_3 = \frac{U_{R_3}}{I_B + I_C} = \frac{0.2 \text{ V}}{500 \text{ }\mu\text{A} + 2 \text{ }\mu\text{A}} = 398 \text{ }\Omega \approx 400 \text{ }\Omega$$

Die Grösse des Widerstandes R_1 finden wir, wenn wir aus Abbildung 3.20 ablesen $U_{BE}(2 \ \mu A) \approx 0.5 \ V$. Die SPANNUNG über R_1 ist dann 4.5 V und wir haben

$$R_1 = \frac{4.5 \text{ V}}{2 \mu \text{A}} = 2.25 \text{ M}\Omega$$

Was ist die Funktion von R_3 ? R_3 stabilisiert die Schaltung gegen Temperaturänderungen und setzt gleichzeitig die Verstärkung fest. Wenn nämlich die Eingangsspannung U_e und damit die Basis-Spannung U_B steigt, steigt der Basisstrom I_B und der Kollektorstrom I_C und damit die SPANNUNG über R_3 . Dieser Spannungsanstieg verringert aber den Anstieg der Basis-Emitter-Spannung, da $U_{BE} = U_e - U_{R_3}$ ist. Die Spannungsverstärkung der Schaltung ist

$$A = \frac{R_2}{R_3} = 12$$

Die Kondensatoren werden so gewählt, dass die tiefsten Frequenzen der zu verstärkenden Signale noch kaum geschwächt werden. Für Signale zwischen 100 Hz und 4 kHz (Telefonbandbreite klassischer Telefone) würde man erhalten $C_1 > 0.7$ pF und $C_2 > 320$ nF. Der so berechnete Wert für C_1 ist falsch: Wir habe vergessen, dass auch der WIDERSTAND Basis-Emitter-Diode (grob abgeschätzt aus der Steigung $r_{BE} = 1 \text{ mV}/2 \ \mu A \approx 500 \ \Omega$ wechselspannungsmässig parallel zu R_1 ist. Zu r_{BE} ist noch R_3 in Serie geschaltet. Die modifizierte Berechnung für C_1 ergibt dann $C_1 > 2$ nF. C_1 kann ohne Probleme 10 bis 100 mal grösser gewählt werden.

Tab. 3.2.: Dimensionierung der Schaltung nach Abbildung 3.24

Weiterführende Informationen finden Sie im Skript Physikalische Elektronik und Messtechnik [Mar09].

3.6. Magnetfeld und Lorentzkraft

Versuch 29: Versuch zur Vorlesung: Kraft zweier stromdurchflossener Leiter (Versuchskarte EM-63, Video (VPN oder intern))

Abb. 3.25.: STROM in zwei parallelen Leitern. Die Leiter haben die Länge ℓ und sind im Abstand r. Sie sind von den Strömen I_1 und I_2 durchflossen.

Wenn in zwei parallelen Stromkreisen Ströme fliessen, so gibt es eine Kraft zwischen den beiden Leitern.

$$F_M = \text{const} \cdot \frac{\ell \cdot I_1 \cdot I_2}{r} \tag{3.6.1}$$

Die beobachtete Kraft hat die in der Gleichung (3.6.1) angegebene Form. Sie wird grösser, wenn längere Leiterstücke parallel sind. Sie nimmt ab, wenn der Abstand zunimmt. Sie hängt vom Produkt der beiden Ströme ab und ist anziehend, wenn die beiden Ströme in die gleiche Richtung fliessen.

Die Kraft F_M ist nicht eine elektrostatische Kraft, da eine geerdete Metallplatte die Kraft, anders als bei der Coulomb-Kraft, nicht abschirmt.

Die Kraft F_M wirkt auf bewegte LADUNGEN!

Die Kraft F_M wirkt auch auf Elektronenstrahlen.

Versuch 30: Versuch zur Vorlesung:

Lorentzkraft auf stromdurchflossenen Leiter (Versuchskarte Applet)

3.7. Die magnetische Kraft

(Siehe Tipler, Physik [TM04, pp. 812]) (Siehe Leisi, Klassische Physik II [Lei98, pp. 91])

Um die Magnetische Kraft zu berechnen gehen wir in zwei Schritten vor:

- 1. Wir zeigen, dass elektrostatische Gesetze auch in bewegten BEZUGSSYSTEMEN gelten.
- 2. Wir berechnen mit den Gesetzen der RELATIVITÄTSTHEORIE die magnetische Kraft.

3.7.1. Ladungsinvarianz bewegter Bezugssysteme

(Siehe Leisi, Klassische Physik II [Lei98, pp. 91])

Abb. 3.26.: Metallischer Gastank mit Ausströmöffnung.

Mit zwei Gedankenexperimenten soll geklärt werden, ob die LADUNG von der Geschwindigkeit abhängt. Zuerst schliessen wir eine grosse Menge H_2 -Gas in den metallischen Tank ein, entladen ihn, und lassen das Gas ausströmen. Die LADUNG des leeren Tanks ist unmessbar klein. Daraus schliesst man:

$$q_{Elektron} = -q_{Proton}$$
(3.7.1)
mit einer Genauigkeit von $|q_{Elektron}| / N = 10^{-20} q_{Elektron}.$

Dies folgt aus dem Gaussschen Gesetz Gleichung (2.3.3)

$$\iint_{A} \boldsymbol{E} \cdot d\boldsymbol{a} = 0 \pm a |q_{Elektron}| = \frac{1}{\varepsilon_0} [NQ(H_2) + q]$$
(3.7.2)

wobei q eine eventuell vor dem Ausströmen vorhandene LADUNG, $Q(H_2)$ die LA-DUNG eines Wasserstoffmoleküls und N die Anzahl der eingeschlossenen Wasserstoffmoleküle ist. a ist die Ungenauigkeit der Ladungsmessung. Aus der Tatsache, dass der Metallbehälter nach dem Ausströmen im Rahmen der Messgenauigkeit ungeladen ist, folgt, dass das H_2 -Molekül ungeladen ist.

Der Versuch wird mit He-Gas wiederholt. Das Resultat ist das gleiche. Nun bewegen sich aber die zwei Protonen im He-Atom mit sehr grosser Geschwindigkeit. Das bedeutet, dass die LADUNG DES PROTONS unabhängig von der Geschwindigkeit ist. Die LADUNG muss insbesondere in jedem INERTIALSYSTEM gleich sein. Wir betrachten zwei Inertialsysteme S und S'^5

$$\iint_{A(t)} \boldsymbol{E} \cdot d\boldsymbol{a} = \iint_{A'(t)} \boldsymbol{E}' \cdot d\boldsymbol{a}'$$
(3.7.3)

 $^{^5\}mathrm{Die}$ Inertial
systeme bewegen sich gegeneinander mit konstanter Geschwindigkeit!

Diese Gleichung drückt die RELATIVISTISCHE LADUNGSINVARIANZ aus. Die LA-DUNGSINVARIANZ ist nicht gleich der LADUNGSERHALTUNG. So ist zum Beispiel die Energie erhalten, zwischen zwei Inertialsystemen aber nicht invariant ($m_0c^2 \neq m(v)c^2$).

3.7.2. Relativistische Berechnung

(Siehe Leisi, Klassische Physik II [Lei98, pp. 94])

Abb. 3.27.: Berechnung der magnetischen Kraft. Links: im Bezugssystem S und rechts:im Bezugssystem S', in dem q in Ruhe ist. Beachte: wir wissen zwar nicht, wie gross der STROM I gemessen im Bezugssystem S im Bezugssystem S' ist. Die LADUNG ist jedoch **invariant**.

Den STROM I modellieren wir mit zwei Ketten aus Ladungsträgern, je eine positiv und negativ geladen. Ihre Linienladungsdichten λ sollen so sein, dass die beiden Ketten neutral sind. Im Ruhesystem S^+ der positiven LADUNGEN ist

$$\lambda_0 = \frac{Q}{L_0} \tag{3.7.4}$$

Im Inertialsystem ${\cal S}$ ist wegen der Ladungsinvarianz

$$\lambda = \frac{Q}{L} \tag{3.7.5}$$

Wegen der Längenkontraktion gilt

$$L = \frac{L_0}{\gamma_0} = L_0 \sqrt{1 - \frac{v_0^2}{c^2}}$$
(3.7.6)

Zusammengenommen erhalten wir

$$\lambda_0 = \frac{\lambda}{\gamma_0} \tag{3.7.7}$$

Die gleiche Beziehung kann für die negativen LADUNGEN abgeleitet werden. Das heisst, wenn in S die Linienladungsdichten der positiven und negativen LADUNGEN gleich sind, dann auch in den jeweiligen Ruhesystemen. In den Ruhesystemen ist die Linienladungsdichte geringer als in bewegten Bezugssystemen. Da die beiden bewegten Ladungsketten die gleiche Linienladungsdichte im System S haben, ist $\boldsymbol{E} = 0$.

Im Ruhesystem S', in dem das Teilchen mit der LADUNG q in Ruhe ist, sieht die Situation anders aus. Die Geschwindigkeit der positiven und der negativen Ladungsketten ist unterschiedlich. deshalb sind sie zusammen nicht mehr elektrisch neutral. Auf die LADUNG q wirkt eine elektrostatische Kraft. Da die Relativgeschwindigkeit der positiven LADUNGEN zu q kleiner ist als die der negativen LADUNGEN, liegen in S' die positiven LADUNGEN weniger dicht als die negativen⁶. Die beiden Ladungsketten sind insgesamt negativ geladen. Deshalb wird q angezogen, wenn q > 0 ist. Das E'-Feld in die z'-Richtung erzeugt in S' die Kraft

$$F'_z = q \cdot E' \tag{3.7.8}$$

Das E-Feld hängt vom Bezugssystem ab, ist also nicht relativistisch invariant!

Das elektrische Feld einer Linienladung im Abstand r ist

$$E(r) = \frac{\lambda}{2\pi\varepsilon_0 \cdot r} \tag{3.7.9}$$

Um das elektrische Feld E' berechnen wir die Geschwindigkeiten v'_+ und v'_- in S'.

Mit den üblichen Abkürzungen

$$\beta \equiv \frac{v}{c}$$

$$\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$$
(3.7.11)

bekommen wir

$$\beta'_{+} = \frac{\beta - \beta_{0}}{1 - \beta_{0}\beta}$$

$$\beta'_{-} = \frac{\beta + \beta_{0}}{1 + \beta_{0}\beta}$$

$$(3.7.12)$$

Mit $\gamma'_+ \equiv \gamma(v'_+)$ und $\gamma'_- \equiv \gamma(v'_-)$ und mit $\lambda_0 = \lambda'_+ / \gamma'_+$ erhalten wir aus $\lambda_0 = \frac{\lambda}{\gamma_0} = \frac{\lambda'_i}{\gamma'_i}$ $(i \in \{+, -\}$

$$\lambda'_{+} = \gamma'_{+} \frac{\lambda}{\gamma_{0}}$$

$$\lambda'_{-} = \gamma'_{-} \frac{\lambda}{\gamma_{0}}$$
(3.7.13)

 $^{^{6}\}mathrm{In}~S$ sind die Ladungsdichten der positiven und negativen LADUNGEN gleich.

Die Netto-Linienladung in S' ist dann

$$\lambda' = \lambda'_{+} - \lambda'_{-} = \frac{\lambda}{\gamma_0} \left(\gamma'_{+} - \gamma'_{-}\right) \tag{3.7.14}$$

Weiter erhalten wir

$$\gamma'_{+} - \gamma'_{-} = \frac{1}{\sqrt{1 - \beta_{+}^{2}}} - \frac{1}{\sqrt{1 - \beta_{-}^{2}}}$$

$$= \frac{1}{\sqrt{1 - \left(\frac{\beta - \beta_{0}}{1 - \beta_{0}\beta}\right)^{2}}} - \frac{1}{\sqrt{1 - \left(\frac{\beta + \beta_{0}}{1 + \beta_{0}\beta}\right)^{2}}}$$

$$= \frac{1 - \beta_{0}\beta}{\sqrt{(1 - \beta_{0}^{2})(1 - \beta^{2})}} - \frac{1 + \beta_{0}\beta}{\sqrt{(1 - \beta_{0}^{2})(1 - \beta^{2})}}$$

$$= \frac{-2\beta_{0}\beta}{\sqrt{(1 - \beta_{0}^{2})(1 - \beta^{2})}}$$

$$= -2\beta_{0}\beta\gamma_{0}\gamma$$
(3.7.15)

Also ist

$$\lambda' = -2\lambda\beta\beta_0\gamma = \frac{-2\lambda v v_0}{c^2}\gamma \tag{3.7.16}$$

Betrachten wir am Ort der LADUNG q das von der Linienladung λ' hervorgerufene Feld E'_r . Für positives λ' zeigt dieses in die -z'-Richtung. Also ist das elektrische Feld

$$E'_{r} = -\frac{\lambda'}{2\pi\varepsilon_{0}r}$$

$$= \frac{2\lambda v_{0}v\gamma(v)}{2\pi\varepsilon_{0}c^{2}} \cdot \frac{1}{r}$$

$$(3.7.17)$$

Die Kraft im Ruhesystem S' des Teilchens ist also

$$F'_{z} = q \cdot E'_{r} = \frac{2q\lambda v_{0}v\gamma(v)}{2\pi\varepsilon_{0}c^{2}} \cdot \frac{1}{r}$$
(3.7.18)

Wir verwenden die Lorentztransformation der Impulse p_i und der Energie \mathfrak{E}

$$p'_{x} = p_{x}$$

$$p'_{y} = \gamma(v) \left(p_{y} - v \frac{\mathfrak{E}}{c^{2}} \right)$$

$$p'_{z} = p_{z}$$

$$\mathfrak{E}' = \gamma(v) \left(\mathfrak{E} - v \cdot p_{y}\right)$$
(3.7.19)

Der VIERERVEKTOR $(p_x, p_y, p_z, \frac{\mathfrak{E}}{c^2})$ transformiert sich wie der Vierervektor (x, y, z, ct). Die Kraft transformiert sich also wie

$$F'_{z} = \frac{dp'_{z}}{dt'} = \frac{dp_{z}}{\sqrt{1 - \beta^{2} \cdot dt}} = \gamma(v)F_{z}$$
(3.7.20)

Der Strom in S ist

$$I = 2\lambda v_0 \tag{3.7.21}$$

Damit bekommen wir

$$F_z(r) = \frac{q \cdot v \cdot I}{2\pi\varepsilon_0 \cdot c^2} \cdot \frac{1}{r}$$
(3.7.22)

Multipliziert man Gleichung (3.7.22) mit der Dichte der Ladungsträger n (Einheit [n] = 1/m), so erhält man die zu I_2 proportionale Kraft pro Länge $\mathfrak{F}(r)$.

$$\mathfrak{F}(r) = n \cdot F_z(r) = \frac{n \cdot q \cdot v \cdot I}{2\pi\varepsilon_0 \cdot c^2} \cdot \frac{1}{r} = \frac{I_2 \cdot I}{2\pi\varepsilon_0 \cdot c^2} \cdot \frac{1}{r}$$
(3.7.23)

Aus $\mathfrak{F}(r)$ bekommt man die Kraft auf ein Leiterstück der Länge ℓ

$$F(r, I, I_2, \ell) = \ell \cdot \mathfrak{F}(r) = n \cdot \ell \cdot F_z(r) = \frac{n \cdot \ell \cdot q \cdot v \cdot I}{2\pi\varepsilon_0 \cdot c^2} \cdot \frac{1}{r} = \frac{I_2 \cdot I \cdot \ell}{2\pi\varepsilon_0 \cdot c^2} \cdot \frac{1}{r} \quad (3.7.24)$$

Die magnetische Kraft F_m im Laborsystem S ist die relativistisch transformierte elektrostatische Kraft auf die LADUNG q in deren Ruhesystem S'. Die magnetische Kraft kann als relativistische Effekt der elektrostatischen Kraft in einem bewegten Bezugssystem verstanden werden.

3.7.3. Magnetisches Feld

In der Gleichung (3.7.24) können wir die Terme so sortieren, dass ein Leiter als Ursache eines Feldes und der Rest als Wirkung dasteht, analog wie beim elektrischen Feld.

$$F(r, I, I_2, \ell) = \frac{I_2 \cdot I \cdot \ell}{2\pi\varepsilon_0 \cdot c^2} \cdot \frac{1}{r} = \left(\frac{1}{4\pi\varepsilon_0 \cdot c^2}\right) \cdot \frac{2\ell I I_2}{r}$$
$$= \frac{\mu_0}{4\pi} \cdot \frac{2\ell I I_2}{r} = \mu_0 \frac{I}{2\pi r} (\ell I_2) = \mu_0 H(r) (\ell I_2)$$
(3.7.25)

Wir haben den Vorfaktor zur PERMEABILITÄT DES VAKUUMS zusammengefasst mit

$$\mu_0 = \frac{1}{\varepsilon_0 c^2} \qquad [\mu_0] = N A^{-2} \qquad (3.7.26)$$

Der Zahlenwert der Permeabilität des Vakuums ist im SI-SYSTEM zur Definition des Ampères vorgegeben

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ N A}^{-2} \tag{3.7.27}$$

Die Funktion

$$H(r) = \frac{I}{2\pi r}$$
 $[H(r)] = A m^{-1}$ (3.7.28)

ist das MAGNETISCHE FELD. Es hat für den Magnetismus die gleiche Funktion wie das ELEKTRISCHE FELD.

3.8. Eigenschaften des magnetischen Feldes

3.8.1. Eigenschaften der magnetischen Induktion B

(Siehe Leisi, Klassische Physik II [Lei98, pp. 98])

Versuch 31: Versuch zur Vorlesung: Fadenstrahlrohr (Versuchskarte EM-11, Video)

Um nicht immer die LORENTZ-TRANSFORMATION ausrechnen zu müssen, führen wir die MAGNETISCHE INDUKTION, auch die MAGNETISCHE FLUSSDICHTE oder \boldsymbol{B} ein. Ein magnetisches Feld lenkt Elektronen ab. Wie wir schon früher gesehen haben, ist eine Bewegung der Ladungsträger für die magnetische Kraft notwendig. Wird das Magnetfeld der HELMHOLTZSPULEN so gedreht, dass es parallel zur Bewegungsrichtung der ELEKTRONEN liegt, verschwindet die Magnetkraft. Das folgende Kraftgesetz

$$\boldsymbol{F}_L = \boldsymbol{q} \cdot \boldsymbol{v} \times \boldsymbol{B} \tag{3.8.1}$$

beschreibt die magnetischen Kräfte auf Elektronen. Die Kraft \boldsymbol{F}_L heisst LORENTZ-KRAFT.

Durch den Vergleich von Gleichung (3.8.1) und Gleichung (3.7.22) kann man für die magnetische Induktion oder magnetische Flussdichte einer linienförmigen Stromverteilung schreiben

$$B(r) = \frac{I}{2\pi\varepsilon_0 c^2} \cdot \frac{1}{r} \tag{3.8.2}$$

Die Induktionskonstante

$$\mu_0 = \frac{1}{\varepsilon_0 c^2} \tag{3.8.3}$$

ermöglicht es Gleichung (3.8.2) kompakter zu schreiben

$$B(r) = \frac{\mu_0}{2\pi} \cdot \frac{I}{r} \tag{3.8.4}$$

Abb. 3.28.: Lage der magnetischen Induktion zum STROM und zur Geschwindigkeit der LADUNG.

Die magnetische Induktion \boldsymbol{B} bildet eine Rechtsschraube um den STROM I (Daumen in Stromrichtung, Finger zeigen in die Richtung der magnetischen Induktion).

Versuch 32: Versuch zur Vorlesung: Magnetische Feldlinien (Versuchskarte EM-50, Video)

Versuch 33: Versuch zur Vorlesung: Magnetische Feldlinien (Versuchskarte EM-50, Video (VPN oder intern))

Die magnetische Induktion eines geraden, unendlich ausgedehnten Stromes bildet Feldlinien, die kreisförmig in einer Ebene senkrecht zum STROM liegen. Der Mittelpunkt der kreisförmigen Feldlinien ist der Strom.

Die Kraft zwischen zwei stromdurchflossenen Leitern kann neu berechnet werden. Mit

$$\boldsymbol{F}_L = q_2 \cdot \boldsymbol{v}_2 \times \boldsymbol{B}_1(r) \tag{3.8.5}$$

wobei q_2 eine LADUNG im Leiter 2 ist, und mit n_2 der Ladungsträgerdichte im Leiter 2, ℓ die betrachtete Länge, A_2 der Querschnitt des Leiters und $\langle v_2 \rangle = |\boldsymbol{v}_2|$, bekommt man

$$F_M = q_2 \cdot \langle v_2 \rangle \cdot B_1(r) \cdot n_2 \cdot \ell \cdot A_2 \tag{3.8.6}$$

Der Strom im Leiter 2 ist nun aber

$$I_2 = \langle v_2 \rangle \cdot q_2 \cdot n_2 \cdot A_2 \tag{3.8.7}$$

Damit ist

$$F_M = I_2 \cdot B_1(r) \cdot \ell \tag{3.8.8}$$

Wenn wir Gleichung (3.8.4) einsetzen, bekommen wir

$$F_M = \frac{\mu_0}{4\pi} \frac{2\ell \cdot I_1 \cdot I_2}{r}$$
(3.8.9)

Diese Gleichung wird zur Definition der Einheit der magnetischen Induktion im SI-SYSTEM verwendet.

$$\frac{\mu_0}{4\pi} = 10^{-7} \text{ N A}^{-2} \tag{3.8.10}$$

Die Einheit der magnetischen Induktion ist

$$[B] = \text{Tesla} = \text{T} = \text{N s } \text{C}^{-1} \text{ m}^{-1} = \text{N A}^{-1} \text{ m}^{-1} = \text{V s m}^{-2}$$
(3.8.11)

Manchmal wird die MAGNETISCHE INDUKTION auch als MAGNETISCHE FLUSS-DICHTE bezeichnet.

Die magnetische Induktion wurde so definiert, dass in Gleichung (3.8.9) alle Faktoren bis auf den STROM I_2 und die Länge ℓ durch B(r) symbolisiert werden. Diese Wahl ist willkürlich. Wir hätten genau so gut ein Feld durch

$$H(r) = \frac{I}{2\pi r} \tag{3.8.12}$$

definieren können. H heisst MAGNETISCHES FELD oder MAGNETISCHE FELD-STÄRKE. Das magnetische Feld hat die Einheit

$$[H] = A m^{-1}$$

Das magnetische Feld H ist unabhängig von der Materie die den betrachteten Raum erfüllt. Die magnetische Induktion B hängt vom den Raum füllenden Material ab.

elektrisches Feld $E \Leftrightarrow$ dielektrische Verschiebung $D = \varepsilon \varepsilon_0 E$ magnetisches Feld $H \Leftrightarrow$ magnetische Induktion $B = \mu \mu_0 H$

- Die gesamte Kraft einer bewegten LADUNG q in einer beliebigen Ladungs- und Stromverteilung ist

$$\boldsymbol{F} = \boldsymbol{q} \cdot \boldsymbol{E} + \boldsymbol{q} \cdot \boldsymbol{v} \times \boldsymbol{B} \tag{3.8.13}$$

Dies ist das Kraftgesetz der Elektrodynamik

• Das magnetische Feld ist kein fundamentales Feld, sondern eine relativistische Korrektur zu dem elektrostatischen Feld.

3.8.2. Das Biot-Savart-Gesetz

Die Kraft auf einen stromdurchflossenen Leiter in einem beliebigen Magnetfeld kann mit dem empirisch gefundenen GESETZ VON BIOT-SAVART berechnet werden.

Abb. 3.29.: Berechnung der Kraft auf ein Leiterelement.

Der Betrag des Vektors dF, der senkrecht auf $d\ell$ und senkrecht auf dB steht, ist

$$dF = q \cdot \langle v \rangle \cdot \sin \phi \cdot B \cdot n \cdot d\ell \cdot A \tag{3.8.14}$$

wobei *n* die Dichte der Ladungsträger und ϕ der Winkel zwischen **B** und $d\ell$ ist. Mit der Stromdichte $\mathbf{i} = n \cdot \langle \mathbf{v} \rangle \cdot q$ erhalten wir

$$dF = i \cdot A \cdot d\ell \cdot \sin \phi \cdot B = I \cdot d\ell \cdot \sin \phi \cdot B \tag{3.8.15}$$

Die vektorielle Schreibweise der BIOT-SAVART-KRAFT ist demnach

$$d\boldsymbol{F} = \boldsymbol{I} \cdot d\boldsymbol{\ell} \times \boldsymbol{B} \tag{3.8.16}$$

Das GESETZ VON BIOT-SAVART ist nur in seiner integralen Form nach Gleichung (3.8.54) physikalisch sinnvoll anwendbar.

3.8.2.1. Kraft auf eine beliebig geformte geschlossene Leiterschlaufe in einem homogenen Magnetfeld

1. Die Kraft für eine beliebig geformte geschlossene Leiterschleifesin einem homogenen Magnetfeld ist

$$\boldsymbol{F} = \oint_{s} d\boldsymbol{F} = \oint_{s} I \cdot d\boldsymbol{\ell} \times \boldsymbol{B} = I \cdot \left(\oint_{s} d\boldsymbol{\ell} \times \boldsymbol{B} \right)$$
(3.8.17)

Das Linienintegral im homogenen B-Feld kann wie folgt berechnet werden:

Abb. 3.30.: Kräfte auf eine Leiterschlaufe im homogenen *B*-Feld

Vom Linienelement $d\ell$ aus Gleichung (3.8.17) trägt nur die Komponente $d\ell_{\perp}$ senkrecht zu B zum Integral bei (wegen dem Kreuzprodukt in der Gleichung). Abbildung 3.30 zeigt auf der rechten Seite die Leiterschlaufe projiziert auf die Ebene senkrecht zu B.

Also kann Gleichung (3.8.17) umgeschrieben werden:

$$\boldsymbol{F} = \oint_{s} d\boldsymbol{F} = I \oint_{s} d\boldsymbol{\ell}_{\perp} \times \boldsymbol{B}$$
(3.8.18)

 $d\ell_{\perp}$ über *s* summiert oder integriert ergibt null, da damit eine geschlossene Kurve beschrieben wird, bei der anfangs- und Endpunkt übereinstimmen, also durch einen Vektor der Länge Null verbunden sind.

 $d\mathbf{F}$ steht immer senkrecht auf $d\boldsymbol{\ell}_{\perp}$ (wieder wegen dem Kreuzprodukt). Die Länge von $d\mathbf{F}$ ist um den konstanten Faktor $I \cdot |\mathbf{B}|$ gegenüber $d\boldsymbol{\ell}_{\perp}$ geändert. Damit beschreibt $d\mathbf{F}$ einen geometrisch ähnlichen geschlossenen Weg, um $\pi/2$ gedreht und gedehnt. Damit ist für eine geschlossene Leiterschlaufe im homogenen magnetischen Feld

$$\boldsymbol{F} = \oint_{s} d\boldsymbol{F} = 0. \tag{3.8.19}$$

2. Das Drehmoment auf eine Leiterschlaufe in einem homogenen Magnetfeld kann durch summieren der Kraftanteile auf die vier Segmente berechnet werden.

Link zur Vorlesung: (Elektromotor)

Versuch 34: Versuch zur Vorlesung: Lorentz-Kraft, Leiterschaukel (Versuchskarte EM-046, Video (VPN oder intern))

Abb. 3.31.: Drehmoment auf eine Leiterschleife im homogenen Magnetfeld

Wir betrachten dazu die rechteckige Leiterschlaufe aus Abbildung 3.31. Bezüglich 0 ist die Situation symmetrisch. Die in der Zeichnung vertikalen Leiterelemente liefern kollineare sich aufhebende Kräfte. Die horizontalen Segmente ergeben das infinitesimale Drehmoment

$$d\mathbf{T} = (\mathbf{r}_1 + \mathbf{r}_3) \times d\mathbf{F}_1 + (\mathbf{r}_1 + \mathbf{r}_4) \times d\mathbf{F}_1 \qquad (3.8.20)$$

+ $(\mathbf{r}_2 + \mathbf{r}_3) \times d\mathbf{F}_2 + (\mathbf{r}_2 + \mathbf{r}_4) \times d\mathbf{F}_2$
= $2 \cdot \mathbf{r}_1 \times d\mathbf{F}_1 + 2 \cdot \mathbf{r}_2 \times d\mathbf{F}_2$

In Gleichung (3.8.20) enthält das Differential die Beiträge der oberen linken Seite plus die Beiträge der oberen rechten Seite plus die Beiträge der unteren linken Seite plus die Beiträge der unteren rechten Seite. Das gesamte DREHMOMENT bekommt man, indem man über die halbe Seite *a* integriert.

$$\boldsymbol{T} = \int_{0}^{a/2} d\boldsymbol{T} = \int_{0}^{a/2} (2 \cdot \boldsymbol{r}_{1} \times d\boldsymbol{F}_{1} + 2 \cdot \boldsymbol{r}_{2} \times d\boldsymbol{F}_{2})$$
(3.8.21)
$$= \int_{0}^{a/2} 2 \cdot \boldsymbol{r}_{1} \times \frac{d\boldsymbol{F}_{1}}{ds} ds + \int_{0}^{a/2} 2 \cdot \boldsymbol{r}_{2} \times \frac{d\boldsymbol{F}_{2}}{ds} ds$$

Wenn F_1 die Kraft auf die ganze obere Seite ist (und F_2 entsprechend für die untere Seite), ist

$$\int_{0}^{a/2} 2 \cdot \boldsymbol{r}_{1} \times \frac{d\boldsymbol{F}_{1}}{ds} ds = 2 \cdot \boldsymbol{r}_{1} \times \int_{0}^{a/2} \frac{d\boldsymbol{F}_{1}}{ds} ds = 2 \cdot \boldsymbol{r}_{1} \times \frac{\boldsymbol{F}_{1}}{2} = \boldsymbol{r}_{1} \times \boldsymbol{F}_{1} \quad (3.8.22)$$

Damit ist

$$\boldsymbol{T} = \boldsymbol{r}_1 \times \boldsymbol{F}_1 + \boldsymbol{r}_2 \times \boldsymbol{F}_2 = 2 \cdot \boldsymbol{r}_1 \times \boldsymbol{F}_1 \tag{3.8.23}$$

Das Drehmoment T liegt in der Ebene der Leiterschlaufe. Wenn ϕ der Winkel zwischen der Normalen auf die Ebene der Leiterschlaufe und B ist, gilt mit $F_1 = a \cdot I \cdot B$:

$$T = 2\frac{b}{2}\sin\phi \cdot F_1 = a \cdot b \cdot I \cdot \sin\phi \cdot B \qquad (3.8.24)$$

Wir definieren das MAGNETISCHE MOMENT \boldsymbol{m} so, dass es senkrecht auf die Ebene der Leiterschlaufe steht und dass $|\boldsymbol{m}| = \text{Fläche} \cdot \text{Strom} = a \cdot b \cdot I$ ist. Damit ist

$$\boldsymbol{T} = \boldsymbol{m} \times \boldsymbol{B} \tag{3.8.25}$$

Die Einheit des magnetischen Momentes ist

$$[\boldsymbol{m}] = A m^2$$

Das Drehmoment auf eine Leiterschlaufe im homogenen Magnetfeld wird in DREHSPULINSTRUMENTEN, in MOTOREN oder bei der Sichtbarmachung von Magnetfeldern mit Eisenfeilspänen verwendet.

Bei einer beliebigen Leiterschlaufe kann das magnetische Moment berechnet werden, indem diese aus Einzelteilen zusammengesetzt wird.

Abb. 3.32.: Links ist ein infinitesimales magnetisches Moment aufgezeichnet. Rechts daneben ein quadratisches infinitesimales Moment. Da alle vom gleichen STROM I umrundet werden, und im gleichen Drehsinn, kann eine endliche Fläche aus den infinitesimalen Flächen zusammengesetzt werden. Daraus folgt die Vorschrift zur Berechnung von m. Die Ströme im Inneren heben sich dabei jeweils auf (Siehe auch Abbildung 3.32). Aus der differentiellen Gleichung

$$d\boldsymbol{m} = I\,d\boldsymbol{a} \tag{3.8.26}$$

erhält man deshalb

$$\boldsymbol{m} = \iint_{A(s)} I \, d\boldsymbol{a} = I \, \iint_{A(s)} d\boldsymbol{a} \tag{3.8.27}$$

3. Die potentielle Energie E_{pot} einer um den Winkel ϕ gegenüber dem Magnetfeld verdrehten stromdurchflossenen Leiterschlaufe wird berechnet, indem man von $\phi = 0$ ausgeht und die Schlaufe langsam zum Winkel ϕ dreht. Die Arbeit, um von ϕ' nach $\phi' + d\phi'$ zu drehen ist

$$dE_{pot} = 2 \cdot F_1 \sin \phi' \cdot \frac{b}{2} \cdot d\phi' = a \cdot b \cdot I \cdot B \cdot \sin \phi' \cdot d\phi' \qquad (3.8.28)$$

Damit erhalten wir

$$E_{pot}(\phi) = a \cdot b \cdot I \cdot B \cdot \int_{0}^{\phi} \sin \phi' \cdot d\phi' = -a \cdot b \cdot I \cdot B \cdot (\cos \phi - 1) \quad (3.8.29)$$

Wenn wir $E_{pot}(\phi = \pi/2) = 0$ wählen haben wir

$$E_{pot} = -\boldsymbol{m} \cdot \boldsymbol{B} \tag{3.8.30}$$

Ein weiteres Beispiel einer Kraftwirkung auf LADUNGEN ist das BARLOWSCHE RAD.

Versuch 35: Versuch zur Vorlesung: Barlowsches Rad (Versuchskarte EM-004, Video)

Versuch 36: Versuch zur Vorlesung: Barlowsches Rad (Versuchskarte EM-004, Video (VPN oder intern))

3.8.3. Das Ampèresche Durchflutungsgesetz

(Siehe Leisi, Klassische Physik II [Lei98, pp. 104]) Beim unendlich ausgedehnten geraden Leiter war das durch einen STROM I erzeugte Magnetfeld durch kreisförmige Magnetfeldlinien mit der Stärke $B = \frac{\mu_0}{2\pi r}I$ charakterisiert, wobei das B-Feld tangential zu den Kreisen liegt. Das Linienintegral entlang der Feldlinien, also entlang des Kreises S, ergibt

$$\oint_{s} \boldsymbol{B} \cdot d\boldsymbol{s} = \frac{\mu_0 I}{2\pi} \oint_{s} \frac{r}{r} d\phi = \mu_0 I \qquad (3.8.31)$$

Dieses Linienintegral ist unabhängig von r. Die Behauptung ist, das die obige Gleichung, ein einfacher Fall des Ampèreschen Durchflutungsgesetzes, allgemeingültig ist.

$$\oint_{s} \boldsymbol{B} \cdot d\boldsymbol{s} = \mu_{0} \iint_{A(s)} \boldsymbol{i} \cdot d\boldsymbol{a}$$
(3.8.32)

Die Grösse

$$\boldsymbol{m} = \iint_{A(s)} \boldsymbol{i} \cdot d\boldsymbol{a} \tag{3.8.33}$$

ist das allgemeine MAGNETISCHE MOMENT der Stromverteilung i im Gebiet A(s). Der Beweis des Ampèreschen Durchflutungsgesetzes geht in mehreren Schritten:

Eine beliebige Kurve s' um einen geraden Leiter

ds' ist die Projektion des Weglängenelementes ds auf der Kurve s auf die in der xy-Ebene liegende Projektion der Kurve s'. Weiter ist $B \cdot ds' = B \cos(\alpha) ds'$ mit α dem Winkel zwichen B und ds'. Es ist

$$\boldsymbol{B} \cdot d\boldsymbol{s} = \boldsymbol{B} \cdot d\boldsymbol{s}' = B(r) \cdot \cos \alpha ds' = B(r) \cdot r \cdot d\phi$$

da $\boldsymbol{B}(r)$ keine Komponente in die z-Richtung hat. Es ist

$$\boldsymbol{B} \cdot d\boldsymbol{s} = \frac{\mu_0}{2\pi} \boldsymbol{I} \cdot d\phi$$

und damit

$$\oint_{s'} \boldsymbol{B} \cdot d\boldsymbol{s} = \frac{\mu_0 I}{2\pi} \int_0^{2\pi} d\phi = \mu_0 I$$
Eine beliebige Kurve s'', die den Leiter nicht umschliesst Es ist

$$\oint_{s''} \mathbf{B} \cdot d\mathbf{s} = \int_{A}^{B} \mathbf{B} \cdot d\mathbf{s} + \int_{B}^{A} \mathbf{B} \cdot d\mathbf{s} = \frac{\mu_0 I}{2\pi} \int_{A}^{B} d\phi + \frac{\mu_0 I}{2\pi} \int_{B}^{A} d\phi$$
$$= \frac{\mu_0 I}{2\pi} \left(\phi_B - \phi_A\right) + \frac{\mu_0 I}{2\pi} \left(\phi_A - \phi_B\right) = 0$$

Das bedeutet, dass Ströme durch Leiter, die nicht vom Integrationsweg s''umschlossen werden, keinen Beitrag zum Integral geben.

Eine beliebige Kurve s um eine beliebige Stromverteilung Wir betrachten viele Ströme I_k , die von der Integrationskurve s umschlossen werden. Wegen der Linearität des Problems gilt

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{s} = \mu_0 \sum_{k} I_k$$

wobei diejenigen Ströme, die mit dem Umlaufsinn von s eine Rechtsschraube bilden, positiv zu zählen sind.

Eine kontinuierliche Stromverteilung Hier wird die Summe durch ein Integral ersetzt:

$$\oint_{s} \boldsymbol{B} \cdot d\boldsymbol{s} = \mu_0 \iint_{A(s)} \boldsymbol{i} \cdot d\boldsymbol{a}$$

3.8.3.1. Zylindrischer Leiter mit homogenem Strom

Ein zylindrischer Leiter mit dem Radius R soll homogen vom STROM I durchflossen werden. Die Stromdichte i und der STROM I stehen dann betragsmässig wie

$$I = i \left(\pi R^2 \right)$$
 beziehungsweise $I(r) = i \left(\pi r^2 \right)$ für $r \le R$

in Beziehung. Aus Symmetriegründen sind die Magnetfeldlinien konzentrische Kreise um den Leiter. Wir betrachten einen zum STROM konzentrischen Integrationsweg s. Ausserhalb des Leiters (r > R) haben wir

$$\oint_{s} \boldsymbol{B}(r) \cdot d\boldsymbol{s} = 2\pi r \cdot B(r) = \mu_{0} \iint_{A(s)} \boldsymbol{i} \cdot d\boldsymbol{a} = \mu_{0} \iint_{\pi R^{2}(\text{Querschnitt})} \boldsymbol{i} \cdot d\boldsymbol{a} = \mu_{0} \cdot I$$

und daraus

$$B(r) = \frac{\mu_0 I}{2\pi r}$$

Innerhalb des Leiters $(r \leq R)$ gilt

$$\oint_{s} \boldsymbol{B}(r) \cdot d\boldsymbol{s} = 2\pi r \cdot B(r) = \mu_0 \iint_{A(s)} \boldsymbol{i} \cdot d\boldsymbol{a} = \mu_0 \cdot \boldsymbol{i} \cdot \pi r^2 = \mu_0 \cdot \frac{I}{\pi R^2} \cdot \pi r^2 = \mu_0 I \frac{r^2}{R^2}$$

und damit

$$B(r) = \frac{\mu_0 I}{2\pi} \frac{r}{R^2}$$

Abb. 3.33.: Tangentiales Magnetfeld eines ausgedehnten, unendlich langen Linienstromes.

Mit dem Stokeschen Satz (Gleichung (C.11.1)) kann man die Integralform des Ampèreschen Gesetzes umschreiben

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{s} = \iint_{A(S)} \operatorname{rot} \boldsymbol{B} \cdot d\boldsymbol{a} = \mu_0 \iint_{A(S)} \boldsymbol{i} \cdot d\boldsymbol{a}$$
(3.8.34)

Da diese Gleichungen für alle Integrationsflächen A(S) gelten müssen, muss auch die differentielle Form des Ampèreschen Gesetzes gelten

$$\mathbf{rot} \ \mathbf{B} = \mu_0 \mathbf{i} \tag{3.8.35}$$

Beispiel: homogene Stromverteilung in einem unendlich ausgedehnten Leiter

Abb. 3.34.: Magnetfeld einer homogenen Stromverteilung in einer dünnen Platte. Links: die Geometrie zur Berechnung, Mitte: das Magnetfeld eines homogenen Stromflusses und Rechts: das Magnetfeld zweier antiparallel von STROM durchflossener Platten.

Wir definieren eine lineare Stromdichte

$$j = \lim_{\Delta y \to 0} \frac{I(\Delta y)}{\Delta y}$$

 $([j] = A m^{-1})$. In unserem Falle hängt j und i über

$$\boldsymbol{i}(x,y,z) = \boldsymbol{j}(y,z)\delta(x)$$

zusammen. Das Stromfeld können wir uns als Parallelschaltung vieler linearer Leiter vorstellen. Aus dem Superpositionsprinzip folgt, dass in der z-Richtung

$$B_z \equiv 0 \tag{3.8.36}$$

Das resultierende Feld dieser Superposition muss in der xy-Ebene liegen. Auf den beiden Seiten senkrecht zur Platte finden sich immer zwei Stromfäden, die die x-Komponente kompensieren. Wenn wir später das Ampèresche Gesetz auf diese beiden Seiten anwenden, gibt es keine Komponente von \boldsymbol{B} parallel zur Seite: dieser Teil des Linienintegrals ist null.

Wir betrachten weiter die Komponenten $B_x(x)$ und $B_y(x)$ des Feldes **B** im Abstand x von der Platte. Wir werden zwei Symmetrieoperationen an:

• Wir drehen die Platte um π um die z-Achse. Die neue Situation (Ströme) ist identisch mit der Ursprungssituation. Deshalb muss

$$\boldsymbol{B}(x) = -\boldsymbol{B}(-x)$$

und damit

$$B_x(x) = -B_x(-x)$$
 und $B_y(x) = -B_y(-x)$

sein.

- Wir drehen die Platte um π um die y-Achse und drehen gleichzeitig die

Flussrichtung des Stromes um $j \rightarrow -j$. Die Situation am Ende ist ununterscheidbar von der am Anfang. Also gilt auch

$$B_x(-x) = B_x(x)$$
 und $B_y(-x) = -B_y(x)$

Mit den beiden Symmetrieüberlegungen folgt:

$$B_x(x) \equiv 0 \tag{3.8.37}$$

Um B_y zu bestimmen, nehmen wir an, dass unser Integrationspfad S symmetrisch bezüglich der Platte ist. Das Ampèresche Gesetz sagt

$$\oint_{s} \boldsymbol{B} \cdot d\boldsymbol{s} = 2B_{y}(x) \cdot b + 2 \cdot 0 = \mu_{0} \iint_{A(s)} \boldsymbol{i} \cdot d\boldsymbol{a} = \mu_{0} \int j dy = \mu_{0} \cdot j \cdot b$$

Das Resultat ist unabhängig von x und homogen im Raum. Die Magnetfeldlinien sind parallel zur Platte und links und rechts antiparallel (siehe Abbildung 3.34, Mitte).

$$B_y = \frac{\mu_0}{2} j \tag{3.8.38}$$

Bei zwei antiparallel von STROM durchflossenen Platten ist das Magnetfeld auf den Raum zwischen den Platten beschränkt.

$$B = \mu_0 \, j \tag{3.8.39}$$

Die beiden Gleichungen sind einheitenmässig korrekt, da $[j] = \left[\frac{I}{r}\right] = A m^{-1}$ ist.

Anwendungsbeispiele: Streifenleiter, Koaxialkabel, Modell für eine Spule

3.8.4. Quellenfreiheit

(Siehe Leisi, Klassische Physik II [Lei98, pp. 111])

In diesem Abschnitt soll gezeigt werden, dass das Magnetfeld QUELLENFREI ist.

Abb. 3.35.: Integrationsfläche zur Analyse der Quellenfreiheit des Magnetfeldes

Da überall auf der Integrationsfläche Agilt: $\pmb{B}\cdot d\pmb{a}=0,$ ist

$$\iint\limits_{A} \boldsymbol{B} \cdot d\boldsymbol{a} = 0 \tag{3.8.40}$$

Wir verallgemeinern das Resultat, indem wir einen Zylinder mit beliebiger Grundund Deckfläche nehmen. Auf der Grund und Deckfläche gilt das vorherige Argument, so dass

$$\iint_{A} \boldsymbol{B} \cdot d\boldsymbol{a} = \iint_{Mantel} \boldsymbol{B} \cdot d\boldsymbol{a}$$

ist.

Abb. 3.36.: Integration über die Mantelfläche.

An der Mantelfläche gilt mit $da = h \cdot ds$ (Höhe des Segmentes h)

$$\boldsymbol{B} \cdot d\boldsymbol{a} = B(r)\cos\left(\alpha + \frac{\pi}{2}\right)h \cdot ds = -B(r)\sin\left(\alpha\right)h \cdot ds$$
$$= -B(r) \cdot dr \cdot h = -B(r) \cdot \frac{dr}{d\phi}d\phi \cdot h = -B(r) \cdot r'(\phi) \cdot d\phi \cdot h$$

und damit

$$\iint_{Mantel} \boldsymbol{B} \cdot d\boldsymbol{a} = -\frac{\mu_0 Ih}{2\pi} \int_0^{2\pi} \frac{r'(\phi)}{r(\phi)} d\phi = -\frac{\mu_0 Ih}{2\pi} \ln\left(r(\phi)\right) \Big|_0^{2\pi} = 0$$

Damit gilt auch für allgemeine Zylinderflächen

$$\iint\limits_{A} \boldsymbol{B} \cdot d\boldsymbol{a} = 0 \tag{3.8.41}$$

Mit diesem Resultat zeigt man, dass dieses Integral für beliebige Flächen um einen Leiter null ist. Schliesslich zeigt man, dass das Resultat auch für beliebige Stromverteilungen gilt. Mit dem Gaussschen Satz (Gleichung (C.9.1)) zeigt man

Quellenfreiheit des Magnetfeldes

$$0 = \iint_{A} \boldsymbol{B} \cdot d\boldsymbol{a} = \iiint_{V(A)} \text{ div } \boldsymbol{B} \, dV \qquad (3.8.42)$$

oder in differentieller Form

$$\operatorname{div} \boldsymbol{B} = 0 \tag{3.8.43}$$

Die Quellenfreiheit des statischen magnetischen Feldes bedeutet, dass es keine MA-GNETISCHEN LADUNGEN gibt und dass die Feldlinien geschlossen sind. Feldlinien die ins Unendliche reichen müssen im gegenüberliegenden Oktanten zurückkehren und sind so auch geschlossen.

3.8.5. Das B-Feld einer beliebigen Stromverteilung: das Vektorpotential A

Die Ausführungen hier folgen H. J. Leisi, *Klassische Physik* [Lei98, p. 114]. Für eine detailliertere Behandlung kann L. D. Landau und E. M. Lifschitz, *Klassische Feldtheorie*, [LL89, p. 121], J. D. Jackson, *Classical electodynamics*, [Jac75] oder B. Thidé, *Electromagnetic Field Theory*, [Thi11, p. 35] gelesen werden.

Versuch 37: Versuch zur Vorlesung: Magnetfelder von Leitern (Versuchskarte EM-050, Video)

114

Versuch 38: Versuch zur Vorlesung:

Magnetfelder von Leitern (Versuchskarte EM-050, Video (VPN oder intern))

In diesem Abschnitt wollen wir die Frage lösen: wie konstruiere ich eine magnetische Induktion \boldsymbol{B} möglichst bequem? Das Rezept stammt aus der Elektrizitätslehre (Siehe Abschnitt 2.5). Dort wurde gezeigt, dass aus einem beliebigen Potential $U(\boldsymbol{r})$ durch

$$\boldsymbol{E}(\boldsymbol{r}) = -\operatorname{\mathbf{grad}}\,U(\boldsymbol{r})$$

eindeutig ein elektrisches Feld $\boldsymbol{E}(\boldsymbol{r})$ konstruiert werden kann, das dem Gesetz der Elektrostatik

$$\mathbf{rot} \ \boldsymbol{E}(\boldsymbol{r}) = 0$$

genügt. Grundlage war die Vektoridentität

$$\mathbf{rot} \ (\mathbf{grad} \ \mathfrak{U}(\boldsymbol{r})) \equiv 0$$

die für beliebige zahlenwertige Funktionen $\mathfrak{U}(\mathbf{r})$ gilt (siehe Gleichung (C.8.29)). Es gibt unter den Rechenregeln für Vektorableitungen (siehe Abschnitt C.8.4) eine weiter Identität mit dem Nullvektor, nämlich Gleichung (C.8.30).

div
$$(\mathbf{rot} \ \mathfrak{F}(\mathbf{r})) = 0 \qquad \forall \mathfrak{F}(\mathbf{r})$$

für Vektorfunktionen $\mathfrak{F}(\mathbf{r})$. Jedes Magnetfeld muss das AMPÈRESCHE GESETZ rot $\mathbf{B} = \mu_0 \mathbf{i}$ und die Quellenfreiheit div $\mathbf{B} = 0$ erfüllen. Analog zur Poissongleichung Gleichung (2.6.4) soll auch für das Magnetfeld eine Potentialgleichung gelten. Wir müssen also nach Gleichung (C.8.30) ein beliebiges Vektorfeld \mathbf{A} wählen und die magnetische Induktion \mathbf{B} gleich der Rotation von \mathbf{A} setzten: dann ist die Divergenzfreiheit von \mathbf{B} gewährleistet. Mit dem VEKTORPOTENTIAL \mathbf{A}

$$\boldsymbol{B}(x,y,z) = \operatorname{rot} \boldsymbol{A}(x,y,z) \qquad (3.8.44)$$

werden beide Gleichungen erfüllt. Wegen der Vektoridentität

$$\operatorname{div} (\operatorname{\mathbf{rot}} \mathbf{A}) = 0 \tag{3.8.45}$$

ist die Quellenfreiheit bei beliebiger Wahl von A garantiert. Mit der zweiten Vektoridentität rot (rot A) = grad (div A) – ΔA bekommen wir aus dem Ampèreschen Gesetz

$$\Delta \boldsymbol{A} - \mathbf{grad} \ (\operatorname{div} \boldsymbol{A}) = -\mu_0 \boldsymbol{i} \tag{3.8.46}$$

Die Einheit des Vektorpotentials ist

$$[\boldsymbol{A}] = V \text{ s } m^{-1} = N \text{ A}^{-1}$$

Das VEKTORPOTENTIAL A kann immer so gewählt werden, dass div A = 0 gilt.

Das VEKTORPOTENTIAL ist nicht eindeutig bestimmt. Nehmen wir an, dass ein VEKTORPOTENTIAL mit div $A = f \neq 0$ existiert. Dann existiert auch ein VEKTORFELD

$$\boldsymbol{V} = \mathbf{grad} \ \boldsymbol{\phi} \tag{3.8.47a}$$

 mit

$$\operatorname{div} \boldsymbol{V} = f \tag{3.8.47b}$$

$$\mathbf{rot} \ \mathbf{V} = 0 \tag{3.8.47c}$$

mit einer eindeutigen Lösung, denn die obigen Gleichungen sind formal äquivalent zur ELEKTROSTATIK. Wir definieren ein neues VEKTORPOTENTIAL

A' = A - V

Wegen Gleichung (3.8.47c) gilt dann

$$\operatorname{rot} A' = \operatorname{rot} A - \operatorname{rot} V = \operatorname{rot} A$$

Dies bedeutet, dass das neue VEKTORPOTENTIAL das gleiche **B**-Feld erzeugt wie das ursprüngliche. Die Physik beschrieben durch **A** und durch **A'** ist ununterscheidbar. Das bedeutet, wir haben eine Freiheit, **A** zu verändern, so dass Rehnungen effizienter werden, aber ohne dass sich ddas Physikproblem ändert. Wegen Gleichung (3.8.47c) gilt auch

div
$$\mathbf{A}' = \operatorname{div} \mathbf{A} - \operatorname{div} \mathbf{V} = f - f = 0$$

Zu jedem VEKTORPOTENTIAL A kann ein VEKTORPOTENTIAL A' gefunden werden, so dass div A' = 0 ist.

Diese Eichung heisst COULOMBEICHUNG.

Das zu einer realen physikalischen Situation gehörende VEKTOR-POTENTIAL A ist nicht eindeutig bestimmt. Die Wahl eines der zur gleichen Lösung von B gehörenden Potentiale nennt man EICHUNG.

In der RELATIVITÄTSTHEORIE und in der QUANTENMECHANIK rechnet man bevorzugt mit dem VEKTORPOTENTIAL.

Da div A = f eine beliebige zahlenwertige Funktion sein kann, kann diese zum Beispiel auch die zeitliche Ableitung des elektrischen Potentials sein, also auch

div
$$\mathbf{A} = -\frac{1}{c^2} \frac{\partial \varphi}{\partial t}$$
 (3.8.48)

sein. Diese LORENTZEICHUNG ist relativistisch invariant und wird deshalb gerne in der RELATIVITÄTSTHEORIE und der QUANTENFELDTHEORIE verwendet.

Aus der Gleichung (3.8.46) für das VEKTORPOTENTIAL einer Stromverteilung in der COULOMBEICHUNG (Gleichung (3.8.47c))

$$\Delta \boldsymbol{A}(x, y, z) = -\mu_0 \boldsymbol{i}(x, y, z) \tag{3.8.49}$$

kann man die Umkehrfunktion berechnen und erhält, analog zur Elektrostatik,

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \iiint \frac{\boldsymbol{i}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} dV' \qquad (3.8.50)$$

Aus der Beziehung rot $\mathbf{A} = \mathbf{B}$ (Siehe Landau und Lifschitz, Klassische Feldtheorie [LL89, pp. 121]) bekommen wir

$$\boldsymbol{B}(\boldsymbol{r}) = \operatorname{rot} \frac{\mu_0}{4\pi} \iiint \frac{\boldsymbol{i}\left(\boldsymbol{r}'\right)}{|\boldsymbol{r}-\boldsymbol{r}'|} dV' = \frac{\mu_0}{4\pi} \operatorname{rot} \iiint \frac{\boldsymbol{i}\left(\boldsymbol{r}'\right)}{|\boldsymbol{r}-\boldsymbol{r}'|} dV'$$
(3.8.51)

Nun bezieht sich die Rotation nur auf r, nicht aber auf r'. Deshalb kann sie unter das Integral gezogen werden.

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \iiint \left(\operatorname{rot} \, \frac{\boldsymbol{i} \, (\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} \right) dV' \tag{3.8.52}$$

Nun gilt für die Rotation eines Produktes (Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 468])

$\mathbf{rot} \ (f \ \mathbf{F}) = f \ \mathbf{rot} \ \mathbf{F} + (\mathbf{grad} \ f) \times \mathbf{F}$

Dabei ist $f = f(\mathbf{r})$ eine beliebige zahlenwertige Funktion und $\mathbf{F} = \mathbf{F}(\mathbf{r})$ eine beliebige vektorwertige Funktion. Wir identifizieren in Gleichung (3.8.52) $\frac{1}{|\mathbf{r}-\mathbf{r}'|} \rightarrow f$ und $\mathbf{i}(\mathbf{r}') \rightarrow \mathbf{F}$.

Weiter ist der Vektor i(r') bezüglich der Rotation eine Konstante, da er nur von r' und nicht von r abhängt. Weiter darf die Ableitung irgend eines Punktes nicht davon abhängen dass das Koordinatensystem um einen konstanten Vektor verschoben wurde. Wir rechnen deshalb die Ableitungen in der Rotation, beziehungsweise im Gradienten, nicht bezüglich r sondern bezüglich des verschobenen Koordinatensystems $\rho = r - r'$ aus. Es ergibt sich dann die Kette von Umwandlungen

$$\begin{split} \boldsymbol{B}(\boldsymbol{r}) &= \frac{\mu_0}{4\pi} \iiint \left(\operatorname{grad} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \times \boldsymbol{i}\left(\boldsymbol{r}'\right) \right) dV' \\ &= \frac{\mu_0}{4\pi} \iiint \left(\operatorname{grad} \frac{1}{|\boldsymbol{\rho}|} \times \boldsymbol{i}\left(\boldsymbol{r}'\right) \right) dV' \\ &= \frac{\mu_0}{4\pi} \iiint \left(\left(-\frac{\boldsymbol{\rho}}{|\boldsymbol{\rho}|^3} \right) \times \boldsymbol{i}\left(\boldsymbol{r}'\right) \right) dV' \qquad \qquad = \frac{\mu_0}{4\pi} \iiint \frac{\boldsymbol{i}\left(\boldsymbol{r}'\right) \times \boldsymbol{\rho}}{|\boldsymbol{\rho}|^3} dV' \\ &= \frac{\mu_0}{4\pi} \iiint \frac{\boldsymbol{i}\left(\boldsymbol{\rho}\right) \times \boldsymbol{\rho}}{|\boldsymbol{\rho}|^3} dV_{\boldsymbol{\rho}} \end{split}$$
(3.8.53)

Die letzte Zeile ergibt sich, da für die Zwecke der Integration r eine Konstante ist. Auch hier muss das Resultat der Integration unabhängig davon sein, dass wir das Koordinatensystem verschoben oder das Vorzeichen geändert haben. Deshalb darf man $i(r') = i(r - r') = i(\rho)$ setzen.

Wir betrachten nun einen infinitesimal dünnen STROM $dI e_{Draht}(\mathbf{r}') = \mathbf{i}_{Draht} = I d\ell$. Der Vektor e_{Draht} ist ein Einheitsvektor entlang des Drahtes. Da \mathbf{i}_{Draht} überall null ist ausser auf dem eindimensionalen Draht, wird aus dem Volumenintegral ein eindimensionales Integral. Wieder ist es für die Integration egal, ob wir \mathbf{i}_{Draht} von \mathbf{r}' oder von $\boldsymbol{\rho}$ abhängen lassen.

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0 I}{4\pi} \oint_{Leiter} \frac{d\boldsymbol{\ell} \times \boldsymbol{\rho}}{\rho^3}$$
(3.8.54)

Diese Gleichung ist bekannt als das GESETZ VON BIOT-SAVART. Biot-Savart fand das Gesetz empirisch, LAPLACE fand die mathematisch korrekte Form. Mit dem gesetz von Biot-Saavrt kann man das Feld einer beliebigen Leiteranordnung berechnen.

Auch wenn sie physikalisch keine Bedeutung hat, kann es sinnvoll sein in Zwischenschritten die differentielle Formulierung zu verwenden,

$$d\boldsymbol{B} = \frac{\mu_0 I}{4\pi} \cdot \frac{d\boldsymbol{\ell} \times \boldsymbol{\rho}}{\rho^3} \tag{3.8.55}$$

Achtung: nur die integrale Form hat eine physikalische Bedeutung!

Beispiel:

Wir hatten in Abbildung 3.34 gesehen, dass ein homogener STROM in die +z-Richtung homogene magnetische Induktionen links und rechts erzeugt. Die Magnetfelder haben die Form

$$B_y(x, y, z) = \begin{cases} -B_0, & \text{wenn } x < 0; \\ B_0, & \text{wenn } x > 0. \end{cases}$$
(3.8.56)

Für x = 0 ist B_y nicht definiert.

Abb. 3.37.: Darstellung von B in einer (x = const)-Ebene. Die STROM-Ebene liegt bei x = 0.

Das zu Gleichung (3.8.56) gehörige VEKTORPOTENTIAL ist

$$A_{x}(x, y, z) = 0$$

$$A_{y}(x, y, z) = 0$$

$$A_{z}(x, y, z) = \begin{cases} B_{0}x, & \text{für } x < 0; \\ -B_{0}x, & \text{für } x > 0. \end{cases}$$
(3.8.57)

Wieder ist A für x = 0 nicht definiert. Aus $B = \operatorname{rot} A$ bekommt man

$$B_{x} = \frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z} = 0$$

$$B_{y} = \frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} = \begin{cases} -B_{0}, & \text{für } x < 0; \\ B_{0}, & \text{für } x > 0. \end{cases}$$

$$B_{z} = \frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} = 0 \qquad (3.8.58)$$

Abb. 3.38.: *z*-Komponente des Vektorpotentials einer unendlichen Stromdichte in *z*-Richtung in der (x = 0)-Ebene.

Beispiel:

Das Vektorpotential

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0 I}{2\pi} \begin{pmatrix} \frac{xz}{(x^2+y^2)} \\ \frac{yz}{(x^2+y^2)} \\ 0 \end{pmatrix}$$

ergibt das magnetische Feld für einen in der z-Richtung laufenden STROM I

$$\boldsymbol{H}(\boldsymbol{r}) = \frac{I}{2\pi} \begin{pmatrix} -\frac{y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \\ 0 \end{pmatrix}$$

In Zylinderkoordinaten (r,θ,z) gehört zum Magnetfeld

$$\boldsymbol{H}(r,\theta,z) = \frac{I}{2\pi} \begin{pmatrix} 0\\ \frac{1}{r}\\ 0 \end{pmatrix}$$

das Vektorpotential

$$\boldsymbol{A}(r,\theta,z) = \frac{\mu_0\,I}{2\pi} \begin{pmatrix} \frac{z}{r} \\ 0 \\ 0 \end{pmatrix}$$

3.9. Hall-Effekt

Literatur: (Siehe Tipler, Physik [TM04, pp. 831]) (Siehe Leisi, Klassische Physik II [Lei98, pp. 126])

Versuch 39: Versuch zur Vorlesung: Halleffekt (Versuchskarte EM-023, Video)

Versuch 40: Versuch zur Vorlesung: Halleffekt (Versuchskarte EM-023, Video (VPN oder intern))

Abb. 3.39.: HALL-EFFEKT

Wenn Elektronen mit der Geschwindigkeit \boldsymbol{v} durch ein Metall in einem Magnetfeld mit der magnetischen Induktion \boldsymbol{B} fliessen (in einer Geometrie wie im obigen Bild), werden sie von der Lorentzkraft

$$\boldsymbol{F}_L = -e \cdot \boldsymbol{v} \times \boldsymbol{B}$$

nach unten abgelenkt. Man kann sich dies klar machen, indem man annimmt, der gesamte Metallstreifen werde mit der Geschwindigkeit \boldsymbol{v} nach rechts bewegt. Da der Leiter eine begrenzte Ausdehnung hat, laden sich die Grenzflächen auf. Das elektrische Feld bewirkt eine Kraft $\boldsymbol{F}_E = e\boldsymbol{E}$ nach oben auf die Elektronen. Im Gleichgewicht gilt $\boldsymbol{F}_L + \boldsymbol{F}_E = 0$, oder

$$-e \cdot v \cdot B = -eE \tag{3.9.1}$$

Eine Einheitsladung, die langsam von A nach B herumgeführt wird, erfährt vom elektrischen Feld eine Arbeit $h \cdot E$, so dass diese elektromotorische Kraft als SPAN-NUNG am Voltmeter abgelesen werden kann. Durch Kombination mit der Gleichung (3.9.1) bekommt man für die HALLSPANNUNG

$$U_{Hall} = h \cdot v \cdot B \tag{3.9.2}$$

Die Hallspannung für ein einzelnes Teilchen ist unabhängig vom Material. Bei vielen Ladungsträgern muss die Geschwindigkeit v durch die Driftgeschwindigkeit $\langle v \rangle$ der Ladungsträger ersetzt werden. $\langle v \rangle$ ist materialabhängig. STROM I und Driftgeschwindigkeit $\langle v \rangle$ hängen über

$$I = q \cdot n \cdot h \cdot b \cdot \langle v \rangle$$

zusammen. b ist hier die Dicke des Leiters und n die Ladungsträgerdichte. Die HALLSPANNUNG hängt dann wie

$$U_{Hall} = \frac{I \cdot B}{q \cdot b \cdot n} \tag{3.9.3}$$

von STROM und SPANNUNG ab. Für Elektronen (q = -e) erhalten wir dann

$$U_{Hall} = -\frac{I \cdot B}{e \cdot b \cdot n}$$

Bemerkung: Die Hallspannung kann zur Bestimmung der Ladungsträgerkonzentration verwendet werden.

3.10. Die Lorentztransformation der Felder E und B

(Siehe Leisi, Klassische Physik II [Lei98, pp. 128])

Wir betrachten die Situation im Bild zum Halleffekt (Siehe Abschnitt 3.39), nun aber vom Ruhesystem der Platte aus. Hier haben die Elektronen keine Geschwindigkeit: es gibt keine LORENTZKRAFT.

Abb. 3.40.: Bewegte magnetische Induktion und elektrische Felder.

Die obige Abbildung zeigt homogene magnetische Induktionen und elektrische Felder. Sie werden erzeugt, indem zwei parallele Platten positiv beziehungsweise negativ geladen sind. Wenn die Platten mit der Geschwindigkeit v_0 bewegt werden

ergibt sich auch eine magnetische Induktion.

Das elektrische Feld beider Platten im Bezugssystem ${\cal S}$ ist

$$E_z = \frac{\sigma}{\varepsilon_0} \tag{3.10.1}$$

wenn σ die Ladungsdichte in diesem Bezugssystem ist. Die magnetische Induktion ist

$$B_x = \mu_0 \cdot j = \mu_0 \cdot \sigma \cdot v_0 = \frac{v_0 \cdot \sigma}{\varepsilon_0 \cdot c^2}$$
(3.10.2)

Die entsprechenden Felder im Bezugssystem S' müssen nun berechnet werden. Auch in S' sind die Platten homogen geladen. Also haben wir

$$E'_{z} = \frac{\sigma'}{\varepsilon_{0}} \tag{3.10.3}$$

und

$$B'_x = \frac{v'_0 \cdot \sigma'}{\varepsilon_0 \cdot c^2} \tag{3.10.4}$$

Wir brauchen die Transformationsgesetze für σ' und v_0

$$v'_{0} = \frac{v_{0} - v}{1 - \frac{v \cdot v_{0}}{c^{2}}}$$

$$\sigma_{0} = \frac{\sigma}{\gamma_{0}}$$

$$\sigma_{0} = \frac{\sigma'}{\gamma_{0}'}$$
(3.10.5)

wenn σ_0 das Ruhesystem der LADUNGEN und $\gamma_0 = \left(1 - \frac{v_0^2}{c^2}\right)^{-1/2}$ ist. Wir bekommen

$$\sigma' = \sigma \cdot \frac{\gamma'_0}{\gamma_0} = \sigma \sqrt{\frac{1 - v_0^2/c^2}{1 - v_0'^2/c^2}}$$
(3.10.6)

und damit

©2005-2020 Ulm University, Othmar Marti, COBY-SA

$$\sigma' = \sigma \sqrt{\frac{1 - v_0^2/c^2}{1 - \left(\frac{v_0 - v}{1 - \frac{v \cdot v_0}{c^2}}\right)^2/c^2}}$$

$$= \sigma \frac{\sqrt{1 - v_0^2/c^2} \left(1 - \frac{v \cdot v_0}{c^2}\right)}{\sqrt{\left(1 - \frac{v \cdot v_0}{c^2}\right)^2 - (v_0 - v)^2/c^2}}$$

$$= \sigma \frac{\sqrt{1 - v_0^2/c^2} \left(1 - \frac{v \cdot v_0}{c^2}\right)}{\sqrt{1 - 2\frac{v \cdot v_0}{c^2} + \frac{v^2 \cdot v_0^2}{c^4} - v_0^2/c^2 - v^2/c^2 + 2vv_0/c^2}}$$

$$= \sigma \frac{\sqrt{1 - v_0^2/c^2} \left(1 - \frac{v \cdot v_0}{c^2}\right)}{\sqrt{1 - v_0^2/v^2} \cdot \sqrt{1 - v^2/c^2}}$$

$$= \sigma \cdot \gamma_0 \cdot \left(1 - \frac{v \cdot v_0}{c^2}\right)$$
(3.10.7)

Mit

$$v_0' = \frac{v_0 - v}{1 - \frac{v \cdot v_0}{c^2}}$$

berechnet man

$$\begin{aligned}
v'_{0} \cdot \sigma' &= \sigma \cdot \gamma_{0} \cdot \left(1 - \frac{v \cdot v_{0}}{c^{2}}\right) v'_{0} \\
&= \sigma \cdot \gamma_{0} \cdot \left(1 - \frac{v \cdot v_{0}}{c^{2}}\right) \frac{v_{0} - v}{1 - \frac{v \cdot v_{0}}{c^{2}}} \\
&= \sigma \gamma_{0} \left(v_{0} - v\right) \end{aligned} (3.10.8)$$

Damit ist

$$E'_{z} = \frac{\sigma'}{\varepsilon_{0}} = \gamma_{0} \left(\frac{\sigma}{\varepsilon_{0}} - \frac{\sigma v \cdot v_{0}}{\varepsilon_{0} c^{2}} \right) = \gamma_{0} \left(E_{z} - v \cdot B_{x} \right)$$
(3.10.9)

und

$$B'_{x} = \frac{v'_{0} \cdot \sigma'}{\varepsilon_{0} \cdot c^{2}} = \gamma_{0} \left(\frac{\sigma \cdot v_{0}}{\varepsilon_{0} c^{2}} - \frac{\sigma \cdot v}{\varepsilon_{0} c^{2}} \right) = \gamma_{0} \left(B_{x} - \frac{v}{c^{2}} E_{z} \right)$$
(3.10.10)

Damit sind die transversalen Felder B'_x und E'_z in S' Linearkombinationen der Felder B_x und E_z in S.

Die Transformationseigenschaften von B_z und E_x erhält man, indem man die obige Anordnung um $\pi/2$ um die y-Achse dreht. Dann gehen

$$E_z \rightarrow E_x$$
 (3.10.11)

$$B_x \rightarrow -B_z$$

(3.10.12)

über. Die Transformationsgleichungen sind dann

$$E'_{x} = \gamma_0 \left(E_x + v \cdot B_z \right) \tag{3.10.13}$$

$$B'_{z} = \gamma_0 \left(B_z + \frac{1}{c^2} E_x \right)$$
(3.10.14)

Abb. 3.41.: Skizze zur Transformation eines longitudinale E-Feldes (links) und des B-Feldes (rechts).

Die Transformation des longitudinalen E-Feldes ergibt sich aus der Erkenntnis, dass transversal zur Geschwindigkeit keine Längenkontraktion auftritt und dass das elektrische Feld eines Plattenkondensators⁷ nicht vom Plattenabstand abhängt. Also ist

$$E_{y} = \frac{\sigma}{\varepsilon_{0}}$$

$$E'_{y} = \frac{\sigma'}{\varepsilon_{0}}$$

$$\sigma = \sigma'$$
(3.10.15)

Dann ist auch

$$E_y' = E_y \tag{3.10.16}$$

Die Transformationseigenschaften der magnetischen Induktion können mit der in der obigen Abbildung rechts angedeuteten Spule berechnet werden. Die magnetische Induktion in der Spule ist

$$B_y = \mu_0 \frac{I \cdot N}{L} \tag{3.10.17}$$

wobe
iNdie Anzahl Windungen und L die Länge der Spule ist. Wir machen dabei
 die Annahme, dass die Spule sehr lang im Vergleich zum Durchmesser sei. Mit
 $I = \dot{Q}$ ist

 $^{^7 \}mathrm{oder}$ jeder anderen Anordnung von zwei parallelen, homogenen Flächenladungen

$$B_y = \mu_0 \frac{N}{L} \frac{dQ}{dt} \tag{3.10.18}$$

Die Anzahl Windungen N und die LADUNG sind relativistisch invariant. Das transformierte Feld ist dann

$$B'_{y} = \mu_{0} \frac{N}{L'} \frac{dQ}{dt'}$$
(3.10.19)

Mit der Längenkontraktion $L' = \gamma L$ und der Zeitdilatation $dt' = dt/\gamma$ folgt, dass sich die relativistischen Effekte kompensieren und damit

$$B'_y = B_y \tag{3.10.20}$$

ist.

Bei einer Bewegung in die *y*-Richtung mit $\boldsymbol{v} = (0, v_y, 0)$ ($\gamma = 1/\sqrt{1 - v_y^2/c^2}$) werden die elektrischen und magnetische Induktion wie

$$E'_{x} = \gamma(v_{y}) (E_{x} + v_{y} \cdot B_{z}) \qquad (3.10.21)$$

$$E'_{y} = E_{y}$$

$$E'_{z} = \gamma(v_{y}) (E_{z} - v_{y} \cdot B_{x})$$

$$B'_{x} = \gamma(v_{y}) \left(B_{x} - \frac{v_{y}}{c^{2}}E_{z}\right)$$

$$B'_{y} = B_{y}$$

$$B'_{z} = \gamma(v_{y}) \left(B_{z} + \frac{v_{y}}{c^{2}}E_{x}\right)$$

transformiert.

Im Vakuum gilt $\boldsymbol{B} = \mu_0 \boldsymbol{H} = \frac{\boldsymbol{H}}{\varepsilon_0 c^2}$. Die Lorentztransformation für elektrische und magnetische Felder ist dann

$$E'_{x} = \gamma(v_{y}) \left(E_{x} + \frac{v_{y}}{c^{2}} \frac{1}{\varepsilon_{0}} \cdot H_{z} \right)$$

$$E'_{y} = E_{y}$$

$$E'_{z} = \gamma(v_{y}) \left(E_{z} - \frac{v_{y}}{c^{2}} \frac{1}{\varepsilon_{0}} H_{x} \right)$$

$$H'_{x} = \gamma(v_{y}) \left(H_{x} - v_{y} \varepsilon_{0} E_{z} \right)$$

$$H'_{y} = H_{y}$$

$$H'_{z} = \gamma(v_{y}) \left(H_{z} + v_{y} \varepsilon_{0} E_{x} \right)$$
(3.10.22)

Setzen wir noch $\boldsymbol{D} = \varepsilon_0 \boldsymbol{E}$ erhalten wir

$$D'_{x} = \gamma(v_{y}) \left(D_{x} + \frac{v_{y}}{c^{2}} \cdot H_{z} \right)$$

$$D'_{y} = D_{y}$$

$$D'_{z} = \gamma(v_{y}) \left(D_{z} - \frac{v_{y}}{c^{2}} H_{x} \right)$$

$$H'_{x} = \gamma(v_{y}) \left(H_{x} - v_{y} D_{z} \right)$$

$$H'_{y} = H_{y}$$

$$H'_{z} = \gamma(v_{y}) \left(H_{z} + v_{y} D_{x} \right)$$
(3.10.23)

3.11. Lorentztransformation für allgemeine Felder und Geschwindigkeiten

Die oben genannten Transformationen in den Gleichungen (3.10.21) können für beliebige Richtungen verallgemeinert werden [Wik20b]. Dabei müssen die Feldkomponenten von \boldsymbol{E} und \boldsymbol{B} senkrecht zur Geschwindigkeit \boldsymbol{v} und parallel dazu getrennt betrachtet werden.

Die Parallel- und die Senkrechtkomponente bekommen wir mit

$$\boldsymbol{E}_{\parallel} = \left(\frac{\boldsymbol{E} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} \tag{3.11.1a}$$

$$\boldsymbol{E}_{\perp} = \boldsymbol{E} - \boldsymbol{E}_{\parallel} = \boldsymbol{E} - \left(\frac{\boldsymbol{E} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v}$$
 (3.11.1b)

$$\boldsymbol{B}_{\parallel} = \left(\frac{\boldsymbol{B} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} \tag{3.11.1c}$$

$$\boldsymbol{B}_{\perp} = \boldsymbol{B} - \boldsymbol{B}_{\parallel} = \boldsymbol{B} - \left(\frac{\boldsymbol{B} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v}$$
 (3.11.1d)

Die Transformationsgleichungen mit den Feldkomponenten nach Gleichungen $({\bf 3.11.1})$ sind dann

$$\boldsymbol{E}_{\parallel}' = \boldsymbol{E}_{\parallel} \tag{3.11.2a}$$

$$\boldsymbol{E}_{\perp}' = \gamma \left(\boldsymbol{E}_{\perp} + \boldsymbol{v} \times \boldsymbol{B}_{\perp} \right)$$
(3.11.2b)

$$\boldsymbol{B}_{\parallel}' = \boldsymbol{B}_{\parallel} \tag{3.11.2c}$$

$$\boldsymbol{B}_{\perp}' = \gamma \left(\boldsymbol{B}_{\perp} + \frac{1}{c^2} \boldsymbol{v} \times \boldsymbol{E}_{\perp} \right)$$
(3.11.2d)

Wenn wir die transformierten Felder aus den Gleichungen (3.11.2) wieder zusammensetzen erhalten wir

$$\boldsymbol{E}' = \boldsymbol{E}'_{\parallel} + \boldsymbol{E}'_{\perp} = \boldsymbol{E}_{\parallel} + \gamma \left(\boldsymbol{E}_{\perp} + \boldsymbol{v} \times \boldsymbol{B}_{\perp} \right)$$
(3.11.3a)

$$\boldsymbol{B}' = \boldsymbol{B}'_{\parallel} + \boldsymbol{B}'_{\perp} = \boldsymbol{B}_{\parallel} + \gamma \left(\boldsymbol{B}_{\perp} + \frac{1}{c^2} \boldsymbol{v} \times \boldsymbol{E}_{\perp} \right)$$
(3.11.3b)

Nun setzen wir die Senkrecht- und Parallelkomponenten aus den Gleichungen (3.11.1) wieder ein und erhalten aus den Gleichungen (3.11.3)

$$\boldsymbol{E}' = \left(\frac{\boldsymbol{E} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} + \gamma \left(\left(\boldsymbol{E} - \left(\frac{\boldsymbol{E} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} \right) + \boldsymbol{v} \times \left(\boldsymbol{B} - \left(\frac{\boldsymbol{B} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} \right) \right) \quad (3.11.4a)$$
$$\boldsymbol{B}' = \left(\frac{\boldsymbol{B} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} + \gamma \left(\left(\boldsymbol{B} - \left(\frac{\boldsymbol{B} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} \right) + \frac{\boldsymbol{v}}{c^2} \times \left(\boldsymbol{E} - \left(\frac{\boldsymbol{E} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} \right) \right) \quad (3.11.4b)$$

Die Gleichungen (3.11.4) können noch kompakter geschrieben werden

$$\boldsymbol{E}' = \gamma \left(\boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{E} \right) + \left(\frac{(1 - \gamma)\boldsymbol{E} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}} \right) \boldsymbol{v}$$
(3.11.5a)

$$\boldsymbol{B}' = \gamma \left(\boldsymbol{B} - \frac{\boldsymbol{v} \times \boldsymbol{E}}{c^2} \right) + \left(\frac{(1 - \gamma)\boldsymbol{B} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}} \right) \boldsymbol{v}$$
(3.11.5b)

Mit den Gleichungen (3.11.5) können nun die Lorentztransformationen für beliebig ausgerichtete Felder und Geschwindigkeiten berechnet werden.

3.12. Zusammenfassung: Ströme

Makroskopischer Strom Gleichung (3.0.1)

$$I = \left. \frac{\Delta Q}{\Delta t} \right|_{\text{Fläche}}$$

Mittlere Geschwindigkeit der Ladungsträger Gleichung (3.1.5)

$$\langle oldsymbol{v}
angle = rac{1}{n}\sum_j n_j\cdotoldsymbol{v}_j$$

Stromdichte VEKTORFELD Gleichung (3.1.6)

$$\boldsymbol{i} = nq \langle \boldsymbol{v} \rangle$$

Gesamtstrom Gleichung (3.1.8)

$$I\left(F\right) = \int\limits_{F} \boldsymbol{i} \cdot d\boldsymbol{a}$$

Strom bei mehreren Ladungsträgern Gleichung (3.1.9)

$$oldsymbol{i} = \sum_k n_k q_k \left< oldsymbol{v}_k \right>$$

Kontinuitätsgleichung Integralform Gleichung (3.1.15)

$$\int_{A} \boldsymbol{i} \cdot d\boldsymbol{a} = \int_{V} \operatorname{div} \boldsymbol{i} dV = \int_{V} \frac{\partial}{\partial t} \rho_{el} dV$$

Differenzial form Gleichung (3.1.16)

div
$$\boldsymbol{i}(\boldsymbol{x},t) = -\frac{\partial}{\partial t}\rho_{el}(\boldsymbol{x},t)$$

Ohmsches Gesetz lokal Gleichung (3.2.2)

$$\boldsymbol{i}\left(\boldsymbol{E}\right)=\sigma\boldsymbol{E}$$

integral Gleichung (3.2.4)

$$I = G \cdot U$$

Stromdichte und Relaxationszeit Gleichung (3.2.14)

$$\boldsymbol{i} = n \frac{q^2 \langle t \rangle}{M} \boldsymbol{E} = n \frac{q^2 \tau}{M} \boldsymbol{E}$$

Leitfähigkeit und Relaxationszeit Gleichung (3.2.15)

$$\sigma = \sum_{k} n_k \frac{q_k^2 \tau_k}{M_k}$$

Potential und Leitfähigkeit Gleichung (3.2.23)

div
$$[\sigma(x, y, z) \operatorname{\mathbf{grad}} U(x, y, z)] = 0$$

Serienschaltung von Widerständen Gleichung (3.2.30)

$$R_{\text{Serie}} = \sum_{i=1}^{N} R_i$$

Serienschaltung von Leitwerten Gleichung (3.2.31)

$$\frac{1}{G_{\text{Serie}}} = \sum_{i=1}^{N} \frac{1}{G_i}$$

Parallelschaltung von Widerständen Gleichung (3.2.33)

$$\frac{1}{R_{\text{parallel}}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

Parallelschaltung von Leitwerten Gleichung (3.2.32)

$$G_{\text{parallel}} = \sum_{i=1}^{N} G_i$$

Leistung und Strom Gleichung (3.3.8)

$$P = R \cdot I^2 = \frac{U^2}{R}$$

Magnetische Kraft zweier paralleler Leiter Gleichung (3.6.1)

$$F_M = \operatorname{const} \cdot \frac{\ell \cdot I_1 \cdot I_2}{r}$$

Magnetische Kraft auf eine sich parallel zu einem Strom bewegende Ladung Gleichung (3.7.22)

$$F_z(r) = \frac{q \cdot v \cdot I}{2\pi\varepsilon_0 \cdot c^2} \cdot \frac{1}{r}$$

Lorentz-Kraft Gleichung (3.8.1)

$$\boldsymbol{F}_L = q \; \boldsymbol{v} \times \boldsymbol{B}$$

Induktionskonstante Gleichung (3.8.3)

$$\mu_0 = \frac{1}{\varepsilon_0 c^2}$$

Magnetfeld eines geraden Leiters mit dem Strom I Gleichung (3.8.4)

$$B(r) = \frac{\mu_0}{2\pi} \cdot \frac{I}{r}$$

Kraftgesetz der Elektrodynamik Gleichung (3.8.13)

$$F = q \cdot E + q \cdot v \times B$$

Biot-Savart-Kraft Gleichung (3.8.16)

$$dF = I \cdot d\ell \times B$$

Ampèresches Durchflutungsgesetz, Integralform Gleichung (3.8.32)

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{s} = \mu_0 \iint_{A(S)} \boldsymbol{i} \cdot d\boldsymbol{a}$$

Magnetisches Moment Gleichung (3.8.33)

$$oldsymbol{m} = \iint\limits_{A(s)} oldsymbol{i} \cdot doldsymbol{a}$$

Ampèresches Durchflutungsgesetz, differentielle Form Gleichung (3.8.35)

rot $\boldsymbol{B} = \mu_0 \boldsymbol{i}$

Quellenfreiheit von *B*, Integralform Gleichung (3.8.42)

$$0 = \iint_{A} \boldsymbol{B} \cdot d\boldsymbol{a} = \iiint_{V(A)} \text{ div } \boldsymbol{B} \ dV$$

Quellenfreiheit von B, differentielle Form Gleichung (3.8.43)

div
$$\boldsymbol{B}=0$$

Ampèresches Durchflutungsgesetz und Quellenfreiheit(Vektorpotential) Gleichung (3.8.49)

$$\Delta \boldsymbol{A}\left(x,y,z\right) = -\mu_{0}\boldsymbol{i}\left(x,y,z\right)$$

Berechnung des Vektorpotentials Gleichung (3.8.50)

$$oldsymbol{A}\left(oldsymbol{r}
ight)=rac{\mu_{0}}{4\pi} \int\!\!\!\int\!\!\!\int rac{oldsymbol{i}\left(oldsymbol{r}
ight)}{|oldsymbol{r}-oldsymbol{r}'|}dV'$$

Integralform des Gesetzes von Biot-Savart Gleichung (3.8.54)

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0 I}{4\pi} \oint_{Leiter} \frac{d\boldsymbol{\ell} \times \boldsymbol{\rho}}{\rho^3}$$

Hall-Spannung Gleichung (3.9.3)

$$U_{Hall} = \frac{I \cdot B}{q \cdot b \cdot n}$$

Lorentztransformation der Felder Gleichung (3.10.21)

$$E'_{x} = \gamma(v_{y}) (E_{x} + v_{y} \cdot B_{z})$$

$$E'_{y} = E_{y}$$

$$E'_{z} = \gamma(v_{y}) (E_{z} - v_{y} \cdot B_{x})$$

$$B'_{x} = \gamma(v_{y}) \left(B_{x} - \frac{v_{y}}{c^{2}}E_{z}\right)$$

$$B'_{y} = B_{y}$$

$$B'_{z} = \gamma \left(B_{z} + \frac{v_{y}}{c^{2}}E_{x}\right)$$

Lorentztransformation der Felder Gleichung (3.10.22)

$$E'_{x} = \gamma(v_{y}) \left(E_{x} + \frac{v_{y}}{c^{2}} \frac{1}{\varepsilon_{0}} \cdot H_{z} \right)$$
$$E'_{y} = E_{y}$$
$$E'_{z} = \gamma(v_{y}) \left(E_{z} - \frac{v_{y}}{c^{2}} \frac{1}{\varepsilon_{0}} H_{x} \right)$$
$$H'_{x} = \gamma(v_{y}) \left(H_{x} - v_{y} \varepsilon_{0} E_{z} \right)$$
$$H'_{y} = H_{y}$$
$$H'_{z} = \gamma(v_{y}) \left(H_{z} + v_{y} \varepsilon_{0} E_{x} \right)$$

Lorentztransformation für beliebige Geschwindigkeiten Gleichung (3.11.5)

$$\begin{aligned} \boldsymbol{E}' &= \gamma \left(\boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{E} \right) + \left(\frac{(1 - \gamma) \boldsymbol{E} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}} \right) \boldsymbol{v} \\ \boldsymbol{B}' &= \gamma \left(\boldsymbol{B} - \frac{\boldsymbol{v} \times \boldsymbol{E}}{c^2} \right) + \left(\frac{(1 - \gamma) \boldsymbol{B} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}} \right) \boldsymbol{v} \end{aligned}$$

4. Elektrodynamik: zeitlich veränderliche Magnetfelder und magnetische Induktionen

Das allgemeine Kraftgesetz für statische Felder lautet

$$\boldsymbol{F} = \boldsymbol{q} \cdot \boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{q} \cdot \boldsymbol{E} \tag{4.0.1}$$

Bei zeitlich sich ändernden Feldern kommen neue Effekte hinzu, der VERSCHIE-BUNGSSTROM und die INDUKTION.

4.1. Das Faradaysche Induktionsgesetz

4.1.1. Eine bewegte Leiterschleife in einem stationären *B*-Feld

Abb. 4.1.: Induktion eines Stromes in einer in einer inhomogenen magnetischen Induktion bewegten Leiterschlaufe.

Wir bewegen eine Leiterschlaufe mit der Geschwindigkeit v aus dem begrenzten Gebiet mit einer homogenen magnetischen Induktion heraus. Auf die beweglichen Ladungsträger, hier positiv angenommen, wirkt die Lorentzkraft F_L . Auf den horizontalen Teilen der Leiterschlaufe kennen wir den Effekt: eine Hallspannung (Siehe Abschnitt 3.39) auf. Im vertikalen Teil im Magnetfeld bewirkt die Hallspannung eine Beschleunigung der Ladungsträger. Nach der Definition der elektromotorischen Kraft (Siehe Gleichung (3.3.9)) haben wir

$$U_{EMK} = \frac{1}{q_0} \oint \boldsymbol{F} \cdot d\boldsymbol{s} = \frac{1}{q_0} \oint \boldsymbol{F}_{\boldsymbol{L}} \cdot d\boldsymbol{s} = \frac{1}{q_0} \int_{P_1}^{P_2} F_L \cdot d\boldsymbol{s} = \frac{1}{q_0} \left(q_0 \cdot v \cdot B \right) \cdot b = v \cdot B \cdot b \quad (4.1.1)$$

Hat die Drahtschlaufe den WIDERSTAND R, so fliesst der STROM

$$I = \frac{U_{EMK}}{R} \tag{4.1.2}$$

Versuch 41: Versuch zur Vorlesung: Induktion (Versuchskarte EM-025)

Versuch 42: Versuch zur Vorlesung: Induktion im Erdfeld (Versuchskarte EM-027, Video)

Versuch 43: Versuch zur Vorlesung: Induktion im Erdfeld (Versuchskarte EM-027, Video (VPN oder intern))

4.1.2. Der magnetische Fluss

Literatur: (Siehe Leisi, Klassische Physik II [Lei98, pp. 138]) (Siehe Tipler, Physik [TM04, pp. 876])

Im Zusammenhang mit den elektrischen Feldern E hatten wir den elektrischen Fluss ϕ_E (Siehe Abschnitt 2.3) eingeführt. Hier bewegen wir die Leiterschlaufe mit der Geschwindigkeit v, wir ändern damit die von der MAGNETISCHEN INDUKTION (auch MAGNETISCHE FLUSSDICHTE genannt) durchflossene Fläche A um die Grösse $da = -d\ell \cdot b$. Da die Geschwindigkeit $v = d\ell/dt$ ist, können wir auch schreiben

$$U_{EMK} = v \cdot B \cdot b = \frac{d\ell}{dt} b \cdot B = -\frac{da}{dt} B = -\frac{B \cdot da}{dt}$$
(4.1.3)

schreiben. Wir definieren den

magnetischen Fluss

$$\phi_B = \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a} \tag{4.1.4}$$

durch die von der geschlossenen Kurve S berandete Fläche A.

Damit ist die induzierte EMK

$$U_{EMK} = -\frac{d\phi_B}{dt} = -\frac{d}{dt} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.5)

Sie wird durch den zeitlich sich ändernden Fluss erzeugt.

Die Einheit des magnetischen Flusses ist WEBER.

$$[\phi_B] = \text{Weber} = \text{Wb} = \text{T m}^2 \tag{4.1.6}$$

Das Minuszeichen in den Gleichungen für den magnetischen Fluss rührt daher, dass eine Geschwindigkeit in die positive x-Richtung eine Verkleinerung der Fläche A bewirkt.

Die durch den STROM erzeugte magnetische Flussdichte oder magnetische Induktion \boldsymbol{B} ist so gerichtet, dass die Bewegung der Spule gebremst wird. Dieses Verhalten wird in der LENZSCHEN REGEL zusammengefasst:

Die Induktionsspannung und der STROM, den sie bewirkt, sind stets so gerichtet, dass sie der Ursache entgegenwirken.

Abb. 4.2.: Vergleich eines Stabmagneten mit einer Spule. Der magnetische Nordpol ist üblicherweise rot, der Südpol grün markiert.

Eine SPULE erzeugt ein axiales Magnetfeld oder eine magnetisce Induktion. Die Richtung des Magnetfeldes (oder der magnetischen Induktion) wird mit der RECH-TEN HAND-REGEL aus der Stromrichtung abgeleitet. Ein Stabmagnet erzeugt ein gleiches Magnetfeld (oder magnetische Induktion) wie eine Spule.

Die Nord- und Südpole der Magnete sind so definiert: Die B-Feldlinien laufen vom Nordpol zum Südpol. Der Nordpol ist rot markiert, der Südpol grün.

Abb. 4.3.: Induzierte SPANNUNG

Bewegt man einen Metallring mit der Geschwindigkeit v von einem Stabmagneten weg, so bewirkt die LORENTZKRAFT einen STROM I, der eine magnetische Induktion (magnetische Flussdichte) B_{ind} induziert. Diese magnetische Induktion ist so gerichtet, dass sie gleichsinnig wie die magnetische Induktion des Stabes ist. Der Metallring wird also vom Stabmagneten angezogen und in seiner Bewegung nach rechts gebremst (LENZSCHE REGEL).

Abb. 4.4.: Vorzeichen der magnetischen Induktion und der induzierten SPAN-NUNG beim Ein- und Ausschalten.

Hier wird eine magnetische Induktion (magnetische Flussdichte) eingeschaltet. Die Richtung der Feldlinien wird durch die RECHTE-HAND-REGEL bestimmt. Eine zeitlich zunehmende magnetische Induktion in der rechten Spule ist äquivalent zu einer Bewegung der rechten Spule im inhomogenen Feld (links intensiver als rechts) nach links. Dabei zeigt die relevante Feldkomponente nach aussen. Aus der RECHTEN HAND-REGEL ergibt sich die angegebene Stromrichtung. Nach dem Ausschalten des erregenden Stromes nimmt die Intensität der magnetischen Induktion ab. Dies ist äquivalent zu einer Bewegung der rechten Spule nach rechts, bei gleichbleibender Richtung der magnetischen Induktion. Entsprechend dreht sich die Richtung des Stromes um.

Abb. 4.5.: Selbstinduktion

Wenn eine Spule von einem STROM durchflossen ist, wird dadurch eine magnetische Induktion (oder Magnetfeld) erzeugt. Wenn nun der STROM durch die Spule geändert wird, wird eine SPANNUNG induziert, die wie im vorigen Falle so gerichtet ist, dass sie der Änderung der magnetischen Induktion (oder des Magnetfeldes) entgegenwirkt, so also auch der Änderung des durch die Spule fliessenden Stromes. Im besonderen Falle, dass der STROM abgeschaltet wird, dass also der WIDER-STAND im Stromkreis um viele Grössenordnungen steigt, bildet sich eine sehr hohe SPANNUNG.

Anwendungen

- Zündspule bei Benzinmotoren
- Erzeugung der Beschleunigungsspannung in Fernsehröhren
- Teslatransformator, siehe auch

Versuch 44: Versuch zur Vorlesung:

Tesla-Transformator (Versuchskarte EM-064, Video (VPN oder intern))

4.1.3. Induktionsgesetz von Faraday, Integral- und Differentialform

Wir betrachten die Situation in der Abbildung 4.1 im Ruhesystem S' der Schleife. Im Laborsystem S ist das Magnetfeld

$$\boldsymbol{B} = (0, 0, B_z)$$

in die z-Richtung gerichtet. Die Geschwindigkeit zeigt in die y-Richtung. Mit der Lorentztransformation (3.10.21) berechnen wir die Felder im System S'. Wir erhalten

$$\begin{aligned}
 B' &= (0, 0, B'_z) &= (0, 0, \gamma(v_y) \cdot B_z) \\
 E' &= (E'_x, 0, 0) &= (v \cdot \gamma(v_y) \cdot B_z, 0, 0) \\
 &= (v_y \cdot B'_z, 0, 0)
 \end{aligned}$$
(4.1.7)

Die Leiterschleife ist im System S' in Ruhe. Also muss die EMK durch das elektrische Feld erzeugt werden.

$$U'_{EMK} = E'_x \cdot b = v_y \cdot B'_z \cdot b \tag{4.1.8}$$

Die Flussänderung ist

$$d\phi'_B = -B'_z \cdot v_y \cdot b \cdot dt' \tag{4.1.9}$$

Somit lauten das Induktionsgesetz und das Ohmsche Gesetz

$$U'_{EMK} = -\frac{d\phi'_B}{dt'}$$

$$U'_{EMK} = R \cdot I'$$
(4.1.10)

Somit gilt für die EMK die TRANSFORMATION

$$U'_{EMK} = \gamma(v)U_{EMK} \tag{4.1.11}$$

Die Gleichungen (4.1.11) gelten in jedem Falle. Wenn $v \ll c$ ist, kann man die Unterschiede im Strom *I*, in der EMK U_{EMK} und im Magnetfeld *B* vernachlässigen. Die Transformationseigenschaften zeigen, dass das Induktionsgesetz auch bei stationären Leiterschleifen und zeitlich ändernden Magnetfeldern gelten muss (wir begeben uns in das System *S'*). Die Wirkungen der Felder *B* und *E* sind unabhängig von ihrer Entstehung.

Versuch 45: Versuch zur Vorlesung: Magnetische Induktion (Versuchskarte EM-051, Video)

Versuch 46: Versuch zur Vorlesung:

Magnetische Induktion (Versuchskarte EM-051, Video (VPN oder intern))

Für einen beliebig geformten ruhenden Leiter (gegeben durch die KurveS)in einem zeitlich ändernden Magnetfeld gilt für die EMK

$$U_{EMK} = -\frac{d}{dt} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.12)

Da der Leiter in Ruhe ist, muss die EMK durch ein elektrisches Feld erzeugt sein.

$$U_{EMK} = \oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} \tag{4.1.13}$$

und damit

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\frac{d}{dt} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.14)

Bei einer bewegten Leiterschlaufe kann der magnetische Fluss sich ändern,

- a) weil sich der Fluss mit der Zeit ändert und/oder
- b) weil sich die Berandung bewegt, sich ihr Ort also ändert.

Für eine bewegte Leiterschlaufe muss das elektrische Feld E' im bewegten Bezugssystem und die magnetische Induktion B im Laborsystem berechnet werden[Jac75, p. 210]. ds' ist das Linienelement im Ruhesystem, in dem E' gemessen wird. Wir erhalten

$$\oint_{S} \boldsymbol{E}' \cdot d\boldsymbol{s}' = -\frac{d}{dt} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.15)

Mit der Gleichung (C.8.40) für die Beziehung zwischen zeitlichen Ableitungen in Ruhesystemen und mitgeführten Systemen und dem Satz von Stokes (Siehe Gleichung (C.11.1)) erhalten wir

$$U'_{EMK} = \oint_{S} \mathbf{E}' \cdot d\mathbf{s}' = -\frac{d}{dt} \iint_{A(S)} \mathbf{B} \cdot d\mathbf{a}$$
$$= -\iint_{A(S)} \left[\frac{\partial}{\partial t} \mathbf{B} + \operatorname{rot} (\mathbf{B} \times \mathbf{v}) \right] \cdot d\mathbf{a}$$
$$= -\iint_{A(S)} \frac{\partial}{\partial t} \mathbf{B} \cdot d\mathbf{a} - \oint_{S} (\mathbf{B} \times \mathbf{v}) \cdot d\mathbf{s}'$$
(4.1.16)

Dies kann auch so geschrieben werden:

$$\oint_{S} \left[\boldsymbol{E}' + (\boldsymbol{B} \times \boldsymbol{v}) \right] \cdot d\boldsymbol{s}' = -\iint_{A(S)} \frac{\partial}{\partial t} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.17)

Wenn man sich nach Jackson [Jac75, p. 212] alternativ vorstellt, dass der WegS zu einem Zeitpunkt fix im Raum ist, gilt auch

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\iint_{A(S)} \frac{\partial}{\partial t} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.18)

Deshalb erhalten wir für das elektrische Feld ${\pmb E}$ im Laborsystem

©2005-2020 Ulm University, Othmar Marti, CBY-SA

$$\oint_{S} \left[\boldsymbol{E}' + (\boldsymbol{B} \times \boldsymbol{v}) \right] \cdot d\boldsymbol{s}' = \oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s}$$
(4.1.19)

Bei kleinen Geschwindigkeiten ist ds = ds'.

Damit ist

$$\boldsymbol{E}' + (\boldsymbol{B} \times \boldsymbol{v}) = \boldsymbol{E} \Longrightarrow \boldsymbol{E}' = (\boldsymbol{v} \times \boldsymbol{B}) + \boldsymbol{E}$$
(4.1.20)

Weiter kann man daraus die LORENTZKRAFT ablesen:

$$\boldsymbol{F}_L \approx \boldsymbol{F}'_L = q \boldsymbol{E}' = q \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \right)$$
 (4.1.21)

Zurück zum Faradayschen Induktionsgesetz: Mit Gleichung (4.1.20) kann in Gleichung (4.1.17) E' eliminiert werden. Das UNIVERSELLE INDUKTIONSGESETZ VON FARADAY lautet

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\iint_{A(S)} \frac{\partial}{\partial t} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.22)

Mit dem Satz von Stokes (Siehe Gleichung (C.11.1)) erhält man

$$\oint_{S(t)} \boldsymbol{E} \cdot d\boldsymbol{s} = \iint_{A(S(t))} \operatorname{rot} \boldsymbol{E} \cdot d\boldsymbol{a} = - \iint_{A(S(t))} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{a}$$
(4.1.23)

Für zeitunabhängige Berandungen A(S) darf man Ableitung und Integral nicht vertauschen. Das Induktionsgesetz lautet dann

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\frac{d}{dt} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a}$$

Da diese Integralgleichung für beliebige Kurven S gelten muss, also auch für infinitesimal kleine, erhalten wir die DIFFERENTIELLE FORM DES FARADAYSCHEN INDUKTIONSGESETZES

$$\mathbf{rot} \ \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{4.1.24}$$

Bei der Ableitung des FARADAYSCHEN INDUKTIONSGESETZES haben wir von der Kleinheit der Geschwindigkeiten Gebrauch gemacht, explizit und implizit. Eine relativistisch korrekte Rechnung führt auf die gleichen Ergebnisse.

4.1.4. Wirbelströme

Versuch 47: Versuch zur Vorlesung: Fallrohre (Versuchskarte EM-057, Video)

Versuch 48: Versuch zur Vorlesung: Fallrohre (Versuchskarte EM-057, Video (VPN oder intern))

Abb. 4.6.: WIRBELSTRÖME in Metallen

Wenn sich ein Metallstück in einem inhomogenen Magnetfeld befindet, dann muss für jede Bahnkurve S das Faradaysche Induktionsgesetz gelten. Da der Leiter einen SPEZIFISCHEN WIDERSTAND ρ_{el} hat, fliesst bei einer Änderung des Flusses durch S, zum Beispiel, indem man den Leiter bewegt, ein durch die INDUZIERTE SPAN-NUNG getriebener STROM. Die Richtung des Stromes ist so, dass er sich einer Änderung des magnetischen Flusses widersetzt. Bei einem perfekten Leiter, müssten enorm grosse Kräfte aufgebracht werden, um das Metallstück mit einer minimalen Geschwindigkeit bewegen zu können. Durch die Dissipation im Ohmschen Leiter wird der induzierte Strom geschwächt, so dass die der Bewegung entgegengesetzte Kraft umso kleiner ist, je schlechter die Leitfähigkeit des Metalls ist.

Um die Grössenordnung des Wirbelstromes abzuschätzen betrachten wir lokal ein Stück Metall das mit der Geschwindigkeit v_y durch eine magnetische Induktion in die x- Richtung, B_x , gezogen wird. Wir betrachten die Felder im Ruhesystem der Platte. Aus den Lorentz-Transformationen erhalten wir

$$E'_{z} = \frac{-v_{y}B_{x}}{\sqrt{1 - v_{y}^{2}/c^{2}}} \approx -v_{y}B_{x}$$
$$B'_{x} = \frac{B_{x}}{\sqrt{1 - v_{y}^{2}/c^{2}}} \approx B_{x}$$
(4.1.25)

da $v^2/c^2 \ll 1$ ist. Lokal gilt der Zusammenhang

©2005-2020 Ulm University, Othmar Marti, C) BY-SA

$$\boldsymbol{i} = \sigma \boldsymbol{E} \tag{4.1.26}$$

Weiter können mit P = I U mit i = I/A und $E'_z = U/d$ und der Bezeichnung für das Volumen V = A d schreiben

$$\lim_{V \to 0} \frac{P}{V} = P_V = \lim_{V \to 0} \frac{i A \cdot E'_z d}{V} = i E'_z = \sigma E'^2_z$$
(4.1.27)

Andererseits hängt die dissipierte Leistung pro Volumen von der Volumenkraft F_V und der Geschwindigkeit v_y ab.

$$P_V = F_V \cdot v_y = \sigma E_z'^2 = \sigma \left(v_y B_x' \right)^2 = \sigma \left(v_y B_x \right)^2$$
(4.1.28)

Die Volumenkraft ist also

$$F_V = \sigma v_y B_x^2 \tag{4.1.29}$$

Die Berechnung wurde anhand eines unendlich ausgedehnten Leiters in einem Magnetfeld gemacht. Endliche Leiter und endliche Magnetfelder bewirken, dass der Effekt nur an den Grenzen vorhanden ist.

Abb. 4.7.: Bewegung eines Leiters aus einem Magnetfeld.

Im Ruhesystem des Leiters bewirkt das elektrische Feld eine Bewegung der Ladungsträger an die Seiten des Leiters (analog wie beim Halleffekt). Dadurch wird ein Gegenfeld aufgebaut, bis die Bewegung der Ladungsträger zum Erliegen kommt (Siehe Abbildung 4.7, linke Seite). Wenn der Leiter den Bereich des Magnetfeldes verlässt (wir nehmen eine scharfe Grenze an, dann gleichen sich die Ladungen aus. Die Ströme erzeugen wegen der endlichen Leitfähigkeit σ eine Wärmeleistung, das heisst es gibt eine Gegenkraft. Kondensatoren werden exponentiell entladen, so dass die Wirkung des ändernden Feldes lokal begrenzt ist. Auf der anderen Seite des Magnetfeldes tauchen die gleichen Effekte auf, aber beim Laden des Kondensators. Auch dort nimmt der STROM exponentiell ab beim Entfernen von der

142

Grenze. Warum heisst es dann doch Wirbelströme? Wir haben einen Stromkreis, bei dem die magnetische Induktion die elektromotorische Kraft bewirkt (wie beim van de Graaff-Generator). Während im Ruhesystem des Leiters die Effekte durch das elektrische Feld erklärt werden, müssen sie im Laborsystem mit Flussänderung und magnetischer Induktion beschrieben werden.

In Transformatoren ist die magnetische Induktion parallel zum Eisen, die Wirbelströme transversal dazu. Die Wirbelströme können vermindert werden, indem das Metall geschlitzt wird oder in Lagen mit Isolatoren dazwischen gebündelt wird.

Anwendungen

- Wirbelstrombremse beim ICE
- Retarder in LKWs
- Dämpfung von Schwingungen in Rastertunnelmikroskopen
- In Transformatoren und Motoren verwendet man geschlitzte Bleche

Beispielswerte

	Cu		Al		Fe		Ti		
$B/T \rightarrow$	0.1	1	0.1	1	0.1	1	0.1	1	
$v/(m \ s^{-1})$									
0.01	$5.8 \cdot 10^{-5}$	$5.8 \cdot 10^{-3}$	$3.7 \cdot 10^{-5}$	$3.7 \cdot 10^{-3}$	0.00001	0.001	$2.56 \cdot 10^{-6}$	0.000256	7
0.1	$5.8 \cdot 10^{-4}$	$5.8 \cdot 10^{-2}$	$3.7 \cdot 10^{-4}$	$3.7 \cdot 10^{-2}$	0.0001	0.01	0.0000256	0.00256	7
1	$5.8 \cdot 10^{-3}$	$5.8 \cdot 10^{-1}$	$3.7 \cdot 10^{-3}$	0.37	0.001	0.1	0.000256	0.0256	
10	$5.8 \cdot 10^{-2}$	5.8	$3.7 \cdot 10^{-2}$	3.7	0.01	1.	0.00256	0.256	

Tab. 4.1.: Wirbelstromkräfte in N m^{-3} von Magneten mit 0.1 T und 1 T auf Platten mit der Geschwindigkeit v aus verschiedenen Materialien.

4.1.5. Unendlich lange Spule

Eine unendlich lange Spule kann man sich aus kreisförmigen Leitern zusammengesetzt denken.

Abb. 4.8.: Die magnetische Induktion am Punkt 0 auf der z-Achse kann berechnet werden, indem mit Gleichung (3.8.55) die magnetische Induktion eines Rings mit der Stromdichte $I \cdot n \cdot dz$ berechnet wird und dann über alle Ringströme addiert wird.

Wir berechnen zuerst die magnetische Induktion eines Kreisringes mit dem Radius r im Abstand z vom Nullpunkt ($\mathbf{r}' = (x, y, z)$) am Nullpunkt ($\mathbf{r} = (0, 0, 0)$). Ausgehend von Gleichung (3.8.55) schreiben wir für einen Kreisring auf der Position z mit dem Radius r für $\boldsymbol{\rho}$.

$$oldsymbol{
ho}=oldsymbol{r}-oldsymbol{r}'=(-x,-y,-z)$$

Da r konstant ist, schreiben wir x und y als Funktion des Winkels ϕ

$$\boldsymbol{\rho} = (-r\cos(\phi), -r\sin(\phi), -z)$$

Der STROM I soll im Gegenuhrzeigersinn umlaufen, also in positiver Richtung. Ein Längenelement entlang des Kreisringes ist

$$d\boldsymbol{\ell} = (-y, x, 0) \cdot \frac{d\ell}{r} = (-\sin(\phi), \cos(\phi), 0) \, r d\phi$$

Das Vektorprodukt $d\ell \times \rho$ ergibt

$$d\boldsymbol{\ell} \times \boldsymbol{\rho} = \left(-r z \cos(\phi), -r z \sin(\phi), r^2\right) d\phi$$

Mit dem STROM pro Windung I wird die magnetische Induktion am Punkte (0,0,0)

$$\boldsymbol{B} = \frac{\mu_0 I}{4\pi} \oint_0^{2\pi} \frac{d\boldsymbol{\ell} \times \boldsymbol{\rho}}{\rho^3}$$

Die x- und die y-Komponenten von $d\ell \times \rho$ enthalten eine Winkelfunktion zur ersten Potenz und ergeben bei einer Integration von 0 nach 2π null. Die z-Komponente der magnetischen Induktion ist

144
$$B_z = \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \frac{r^2 d\phi}{\left(r^2 + z^2\right)^{3/2}} = \frac{\mu_0 I r^2}{2 \left(r^2 + z^2\right)^{3/2}}$$
(4.1.30)

Die magnetische Induktion einer unendlich langen Spule bekommt man, indem wir den STROM I durch das Produkt aus Strom I, der Windungszahl pro Länge (Windungsdichte) n und dem Längenelement dz ersetzen und integrieren.

$$B_z(0) = \int_{-\infty}^{\infty} \frac{\mu_0 Inr^2 dz}{2\left(r^2 + z^2\right)^{3/2}} = \mu_0 In$$
(4.1.31)

Wird die unendlich lange Spule bei z = 0 geteilt, tragen beide Spulenhälften gleichviel zur magnetischen Induktion bei z = 0 bei. Wird nun eine Hälfte entfernt, so ist die magnetische Induktion auf der Spulenachse

$$B_z(\text{Endfläche}) = \frac{B_z(0)}{2} = \frac{\mu_0 \, n \, I}{2} = \frac{\mu_0 \, N \, I}{2\ell} \tag{4.1.32}$$

Endlich lange Spulen der Länge $\ell \gg r$ verhalten sich wie unendlich lange Spulen. Wenn sich auf der Länge ℓN Windungen befinden, haben wir

$$B_z(\text{innen}) = \frac{\mu_0 N}{\ell} I = \mu_0 n I$$
 (4.1.33)

4.1.6. Endlich lange Spule

Abb. 4.9.: Berechnung einer endlichen Spule: Variablen und Geometrie.

Bei einer endlich langen Spule können wir wie bei der unendlich langen Spule (Abschnitt 4.1.5) vorgehen:

- Die Spule soll die Länge ℓ haben, und um z = 0 zentriert sein.
- Sie habe den Radius r und die Querschnittsfläche $A = \pi r^2$.
- Wir betrachten einen Kreisring (rot) bei $z = \zeta$.

- Wir nehmen an, dass die Spule viel länger sei als ihr Radius: $\ell \gg r$.
- Das Feld auf der z-Achse ergibt sich dann durch Integration über ζ von $-\frac{\ell}{2}$ bis $\frac{\ell}{2}$.

Wir beginnen mit Gleichung (4.1.30). Mit der Dichte der Windungen n (Windungen pro Länge) bekommen wir den Beitrag der roten «Windung»:

$$dB_z = \frac{\mu_0 \, n \, I \, r^2}{2 \left(r^2 + (z - \zeta)^2 \right)^{3/2}} d\zeta \tag{4.1.34}$$

Das Integral von $-\frac{\ell}{2}$ bis $\frac{\ell}{2}$ ist

$$B_{z}(z) = \int_{-\ell/2}^{\ell/2} \frac{\mu_{0} n I r^{2}}{2 \left(r^{2} + (z - \zeta)^{2}\right)^{3/2}} d\zeta$$
$$= \frac{I \mu_{0} n}{2} \left(\frac{\ell - 2z}{\sqrt{(\ell - 2z)^{2} + 4r^{2}}} + \frac{\ell + 2z}{\sqrt{(\ell + 2z)^{2} + 4r^{2}}}\right) \quad (4.1.35)$$

Gleichung (4.1.35) ergibt die in Abbildung 4.10 gezeigten Verläufe der magnetischen Induktion $B_z(z)$. Dabei wurde der Spulenradius r = 0.1 gesetzt und die Länge ℓ variiert.

Abb. 4.10.: Induktion auf der Symmetrieachse einer endlich langen Spule. Die Werte von $\ell = L$ und r sind in der Legende angegeben. Hier ist r konstant.

Abbildung 4.11 zeigt, was passiert wenn der Radius der Spule r bei konstanter Länge ℓ geändert wird.

Abb. 4.11.: Induktion auf der Symmetrieachse einer endlich langen Spule. Die Werte von $\ell = L$ und r sind in der Legende angegeben. Hier ist ℓ konstant.

4.1.7. Transformator

Der magnetische Fluss in einer Spule entsteht durch Ströme in dieser Spule selber, oder in anderen Spulen. Nach dem Gesetz von Laplace oder Biot-Savart (Siehe Gleichung (3.8.55)) ist die magnetische Induktion proportional zum STROM. Somit ist auch der Fluss ϕ_B proportional zum STROM. Diese Proportionalität wird mit

$$\phi_B = L \cdot I \tag{4.1.36}$$

ausgedrückt, wobe
iL die SELBSTINDUKTIVITÄT der Spule ist. Die Einheit der Induktivität ist

$$[L] = \text{Henry} = \text{H} = \text{Wb } \text{A}^{-1} = \text{T } \text{m}^2 \text{A}^{-1}$$

In den meisten Fällen ist es schwierig, die Selbstinduktivität einer Schaltung zu berechnen. Für eine lange, dicht gewickelte Spule ergibt Gleichung (4.1.33) die magnetische Induktion

$$B = \mu_0 \frac{N}{\ell} I \tag{4.1.37}$$

Dabei ist $N = n \cdot \ell$ die Anzahl Windungen auf der Länge ℓ . Die magnetische Induktion *B* hängt von der Dichte der Windungen ab, nicht aber von der Länge der Spule. Für den Fluss Φ_B brauchen wir die magnetische Induktion und die **gesamte** eingeschlossene Fläche. Die Spule habe den Querschnitt *A*. Diese gesamte eingeschlossene Fläche ist dann *N* mal die Fläche *A* einer einzelnen Windung, also $N \cdot A$. Deshalb ist der Fluss

$$\phi_B = B \cdot (N \cdot A) = \mu_0 \frac{N^2}{\ell} I \cdot A = \mu_0 n^2 A \ell I \qquad (4.1.38)$$

Damit ist die Induktivität der Spule

$$L = \frac{\phi_B}{I} = \mu_0 \frac{N^2}{\ell} A = \mu_0 n^2 A \ell$$
 (4.1.39)

Die magnetische Permeabilität μ_0 kann also auch als

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ H m}^{-1} \tag{4.1.40}$$

Die Änderung der Stromstärke bedingt eine Änderung des magnetischen Flusses.

$$\frac{d\phi_B}{dt} = \frac{d(LI)}{dt} = L\frac{dI}{dt}$$
(4.1.41)

Somit wird mit Gleichung (4.1.5)

$$U = -\frac{d\phi_B}{dt} = -L\frac{dI}{dt} \tag{4.1.42}$$

Mit dieser Gleichung wird die Funktionsweise des FUNKENINDUKTORS klar.

Versuch 49: Versuch zur Vorlesung: Funkeninduktor (Versuchskarte EM-017, Video)

Versuch 50: Versuch zur Vorlesung: Funkeninduktor (Versuchskarte EM-017, Video (VPN oder intern))

Abb. 4.12.: Zwei gekoppelte Stromkreise

Der magnetische Fluss am Punkt P_2 hängt sowohl vom STROM I_2 wie auch vom STROM I_1 ab:

$$\phi_B(P_2) = L_2 \cdot I_2 + M_{12} \cdot I_1 \tag{4.1.43}$$

Ebenso hängt der magnetische Fluss am Punkt P_1 von beiden Strömen ab

$$\phi_B(P_1) = L_1 \cdot I_1 + M_{21} \cdot I_2 \tag{4.1.44}$$

Neben der SELBSTINDUKTIVITÄT L_i müssen bei realen Systemen auch die GEGEN-INDUKTIVITÄTEN M_{ij} berücksichtigt werden. Wie bei den Induktivitäten hängt auch bei den Gegeninduktivitäten die Grösse allein von der Geometrie ab.

Abb. 4.13.: Symbolische Darstellung eines TRANSFORMATORS

Im allgemeinen ist es schwierig, die Gegeninduktivitäten zu berechnen. Bei zwei ineinander gewickelten Spulen, einem Beispiel für einen TRANSFORMATOR, gelingt dies. Wir wollen das Beispiel verwenden, um zu zeigen, dass $M_{12} = M_{21}$ ist. Durch die Spule 1 (Länge ℓ , Radius r_1 , Windungsdichte $n_1 = N_1/\ell$) fliesst der Strom I_1 , durch die zweite Spule 2 (Länge ℓ , Radius r_2 , Windungsdichte $n_2 = N_2/\ell$) soll der Strom I_2 fliessen. Da wir lange Spulen betrachten, ist das Magnetfeld im Inneren der Spulen homogen. Also ist

$$B_1 = \mu_0 n_1 I_1 \tag{4.1.45}$$

Ausserhalb der Spule 1 ist das Magnetfeld $B_1 = 0$ (Annahme einer langen Spule). Deshalb ist der Fluss durch den STROM I_1 für die Spule 2 gegeben durch

$$\phi_{B_2} = N_2 \cdot B_1(\pi r_1^2) = n_2 \ell B_1(\pi r_1^2) = \mu_0 n_1 n_2 \ell(\pi r_1^2) I_1 \tag{4.1.46}$$

Die Gegeninduktivität M_{12} ist also

$$M_{12} = \frac{\phi_{B_2}}{I_1} = \mu_0 n_1 n_2 \ell(\pi r_1^2) \tag{4.1.47}$$

Im entgegengesetzten Falle beginnen wir mit

$$B_2 = \mu_0 n_2 I_2 \tag{4.1.48}$$

Der für die Spule 1 relevante Fluss ist durch die von der Spule 1 umschlossene Fläche, also $N_1(\pi r_1^2)$ gegeben.

$$\phi_{B_1} = N_1 \cdot B_2(\pi r_1^2) = n_1 \ell \mu_0 n_2 I_2(\pi r_1^2) = \mu_0 n_1 n_2 \ell(\pi r_1^2) I_2 \tag{4.1.49}$$

Damit wird die Gegeninduktivität

$$M_{21} = \frac{\phi_{B_1}}{I_2} = \mu_0 n_1 n_2 \ell(\pi r_1^2) = M_{12}$$
(4.1.50)

Diese Beziehung, die an einem Spezialfall gezeigt wurde, gilt auch allgemein (ohne Beweis).

Abb. 4.14.: Schematischer Aufbau eines TRANSFORMATORS

Die in einem Transformator INDUZIERTE SPANNUNG kann wie folgt berechnet werden. In der Spule 1 fällt die SPANNUNG

$$U_{L,1} = N_1 \frac{d\phi_B}{dt} \tag{4.1.51}$$

ab. Diese SPANNUNG muss durch die Wechselspannungsquelle Uerzeugt werden, so das

$$U = U_{L,1} = N_1 \frac{d\phi_B}{dt}$$
(4.1.52)

ist. Durch die Anordnung des Eisens wird erreicht, dass der gesamte durch die erste Spule erzeugte magnetische Fluss durch die zweite Spule fliesst. Dort haben wir die INDUZIERTE SPANNUNG

$$U_2 = -N_2 \frac{d\phi_B}{dt} \tag{4.1.53}$$

und somit

$$U_2 = -\frac{N_2}{N_1} U_1 \tag{4.1.54}$$

 N_2/N_1 heisst der ÜBERSETZUNGSFAKTOR des Transformators.

Wird der Ausgang des Transformators mit dem OHMSCHEN WIDERSTAND R belastet, fliesst der STROM I_2 , der zu U_2 in Phase ist. Dieser STROM erzeugt einen magnetischen Fluss $\phi'_B \propto N_2 I_2$, der den ursprünglichen Fluss ϕ_B durch die Spule 2

150

schwächt. Da durch beide Spulen der gleiche magnetische Fluss fliesst, muss auch der Fluss durch die erste Spule geschwächt werden. Da die SPANNUNG durch die Spannungsquelle U vorgegeben ist, muss der STROM I_1 auf der Primärseite zusätzlich fliessen, so dass $\phi'_B \propto N_1 I_1$ gilt. Da die Proportionalitätsfaktoren bis auf das Vorzeichen gleich sind, gilt dann auch

$$I_2 = -\frac{N_1}{N_2} I_1 \tag{4.1.55}$$

Wenn wir die Effektivwerte betrachten haben wir damit

$$U_2 I_2 = \left[-\frac{N_2}{N_1} U_1 \right] \left[-\frac{N_1}{N_2} I_1 \right] = U_1 I_1 \tag{4.1.56}$$

sofern man Verluste vernachlässigt. Ideale Transformatoren übertragen also verlustfrei Leistung.

Versuch 52: Versuch zur Vorlesung:

Hochspannungsleitung (Versuchskarte EM-161, Video (VPN oder intern))

Versuch 53: Versuch zur Vorlesung: Transformatorenversuche, Teil Hochspannung

Transformatorenversuche, Teil Hochspannung (Versuchskarte EM-066, Video)

Versuch 54: Versuch zur Vorlesung: Transformatorenversuche, Teil Hochstrom (Versuchskarte EM-066, Video)

Versuch 55: Versuch zur Vorlesung: Transformatorenversuche (Versuchskarte EM-066, Video (VPN oder intern))

4.1.8. Kirchhoffsche Gesetze

Abb. 4.15.: Kirchhoffsche Gesetze: links die MASCHENREGEL, rechts die KNO-TENREGEL.

In einer komplizierten elektrischen Schaltung betrachtet man eine einzelne Masche. Nach der Definition der EMK muss eine Probeladung langsam um die Masche herumgeführt werden. Dies führt auf die Maschenregel

$$\sum_{\forall k \text{ Quellen}} U_k = \sum_{\forall j \text{ Verbraucher}} U_j \qquad (4.1.57)$$

wobei die Vorzeichen entsprechend dem Umlaufsinn einzusetzen sind. In unserem Beispiel bedeutet dies:

$$U_1 - U_2 = U_R + U_L$$

Die Knotenregel ist ein Ausdruck für die Ladungserhaltung. Wenn wir zum Beispiel alle zufliessenden Ströme positiv und alle wegfliessenden Ströme negativ zählen (oder umgekehrt), gilt an jedem Knoten

$$\sum_{\forall k \text{ eines Knotens}} I_k = 0 \tag{4.1.58}$$

Mit diesen beiden Regeln sowie der Kenntnis der Charakteristika der Bauelemente kann jede statische oder quasistatische elektronische Schaltung berechnet werden.

P

Versuch 56: Versuch zur Vorlesung:

Berechnung von Spannungen in einem Netzwerk (Versuchskarte Applet)

4.1.9. Wechselstromkreise, Impedanzen

Versuch 57: Versuch zur Vorlesung:

Einfache Wechselstromkreise (Versuchskarte Applet)

In diesem Abschnitt betrachten wir die Wirkung von cosinusförmigen Wechselspannungen

$$U \equiv U(t) = U_0 \cos\left(\omega t - \varphi\right) \tag{4.1.59}$$

Alternativ können die Spannungen und Ströme auch als komplexe Zahlenwerte geschrieben werden

$$U \equiv U(t) = U_0 e^{i(\omega t - \varphi)} \tag{4.1.60}$$

Diese Rechnung mit komplexen Zahlen ist oft einfacher. Sie wird häufig in der Elektrotechnik verwendet.

Vorsicht: Die komplexe Schreibweise gilt nur bei linearen Gleichungen. Wenn nichtlineare Funktionen vorhanden sind, muss anstelle von U(t) mit $\frac{1}{2}(U(t) + U^*(t))$ verwendet werden. Für andere Grössen gilt dies analog.

4.1.9.1. Ohmscher Widerstand im Wechselstromkreis

Die Zeitskala für die Wechselspannung wird so gewählt, dass $\varphi = 0$ ist. Weiter setzen wir voraus, dass die zeitliche Änderung aller Grössen so gering sind, dass wir wie im stationären Falle rechnen können, dis ist der quasistationäre Fall.

Abb. 4.16.: Definition von Strömen und Spannungen bei Wechselspannungen

Da bei Wechselspannungen a priori keine Stromrichtung vorgegeben ist, definiert man, zum Beispiel wie in der Abbildung oben, die Stromrichtung zu einem bestimmten Zeitpunkt, hier für t = 0. Zu jedem Zeitpunkt muss die SPANNUNG im Stromkreis insgesamt null sein. Also ist

$$U - U_R = 0 (4.1.61)$$

und mit dem Ohmschen Gesetz

$$U_0 \cos(\omega t) - I \cdot R = 0 \tag{4.1.62}$$

oder

$$I(t) = \frac{U_0}{R}\cos(\omega t) = I_0\cos(\omega t)$$
(4.1.63)

Der STROM und die SPANNUNG erreichen immer dann einen Extremwert, wenn ωt ein ganzzahliges Vielfaches von π ist. Der durch einen WIDERSTAND fliessende STROM ist in Phase mit der SPANNUNG.

Die momentane Leistung am WIDERSTAND ist

$$P(t) = U(t) \cdot I(t) = U_0 \cos(\omega t) \cdot \frac{U_0}{R} \cos(\omega t) = \frac{U_0^2}{R} \cos^2(\omega t) = I_0^2 R \cos^2(\omega t) \quad (4.1.64)$$

Der Mittelwert der Leistung ist $(\langle \cos^2 \omega t \rangle_t = 1/2)$

$$\langle P(t) \rangle = \frac{1}{2} \frac{U_0^2}{R} = \frac{1}{2} I^2 R$$
 (4.1.65)

Unter dem Effektivwert der SPANNUNG (des Stromes) versteht man diejenige Gleichspannung, die an einem Ohmschen Widerstand die gleiche Verlustleistung erzeugt. Also ist für sinusförmige Spannungen

$$U_{eff} = \frac{1}{\sqrt{2}} U_0 \tag{4.1.66}$$

beziehungsweise

$$I_{eff} = \frac{1}{\sqrt{2}} I_0 \tag{4.1.67}$$

Für beliebige Spannungsverläufe (Stromverläufe) ist der Effektivwert (auch Root-Mean-Square (RMS)-Wert von «Root Mean Square »)

$$U_{eff} = U_{rms} = \sqrt{\frac{1}{T} \int_{t}^{t+T} U^2(\tau) d\tau}$$
(4.1.68)

wobei T eine Zeit ist, die bei periodischen Signalen der Periodendauer entspricht und bei zufälligen Signalen lang gegenüber der charakteristischen Zeitdauer der Schwankungen sein muss. Für Ströme gilt die analoge Formel

$$I_{eff} = I_{rms} = \sqrt{\frac{1}{T} \int_{t}^{t+T} I^2(\tau) d\tau}$$

$$(4.1.69)$$

Versuch 58: Versuch zur Vorlesung:

Wechselstromwiderstand (Versuchskarte EM-053, Video)

Versuch 59: Versuch zur Vorlesung: Wechselstromwiderstand (Versuchskarte EM-053, Video (VPN oder intern))

4.1.9.2. Ohmscher Widerstand im Wechselstromkreis, komplexe Rechnung

Wieder wird die Zeitskala für die Wechselspannung wird so gewählt, dass $\varphi = 0$ ist. Und wieder setzen wir voraus, dass die zeitliche Änderung aller Grössen so gering sind, dass wir wie im stationären Falle rechnen können. Wir dies den quasistationären Fall. Wir verwenden wieder die Bedingungen und die Anordnung von Abbildung 4.16. Zu jedem Zeitpunkt muss die SPANNUNG im Stromkreis insgesamt null sein. Wir setzen $U = U_0 \exp(i\omega t)$ mit $U_0 \in \mathbb{R}$. Dann ist

$$U - U_R = 0 (4.1.70)$$

und mit dem Ohmschen Gesetz

$$U_0 e^{(i\omega t)} - I(t) \cdot R = 0 \tag{4.1.71}$$

 oder

$$I(t) = \frac{U_0}{R} e^{(i\omega t)} = I_0 e^{(i\omega t)}$$
(4.1.72)

Komplexe Zahlen sind nicht direkt messbar, unsere Welt ist reell. Messbar sind dann

$$U_{mess}(t) = \Re \left(U(t) \right) = \Re \left(U_0 e^{(i\omega t)} \right) = U_0 \cos(\omega t) \quad \text{oder } U_{mess,2}(t) = \Im \left(U_0 e^{(i\omega t)} \right) = U_0 \sin(\omega t)$$

$$I_{mess}(t) = \Re \left(I(t) \right) = \Re \left(I_0 e^{(i\omega t)} \right) = I_0 \cos(\omega t) \qquad \text{oder } I_{mess,2}(t) = \Im \left(I_0 e^{(i\omega t)} \right) = I_0 \sin(\omega t)$$

$$(4.1.73a)$$

$$(4.1.73b)$$

Entweder wird konsistent überall \Re (der Realteil) oder \Im (der Imaginärteil) verwendet.

Der durch einen WIDERSTAND fliessende STROM ist als in Phase ($\delta \varphi = 0$) mit der SPANNUNG.

Wie in Abschnitt 4.1.9 erwähnt, müssen wir bei der nichtlinearen Rechnung «momentane Leistung» mit konjugiert komplexen Werten rechnen. am WIDERSTAND ist

$$P(t) = \frac{1}{2} \left(U(t) + U^{*}(t) \right) \cdot \frac{1}{2} \left(I(t) + I^{*}(t) \right)$$

$$= \frac{U_{0}}{2} \left(e^{(i\omega t)} + e^{(-i\omega t)} \right) \cdot \frac{I_{0}}{2} \left(e^{(i\omega t)} + e^{(-i\omega t)} \right) = \left(\frac{U_{0}}{2} \left(e^{(i\omega t)} + e^{(-i\omega t)} \right) \right)^{2} \frac{1}{R}$$

$$= \frac{U_{0}^{2}}{4R} \left(e^{(2i\omega t)} + e^{(-2i\omega t)} + 2e^{(i\omega t)}e^{(-i\omega t)} \right)$$

$$= \frac{U_{0}^{2}}{4R} \left(\cos(2\omega t) + i\sin(2\omega t) + \cos(-2\omega t) + i\sin(-2\omega t) + 2 \right)$$

$$= \frac{U_{0}^{2}}{4R} \left(\cos(2\omega t) + i\sin(2\omega t) + \cos(2\omega t) - i\sin(-2\omega t) + 2 \right)$$

$$= \frac{U_{0}^{2}}{4R} \left(2\cos(2\omega t) + i\sin(2\omega t) + 2 \right) = \frac{U_{0}^{2}}{4R} 4\cos^{2}(\omega t) = \frac{U_{0}^{2}\cos^{2}(\omega t)}{R} \quad (4.1.74)$$

oder schneller

$$P(t) = \Re \left(U(t) \right) \cdot \Re \left(I(t) \right)$$

= $U_0 \cos(\omega t) \cdot \frac{U_0}{R} \cos(\omega t) = \frac{U_0^2}{R} \cos^2(\omega t) = I_0^2 R \cos^2(\omega t)$ (4.1.75)

Wir erhalten also die gleiche Leistung P(t) wie im Abschnitt 4.1.9.1. Die weitere Rechnung geht wie in diesem vorherigen Abschnitt.

4.1.9.3. Impedanz einer Spule

Abb. 4.17.: Spule (Induktivität) mit Wechselspannung

Wir verwenden Gleichung (4.1.42) um die SPANNUNG über der Spule zu berechnen. Die INDUZIERTE SPANNUNG ist der Flussänderung entgegengesetzt. Sie wirkt so, dass die Zunahme des Stromes bei zunehmender Anregungsspannung gebremst wird. Deshalb ist

$$U - U_L = 0 = U - L \frac{dI}{dt}$$
(4.1.76)

Setzen wir $U = U_0 \cos(\omega t)$ ein, erhalten wir

$$\frac{dI}{dt} = \frac{U_0}{L}\cos(\omega t) \tag{4.1.77}$$

und damit

$$I(t) = \frac{U_0}{L} \int_0^t \cos(\omega\tau) d\tau = \frac{U_0}{L\omega} \sin(\omega t) = \frac{U_0}{L\omega} \cos(\omega t - \frac{\pi}{2})$$
(4.1.78)

Der STROM hat also den Scheitelwert

$$I_0 = \frac{U_0}{\omega L} = \frac{U_0}{X_L}$$
(4.1.79)

wobei $X_L = \omega L$ die Impedanz oder der INDUKTIVE WIDERSTAND der Spule ist. Die Einheit der Impedanz ist gleich wie die Einheit des Widerstandes, das Ohm. Der STROM folgt der SPANNUNG mit einer Phasenverschiebung von $-\pi/2$. Für die Effektivwerte gilt $I_{eff} = U_{eff}/X_L$, da für sinusförmige Spannungen und Ströme der gleiche Faktor zur Umrechnung von Scheitelwerten zu Effektivwerten verwendet werden muss.

Die momentan dissipierte Leistung an einer Spule ist

$$P(t) = U(t) \cdot I(t) = U_0 \cos(\omega t) \cdot \frac{U_0}{\omega L} \cos(\omega t - \frac{\pi}{2}) = \frac{U_0^2}{\omega L} \cos(\omega t) \sin(\omega t) \quad (4.1.80)$$

Die dissipierte Leistung kann sowohl positiv wie auch negativ sein. Die mittlere dissipierte Leistung ist

$$\langle P \rangle_t = \frac{U_0^2}{\omega L} \left\langle \cos(\omega t) \sin(\omega t) \right\rangle_t = 0$$
 (4.1.81)

Im Mittel wird also keine Leistung an einer Spule dissipiert.

4.1.9.4. Impedanz einer Spule: komplex

Dieser Abschnitt zeigt die gleiche Rechnung wie in Abschnitt 4.1.9.3, aber mit komplexen Zahlen gerechnet. Die Bezeichnungen beziehen sich auf Abbildung 4.17. Wir verwenden wie in Abschnitt 4.1.9.3 die Gleichung (4.1.42) um die SPANNUNG über der Spule zu berechnen. Alles dort gesagte gilt auch hier.

$$U - U_L = 0 = U - L \frac{dI}{dt}$$

Setzen wir $U(t) = U_0 e^{i\omega t}$ ein, erhalten wir

$$\frac{dI}{dt} = \frac{U_0}{L} e^{i\omega t} \tag{4.1.82}$$

Das ergibt

$$I(t) = \frac{U_0}{L} \int_0^t e^{i\omega\tau} d\tau = \frac{U_0}{i\omega L} e^{i\omega t}$$
(4.1.83)

Der Realteil des STROMES hat also den Scheitelwert

©2005-2020 Ulm University, Othmar Marti, COBY-SA

$$I_0 = |I| = \left| \frac{U_0}{i\omega L} \right| = \frac{U_0}{X_L}$$
(4.1.84)

wobei $X_L = |i\omega L|$ die Impedanz oder der INDUKTIVE WIDERSTAND der Spule ist, wie vorher.

Üblich ist hier aber mit der komplexen Impedanz

$$Z_L = i\omega L \tag{4.1.85}$$

zu rechnen. Dies vereinfacht gewaltig die Berechnung von Netzwerken aus Induktivitäten, Kapazitäten und Widerständen nach Abschnitt 4.1.8. In der Elektrotechnik wird bevorzugt mit komplexen Impedanzen gerechnet, ja es gibt sogar Messgeräte dafür, die Impedanzanalysatoren [Wik20a].

Der Phasenfaktor $-\pi/2$ in Gleichung (4.1.78) ist äquivalent zum Faktor 1/i = -i in Gleichung (4.1.83).

Die momentan dissipierte Leistung an einer Spule ist mit komplexen Impedanzen gerechnet

$$P(t) = \frac{1}{2} (U(t) + U^{*}(t)) \cdot \frac{1}{2} (I(t) + I^{*}(t))$$

$$= \frac{1}{2} (U_{0}e^{i\omega t} + U_{0}e^{-i\omega t}) \cdot \frac{1}{2} (\frac{U_{0}}{i\omega L}e^{i\omega \tau} - \frac{U_{0}}{i\omega L}e^{-i\omega \tau})$$

$$= \frac{U_{0}^{2}}{4\omega L} (e^{i\omega t} + e^{-i\omega t}) (ie^{-i\omega t} - ie^{i\omega t}) = \frac{U_{0}^{2}}{4\omega L} (i [e^{-2i\omega t} - e^{2i\omega t}])$$

$$= \frac{U_{0}^{2}}{4\omega L} (i [\cos(-2\omega t) + i \sin(-2\omega t) - (\cos(2\omega t) - i \sin(2\omega t))])$$

$$= \frac{U_{0}^{2}}{4\omega L} (-i^{2}2\sin(2\omega t)) = \frac{U_{0}^{2}}{4\omega L} (2\sin(2\omega t))$$

$$= \frac{U_{0}^{2}}{4\omega L} (4\cos(\omega t)\sin(\omega t)) = \frac{U_{0}^{2}}{\omega L} \cos(\omega t)\sin(\omega t) \quad (4.1.86)$$

wie im Abschnitt 4.1.9.3. Natürlich hätten wir auch

$$P(t) = \Re U(t) \cdot \Re I(t) = \Re \left((U_0 e^{i\omega t}) \cdot \Re \left(\frac{U_0}{i\omega L} e^{i\omega t} \right) \right)$$
$$= U_0 \cos(\omega t) \cdot \frac{U_0}{\omega L} \sin(\omega t) = \frac{U_0^2}{\omega L} \cos(\omega t) \sin(\omega t) \quad (4.1.87)$$

rechnen können. Der Rest ist dann wie in Abschnitt 4.1.9.3.

4.1.9.5. Impedanz eines Kondensators

Abb. 4.18.: Kondensator mit Wechselspannung

Beim Kondensator ist $U_C = q/C$. Diese SPANNUNG muss gleich der treibenden SPANNUNG sein.

$$U - U_C = 0 = U - \frac{q}{C} \tag{4.1.88}$$

Wir setzen U ein und erhalten

$$q = C \cdot U_0 \cos(\omega t) \tag{4.1.89}$$

Der Strom ist dann

$$I = \frac{dq}{dt} = \frac{d}{dt}C \cdot U_0 \cos(\omega t) = -C\omega \cdot U_0 \sin(\omega t) = C\omega \cdot U_0 \cos(\omega t + \frac{\pi}{2}) \quad (4.1.90)$$

Wir nennen

$$X_C = \frac{1}{\omega C} \tag{4.1.91}$$

die Impedanz des Kondensators. Der Scheitelwert des Stromes ist

$$I_0 = \omega C U_0 \tag{4.1.92}$$

Analog wie bei der Spule gilt die Gleichung $I_{eff} = U_{eff}/X_C$ mit der gleichen Begründung auch für Kondensatoren. Die momentan dissipierte Leistung ist

$$P(t) = \omega C U_0^2 \cos(\omega t) \sin(\omega t) \tag{4.1.93}$$

Sie ist, analog wie bei der Spule, positiv oder negativ. Deshalb ist die mittlere dissipierte Leistung

$$\langle P(t) \rangle_t = \omega C U_0^2 \langle \cos(\omega t) \sin(\omega t) \rangle_t = 0$$
 (4.1.94)

4.1.9.6. Impedanz eines Kondensators: komplex

Dieser Abschnitt zeigt die gleiche Rechnung wie in Abschnitt 4.1.9.5, aber mit komplexen Zahlen gerechnet. Die Bezeichnungen beziehen sich auf Abbildung 4.18. Alles dort gesagte gilt auch hier.

$$U - U_C = 0 = U - \frac{q}{C}$$

Setzen wir $U(t) = U_0 e^{i\omega t}$ ein, erhalten wir

$$q(t) = C \cdot U_0 e^{i\omega t} \tag{4.1.95}$$

Der Strom ist dann

$$I(t) = \frac{dq(t)}{dt} = \frac{d}{dt}C \cdot U_0 e^{i\omega t} = i\omega C \cdot U_0 e^{i\omega t}$$
(4.1.96)

Wir nennen

$$Z_C = \frac{1}{i\omega C} \tag{4.1.97}$$

die komplexe Impedanz des Kondensators. Der Realteil des Stromes hat den Scheitelwert

$$I_0 = |I| = \omega C U_0 \tag{4.1.98}$$

Die momentan dissipierte Leistung ist mit einer analogen Rechnung wie bei der komplexen Impedanz der Spule in Gleichung (4.1.86)

$$P(t) = \omega C U_0^2 \cos(\omega t) \sin(\omega t) \tag{4.1.99}$$

Sie ist, analog wie bei der Spule, positiv oder negativ. Deshalb ist auch hier die mittlere dissipierte Leistung null.

4.1.9.7. Idealer elektrischer Schwingkreis

Versuch 60: Versuch zur Vorlesung:

Elektrischer Schwingkreis (Versuchskarte SW-022, Video (VPN oder intern))

Versuch 61: Versuch zur Vorlesung: Elektrischer Schwingkreis (Versuchskarte Applet)

Versuch 62: Versuch zur Vorlesung: Elektrischer Schwingkreis (Versuchskarte Applet)

Abb. 4.19.: SCHWINGKREIS

Der Kondensator soll zur Zeit t = 0 auf die SPANNUNG $U_{C,0}$ aufgeladen sein. Zur Zeit t = 0 wird der Schalter geschlossen. Die Differentialgleichung dieser Schaltung lautet:

$$L\frac{dI}{dt} + \frac{Q}{C} = 0 \tag{4.1.100}$$

Wir differenzieren einmal und bekommen

$$\frac{d^2I}{dt^2} + \frac{1}{LC}I = 0 \tag{4.1.101}$$

Dies ist die aus der Mechanik bekannte Schwingungsdifferentialgleichung. Durch Analogieschluss sieht man, dass die Resonanzkreisfrequenz

$$\omega_0 = \sqrt{\frac{1}{LC}} \tag{4.1.102}$$

ist.

4.1.9.8. Idealer elektrischer Schwingkreis: komplex

Dieser Abschnitt bezieht sich auf den vorherigen Abschnitt 4.1.9.7. Hier betrachten wir einen getriebenen Schwingkreis. Die treibende Spannung sei $U = U_0 \exp(i\omega t)$. Wir interessieren uns für den resultierenden Strom $I(t) = I_0 \exp(i\omega t + \varphi)$. Anders gesagt, wir suchen die komplexe Impedanz Z der Schaltung, dann kann I(t) = U(t)/Z leicht berechnet werden.

Abb. 4.20.: *LC*-Parallelschwinkreis komplex. *A* stellt ein Ampèremeter zur Messung des Stromes dar.

In Abbildung 4.20 haben wir eine Parallelschaltung der Impedanzen Z_C und Z_L . Die resultierende Impedanz ist dann

$$Z = \frac{1}{\frac{1}{Z_C} + \frac{1}{Z_L}} = \frac{1}{i\omega C + \frac{1}{i\omega L}} = \frac{i\omega L}{1 - \omega^2 L C}$$
(4.1.103)

Damit ist das Problem kurz und schmerzlos gelöst. Wenn wir Gleichung (4.1.103) analysieren, realisieren wir, dass

$$\lim_{\omega \to (LC)^{-1/2}} Z = \infty \tag{4.1.104}$$

ist. Wir nennen die Kreisfrequenz

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{4.1.105}$$

die Resonanzkreisfrequenz des ungedämpften Schwingkreises, ein Resultat, das wir in Abschnitt 4.1.9.7 über die Lösung einer Differenzialgleichung bekommen haben.

4.1.9.9. Gedämpfter elektrischer Schwingkreis

Abb. 4.21.: Schwingkreis mit Widerstand

Der GEDÄMPFTE SCHWINGKREIS enthält neben dem Kondensator und der Spule auch einen WIDERSTAND. Die Differentialgleichung des gedämpften SCHWING-KREISES ist

$$L\frac{dI}{dt} + R \cdot I + \frac{Q}{C} = 0 \tag{4.1.106}$$

Wir differenzieren einmal und bekommen

$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = 0$$
(4.1.107)

Analog zur Mechanik ist die $\frac{R}{L}$ der Dämpfungsterm. Das in der Mechanik berechnete Verhalten eines schwingungsfähigen Systems gilt auch für den elektrischen SCHWINGKREIS.

Wenn der ELEKTRISCHE SCHWINGKREIS von einer WECHSELSPANNUNGSQUELLE getrieben wird, ergeben sich die gleichen Phänomene wie bei einem getriebenen Pendel, also auch eine Resonanz.

Anwendungen

- Schwingkreise zur SIGNALFILTERUNG in Radioempfängern
- Verhalten von langen Leitungen
- Verhalten elektrischer Maschinen

4.1.9.10. Gedämpfter elektrischer Schwingkreis: komplex

Dieser Abschnitt bezieht sich auf den vorherigen Abschnitt 4.1.9.9. Hier betrachten wir einen getriebenen Schwingkreis. Die treibende Spannung sei $U = U_0 \exp(i\omega t)$. Wir interessieren uns für den resultierenden Strom $I(t) = I_0 \exp(i\omega t + \varphi)$. Anders gesagt, wir suchen die komplexe Impedanz Z der Schaltung, dann kann I(t) = U(t)/Z leicht berechnet werden.

Abb. 4.22.: RLC-Parallelschwingkreis komplex. Der Widerstand R gibt eine Dämpfung der Schwingung. A stellt ein Ampèremeter zur Messung des Stromes dar.

In Abbildung 4.22 haben wir eine Parallelschaltung der Impedanzen Z_C , Z_L und R. Die resultierende Impedanz ist dann

$$Z = \frac{1}{\frac{1}{Z_C} + \frac{1}{Z_L} + \frac{1}{R}} = \frac{1}{i\omega C + \frac{1}{i\omega L} + \frac{1}{R}} = \frac{i\omega L}{1 + i\frac{L}{R}\omega - \omega^2 L C}$$
(4.1.108)

Damit ist das Problem kurz und schmerzlos gelöst. Wenn wir Gleichung (4.1.108) analysieren, haben wir anders als beim ungedämpften Parallelschwingkreis (4.1.103) keine Nullstelle mehr im Nenner. Analog zum gedämpften harmonischen Oszillator ist

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{4.1.109}$$

die Resonanzkreisfrequenz des ungedämpften Schwingkreises und

$$b = \frac{L}{R} \tag{4.1.110}$$

die frequenzproportionale Dämpfung.

Ein mechanischer gedämpfter harmonischer Oszillator kann mit einem RLC-Parallelschwingkreis elektrisch simuliert werden.

Abb. 4.23.: Zweite Möglichkeit eines RLC-Parallelschwingkreises. Der Widerstand R gibt eine Dämpfung der Schwingung. A stellt ein Ampèremeter zur Messung des Stromes dar.

In Abbildung 4.23 haben wir eine Parallelschaltung der Impedanzen Z_C und $Z_L + R$. Die resultierende Impedanz ist dann

$$Z = \frac{1}{\frac{1}{Z_C} + \frac{1}{Z_L + R}} = \frac{1}{i\omega C + \frac{1}{i\omega L + R}} = \frac{R + i\omega L}{1 + iRC\omega - \omega^2 LC}$$
(4.1.111)

Damit ist das Problem kurz und schmerzlos gelöst. Wenn wir Gleichung (4.1.111) analysieren, haben wir anders als beim ungedämpften Parallelschwingkreis (4.1.103) keine Nullstelle mehr im Nenner. Analog zum gedämpften harmonischen Oszillator ist

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{4.1.112}$$

die Resonanzkreisfrequenz des ungedämpften Schwingkreises und

$$b = RC \tag{4.1.113}$$

die frequenzproportionale Dämpfung. Der Unterschied zur Schaltung in Abbildung 4.22 ist die Impedanz bei $\omega \to 0$. Diese ist hier gleich R und damit ungleich null.

Abb. 4.24.: Dritte Möglichkeit eines RLC-Parallelschwingkreises. Der Widerstand R gibt eine Dämpfung der Schwingung. A stellt ein Ampèremeter zur Messung des Stromes dar.

In Abbildung 4.24 haben wir eine Parallelschaltung der Impedanzen $Z_C + R$ und Z_L . Die resultierende Impedanz ist dann

$$Z = \frac{1}{\frac{1}{Z_C + R} + \frac{1}{Z_L}} = \frac{1}{\frac{1}{R + \frac{1}{i\omega C}} + \frac{1}{i\omega L}} = \frac{i\omega L - C L R \omega^2}{1 + iR C \omega - \omega^2 L C}$$
(4.1.114)

Damit ist das Problem wieder kurz und schmerzlos gelöst. Wenn wir Gleichung (4.1.114) analysieren, haben wir anders als beim ungedämpften Parallelschwingkreis (4.1.103) keine Nullstelle mehr im Nenner. Analog zum gedämpften harmonischen Oszillator ist

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{4.1.115}$$

die Resonanzkreisfrequenz des ungedämpften Schwingkreises und

$$b = RC \tag{4.1.116}$$

die frequenzproportionale Dämpfung. Der Unterschied zur Schaltung in Abbildung 4.22 ist die Impedanz bei $\omega \to \infty$. Diese ist hier gleich R und damit ungleich null.

4.1.10. Elektromotoren

Abb. 4.25.: Bestandteile eines Elektromotors. Links der Stator, rechts der Rotor mit dem Kommutator.

Ein Elektromotor besteht aus zwei Teilen, dem STATOR, der das Magnetfeld H erzeugt und dem ROTOR, der in diesem Magnetfeld rotiert. Die Richtung des Stromflusses im ROTOR wird durch den KOMMUTATOR gesteuert.

Versuch 63: Versuch zur Vorlesung: Elektromotor und -generator (Versuchskarte EM-101, Video)

Versuch 64: Versuch zur Vorlesung: Elektromotor und -generator (Versuchskarte EM-101, Video (VPN oder intern))

Versuch 65: Versuch zur Vorlesung: Simulation Elektromotor (Versuchskarte Applet)

Versuch 66: Versuch zur Vorlesung: Simulation von Gleich- und Wechselstromgeneratoren (Versuchskarte Applet)

4.1.10.1. Rotierende Leiterschlaufe als Generator

Abb. 4.26.: Dieses Bild zeigt einen aufgebauten Elektromotor.

Wenn in Abbildung 4.26 das Feld des Stators existiert und der Rotor durch einen externen Antrieb bewegt wird, wirkt die Einrichtung auch als Generator. Wir betrachten also zuerst den Elektromotor als Generator. Der Fluss durch die Leiterschlaufe mit N Windungen, einer Fläche A und einem Widerstand R ist

$$\phi_B(t) = N B \left(A \cos \left(\Theta(t) \right) \right) \tag{4.1.117}$$

wobei Θ der Winkel zwischen der Normalen der Fläche der Leiterschlaufe und der Richtung des Magnetfeldes ist. Mit $\Theta = \omega t + \delta$ wird der zeitabhängige Fluss durch eine sich mit ω drehende Leiterschlaufe

$$\phi_B(t) = NBA\cos(\omega t + \delta) \tag{4.1.118}$$

Durch Ableiten erhält man die Induktionsspannung

$$U_i(t) = -\frac{d\phi_B(t)}{dt} = -NBA\frac{d}{dt}\cos(\omega t + \delta) = NBA\omega\sin(\omega t + \delta) \qquad (4.1.119)$$

Die induzierte effektive SPANNUNG ist

$$U_{eff,i} = \sqrt{\frac{1}{T} \int_{t-T}^{t} \left(NBA\,\omega\sin(\omega\,t+\delta) \right)^2} = \frac{NBA\,\omega}{\sqrt{2}} \tag{4.1.120}$$

4.1.10.2. Rotierende Leiterschlaufe als Nebenschlussmotor

Wenn die Leiterschlaufe mit N Windungen mit SPANNUNG versorgt wird, arbeitet sie als Motor. Die Leiterschlaufe habe, wie oben erwähnt, den Widerstand R. Die angelegte Spannung sei U_0 und konstant. Für die folgende Rechnung setzen wir $\delta = 0$.

Durch den STROM I(t) wird nach Gleichung (3.8.24) mit dem magnetischen Moment m = N A I ein Drehmoment

$$T(t) = N A B \cdot I(t) \cdot \sin(\omega t)$$
(4.1.121)

erzeugt¹. Während in Gleichung (4.1.117) der Winkel $\Theta(t)$ der Winkel zwischen der Flächennormale und der Richtung der magnetischen Induktion \boldsymbol{B} ist, ist hier der gleiche Winkel der Winkel zwischen dem magnetischen Moment der Leiterschleife $\boldsymbol{m}(t)$ und der magnetischen Induktion \boldsymbol{B} . Das Drehmoment ist nach Gleichung (3.8.25) durch $\boldsymbol{T}_{NSM} = \boldsymbol{m} \times \boldsymbol{B}$ gegeben. Das momentane magnetische Moment hängt vom momentanen Strom ab, und damit auch das momentane Drehmoment. Beide hängen damit von der wirkenden Spannung $U_r(t) = U_0 - U_i(t)$ ab

$$I(t) = \frac{U_r(t)}{R} = \frac{U_0 - U_i(t)}{R} = \frac{U_0}{R} - \frac{NBA}{R}\omega\sin(\omega t)$$
(4.1.122)

Unser Motor hat einen Kommutator, der nach einer halben Umdrehung das Vorzeichen der angelegten Spannung invertiert. Wir müssen also mit den Strömen

$$I_{+}(t) = \frac{U_{r}(t)}{R} = \frac{U_{0} - U_{i}(t)}{R} = \frac{U_{0}}{R} - \frac{NBA}{R}\omega\sin(\omega t)$$
(4.1.123a)

$$I_{-}(t) = \frac{U_{r}(t)}{R} = \frac{-U_{0} - U_{i}(t)}{R} = -\frac{U_{0}}{R} - \frac{NBA}{R}\omega\sin(\omega t)$$
(4.1.123b)

rechnen. Das Drehmoment wird dann

$$T_{NSM}(t) = N A B \cdot I(t) \cdot \sin(\omega t + \delta) = N A B \cdot \left(\frac{U_0}{R} - \frac{NBA}{R} \omega \sin(\omega t)\right) \cdot \sin(\omega t)$$
(4.1.124)

Dabei muss für I(t) die beiden Teilströme eingeteilt werden. Das Drehmoment als Funktion der Zeit ist dann

$$T_{NSM}(t) = -\frac{N^2 A^2 B^2 \omega}{R} \sin^2(\omega t) + \frac{N A B}{R} \sin(\omega t) \begin{cases} U_0, & \text{wenn } 2j\pi \le \omega t < (2j+1)\pi; \\ -U_0, & \text{wenn } (2j+1)\pi \le \omega t < 2(j+1)\pi. \end{cases} (j \in \mathbb{Z}) \quad (4.1.125)$$

Das mittlere Drehmoment bei einem Motor, bei dem der Kommutator immer bei dem Winkel, bei dem das Drehmoment null wird, das Vorzeichen ändert, ist bei $\omega = 2\pi/T$, T die Dauer einer Umdrehung.

$$T_{NSM,eff} = \frac{1}{T} \int_{0}^{T} T_{NSM}(t) dt = \frac{4NABU_0}{\pi R} - \frac{N^2 A^2 B^2 \omega}{R}$$
(4.1.126)

Im Mittel ist das Drehmoment des ruhenden Motors

$$T_{NSM,eff}(0) = T_{NSM,max} = \frac{4N A B U_0}{\pi R}.$$
 (4.1.127)

Die maximale Drehzahl ist (wenn $T_{NSM,eff}(\omega_{max}) = 0$)

$$\omega_{max} = \frac{4U_0}{\pi N A B} \tag{4.1.128}$$

¹Beachte die Phasenverschiebung zwischen magnetischem Fluss und Drehmoment!

Diese Charakteristik (NEBENSCHLUSSMOTOR) hat man immer dann, wenn das erregende Feld B unabhängig von der Drehzahl ist, bei Permanentmagneten oder wenn die Spule für die Erregerwicklung parallel zum Anker angeschlossen ist. Will man die Drehzahl erhöhen, muss man das Feld B schwächen.

4.1.10.2.1. Gemittelte Betrachtung Die vorherige Betrachtung kann auch gemittelt durchgeführt werden.

$$T_{NSM} = N A B \cdot I \cdot \sin(\omega t + \delta). \tag{4.1.129}$$

Das mittlere Drehmoment bei einem Motor, bei dem der Kommutator immer bei dem Winkel, bei dem das Drehmoment null wird, das Vorzeichen ändert, ist

$$T_{NSM,eff} = \frac{NAB}{\sqrt{2}}I = NABI_{eff}$$
(4.1.130)

Mit dem Widerstand des Ankers R kann man den mittleren Strom aus der wirkenden Spannung $U_0 - U_{eff,i}$ berechnet werden

$$I_{eff} = \frac{U_0 - U_{eff,i}}{R} = \frac{U_0}{R} - \frac{NAB}{R\sqrt{2}}\omega$$
(4.1.131)

Die angelegte Spannung U_0 ist eine Gleichspannung, deshalb darf kein Effektivwert berechnet werden. Damit hängt das Drehmoment von der Drehzahl ab

$$T_{NSM,eff}(\omega) = N A B \left(\frac{U_0}{R} - \frac{N A B}{R\sqrt{2}}\omega\right) = \frac{N A B U_0}{R} - \frac{N^2 A^2 B^2}{\sqrt{2}R}\omega \quad (4.1.132)$$

Das Drehmoment des ruhenden Motors ist also

$$T_{NSM,eff}(0) = T_{max} = \frac{N A B U_0}{R}$$
(4.1.133)

und die maximale Drehzahl (mit $T_{eff}(\omega_{max}) = 0$) ist

$$\omega_{max} = \frac{\sqrt{2}U_0}{N A B} \tag{4.1.134}$$

Verglichen mit Gleichung (4.1.128) hat sich nur der Vorfaktor geändert, von $4/\pi \approx 1.273$ zu $\sqrt{2} \approx 1.414$. Mit der gemittelten Betrachtung überschätzen wir die maximale Drehzahl!

4.1.10.3. Rotierende Leiterschlaufe als Hauptschlussmotor

Abb. 4.27.: Links ist die Schaltung des Nebenschlussmotors, rechts die des Hauptschlussmotors gezeigt.

Ist wie beim HAUPTSCHLUSSMOTOR die Erregerwicklung in Serie zur Ankerwicklung geschaltet, gibt es keine maximale Drehzahl. Eine lange Zylinderspule (Länge ℓ , Windungszahl N) hat das Magnetfeld

$$B(t) = \mu_0 \frac{N}{\ell} I(t), \qquad (4.1.135)$$

sofern der Einfluss der Induktivität vernachlässigt werden kann. Diese würde für eine Änderung der Amplitude und der Phase sorgen. Für andere Geometrien gilt das gleiche Gesetz, aber mit einem geometrieabhängigen Vorfaktor K'.

Im statischen Falle ist der STROM nur vom Gleichstromwiderstand R_E der Erregerspule abhängig. Sonst müsste $\tilde{R} = R_E + Z_{L_E}$ verwendet werden.

$$B(t) = B(I_E(t)) = K' \mu_0 \frac{N_E}{\ell_E} I_E(t) = K I_E(t)$$
(4.1.136)

wobei alle Vorfaktoren in den Faktor K zusammengezogen wurden. Spannung und Strom an der Feldspule oder Erregerspule hängen über

$$U_E(t) = I(t) R_E + L_E \frac{dI(t)}{dt}$$
(4.1.137)

zusammen.

Der durch den Anker fliessende STROM ist mit $U_i(t) = -\frac{d}{dt} (N B(t) A \sin(\omega t))$ und $I(t) = I_E(t)$ sowie dem Resultat von Gleichung (4.1.137) gegeben.

$$I(t) = \frac{U_0 - U_E(t) - U_i(t)}{R}$$
$$= \frac{U_0}{R} - I(t) \frac{R_E}{R} - \frac{L_E}{R} \frac{dI(t)}{dt} - \frac{1}{R} \left[-\frac{d}{dt} \left(N B(t) A \sin(\omega t) \right) \right] \quad (4.1.138)$$

Eingesetzt mit Gleichung (4.1.135) und $I(t) = I_E(t)$

$$RI(t) = U_0 - I(t) R_E - L_E \frac{dI(t)}{dt} + N A K \frac{d}{dt} (I(t) \sin(\omega t))$$
(4.1.139)

und umgestellt

$$\frac{d}{dt}\left(I(t)\left(\sin(\omega t) - \frac{L_E}{NAK}\right)\right) - \frac{(R+R_E)}{NAK}I(t) = -\frac{U_0}{NAK}$$
(4.1.140)

Wenn der Kommutator den Stromfluss im Anker umstellt, bekommt man

$$\frac{d}{dt}\left(I(t)\left(-\sin(\omega t) - \frac{L_E}{NAK}\right)\right) - \frac{(R+R_E)}{NAK}I(t) = -\frac{U_0}{NAK}$$
(4.1.141)

Die Lösungen dieser beiden Differentialgleichungen müssen beim Umschalten des Kommutators jeweils gleich sein. I(t) kommt nur linear vor, das heisst, man kann die Gleichungen als komplexe Gleichungen schreiben, indem $\sin(\omega t) \rightarrow i \exp(i\omega t)$ gesetzt wird. Weiter kann

$$I(t) = \sum_{k=0}^{\infty} a_k \exp(ik\omega t)$$
(4.1.142)

gesetzt werden. Dies führt zu einer Rekursion für die Koeffizienten a_k . Noch unbekannt ist der Phasenwinkel zwischen den beiden

Die weitere Rechnung ist kompliziert. Man müsste auch die Induktivität der Spulen berücksichtigen.

4.1.10.3.1. Gemittelte Betrachtung Der durch den Anker fliessende STROM ist mit $U_{eff,i} = N B(U_E) A\omega/\sqrt{2}$ durch

$$I_{eff} = \frac{U_0 - U_E - U_{eff,i}}{R} = \frac{U_0}{R} - \frac{U_E}{R} - \frac{N B(U_E) A}{R\sqrt{2}}\omega$$
(4.1.143)

gegeben.

Da $I_{eff} = I_{E,eff}$ und $U_E = R_E \cdot I_{E,eff}$ sind, gilt

$$I_{eff} = \frac{U_0}{R} - \frac{R_E}{R} I_{eff} - \frac{KNA}{R\sqrt{2}} I_{eff} \omega \qquad (4.1.144)$$

 oder

$$I_{eff} = \frac{U_0}{R + R_E + \frac{KNA}{\sqrt{2}}\omega} = \frac{\sqrt{2}U_0}{\sqrt{2}R + \sqrt{2}R_E + KNA\omega}$$
(4.1.145)

Damit wird das Drehmoment

$$T_{HSM,eff}(\omega) = N A B(I_{eff}) I_{eff} = N A K I_{eff}^2$$
(4.1.146)

Eingesetzt bekommt man

$$T_{HSM,eff}(\omega) = \frac{2 N A K U_0^2}{\left[\sqrt{2} R + \sqrt{2} R_E + K N A \omega\right]^2}$$
(4.1.147)

 $T_{HSM,eff}(\omega)$ ist für alle ω grösser als null. Dieser Motor hätte, ohne Lagerreibung, eine unendlich grosse maximale Drehzahl. Das Startdrehmoment für $\omega = 0$ ist

$$T_{HSM,eff}(0) = T_{HSM,max} = \frac{N A K U_0^2}{\left[R + R_E\right]^2}$$
(4.1.148)

Abb. 4.28.: Kennlinien von Nebenschluss- und Hauptschlussmotoren aus der gemittelten Betrachtung. Die Kurven wurden mit N = 1000, $A = 0.001 \text{ m}^2$, U = 5 V, $R = 0.1 \Omega$ und B = 0.1 T. Die beiden Motoren sind so berechnet, dass sie das gleiche Startdrehmoment und dass $R_E = R/2$ ist (eine vernünftige Annahme).

Versuch 67: Versuch zur Vorlesung: Drehstromgenerator (Versuchskarte Applet)

Versuch 68: Versuch zur Vorlesung: Asynchroner Drehstrommotor (Versuchskarte Video)

Versuch 69: Versuch zur Vorlesung: Schleifring-Drehstromasynchronmotor für Fahrstühle usw. (Versuchskarte Video)

Versuch 70: Versuch zur Vorlesung: Einphasen-Asynchronmotor (Versuchskarte Video)

Versuch 71: Versuch zur Vorlesung: Linearmotor (Versuchskarte EM-113)

4.1.11. Betatron

Versuch 72: Versuch zur Vorlesung:

Betatron (Versuchskarte EM-167, Video)

Die Idee hinter der Konstruktion des Betatrons ist, dass bei einem zeitabhängigen **B**-Feld nach **rot** $E = -\partial B / \partial t$ auch ein zeitabhängiges **E**-Feld existiert.

Abb. 4.29.: Skizze eines Betatrons

Nach dem Induktionsgesetz **rot** $\boldsymbol{E} = -\partial \boldsymbol{B}/\partial t$ hat das durch ein in die z-Richtung zeigende Magnetfeld induzierte elektrische Feld keine z-Komponente. Nehmen wir an, dass das \boldsymbol{E} -Feld eine Radialkomponente hätte. Sie könnte zum Beispiel in die y-Richtung zeigen. Rotieren wir die ganze Anordnung um π um die y-Achse und kehren die Richtung des \boldsymbol{B} -Feldes um, haben wir wieder die Ausgangsanordnung. Mit der Richtungsumkehr von \boldsymbol{B} hat aber auch \boldsymbol{E} die Richtung geändert (Induktionsgesetz). Dies ist aber im Widerspruch zur Ausgangssituation. Deshalb kann es kein radiales \boldsymbol{E} -Feld geben: das \boldsymbol{E} -Feld ist tangential und beschleunigt die geladenen Teilchen. Damit die Teilchen auf der Kreisbahn bleiben, muss

$$m\frac{v^2}{R} = e \cdot v \cdot B(t) \tag{4.1.149}$$

 oder

$$mv(t) = p(t) = e \cdot B \cdot R \tag{4.1.150}$$

Das zweite Newtonsche Axiom in tangentialer Richtung angewandt bedeutet

$$\frac{dp(t)}{dt} = eE(t) \tag{4.1.151}$$

Mit der Integralform des Induktionsgesetzes erhält man mit einer stationären Kreisbahn ${\cal S}(R)$ mit dem RadiusR

$$\oint_{S(R)} \boldsymbol{E}(t) \cdot d\boldsymbol{s} = E(t) \cdot 2\pi R = -\frac{d}{dt} \iint_{A(R)} \boldsymbol{B}(t) \cdot d\boldsymbol{a} = \frac{d\bar{B}(t)}{dt} \cdot \pi R^2 \qquad (4.1.152)$$

wobei \overline{B} das über die Fläche des Kreises gemittelte **B**-Feld ist. Durch Kombination der obigen Gleichungen und unter Berücksichtigung der Vorzeichen erhalten wir

$$\frac{dp(t)}{dt} = \frac{e \cdot R}{2} \cdot \frac{d\bar{B}}{dt}$$
(4.1.153)

Die Integration mit den Anfangsbedingungen p(0) = 0 und B(0) = 0 liefert

$$p(t) = \frac{e \cdot R}{2} \cdot \bar{B}(t) \tag{4.1.154}$$

Der Vergleich mit der Bedingung für die Zentripetalkraft liefert die WIDEROE-BEDINGUNG

$$\bar{B}(t) = 2 \cdot B(t) \tag{4.1.155}$$

Diese Bedingung kann durch eine geeignete Wahl der Form der Polschuhe erreicht werden.

4.1.12. Skineffekt

Abb. 4.30.: Berechnung des Skin-Effektes

Bei Gleichstrom in einem zylindrischen Leiter ist das elektrische Feld konstant über dem Querschnitt. Nach dem Ampèreschen Durchflutungsgesetz (Siehe Gleichung (3.8.32)) ist das Magnetfeld proportional zum Abstand.

Für den Fall eines Wechselstroms mit niedriger Frequenz müssen wir das Induktionsgesetz berücksichtigen. Nach dem Induktionsgesetz gilt für die zeitunabhängige Kurve S, die auf einer Ebene, in der auch die Zylinderachse liegt, liegt

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\frac{d}{dt} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a}$$
(4.1.156)

Für die eingezeichnete Schlaufe gilt (da ist antiparallel zu B)

$$h\left[E(r) - E(r - \Delta r)\right] = \frac{d(-\bar{B})}{dt} \cdot (-h \cdot \Delta r)$$
(4.1.157)

wobei wieder \overline{B} das über die Fläche $\Delta r \cdot h$ gemittelte Magnetfeld ist. Als Zwischenresultat bekommen wir:

$$\frac{[E(r) - E(r - \Delta r)]}{\Delta r} = \frac{d(\bar{B})}{dt}$$

©2005-2020 Ulm University, Othmar Marti, C BY-SA

Da der STROM zeitabhängig ist, muss auch das E-Feld ortsabhängig sein. Eine homogene Stromverteilung bei Wechselstrom ist bei einem Ohmschen Leiter nicht vereinbar mit dem INDUKTIONSGESETZ. Die Taylorentwicklung von Gleichung (4.1.156) liefert die betragsmässige Bedingung

$$\frac{\partial E\left(r,t\right)}{\partial r} = \frac{\partial B\left(r,t\right)}{\partial t} \tag{4.1.158}$$

Das elektrische Feld muss also bei Wechselstrom mit zunehmendem Abstand vom Radius zunehmen. Da der Gesamtstrom gegeben ist, ist die Stromdichte an der Oberfläche konzentriert. Dies ist der SKINEFFEKT.

Anwendung

• Bei Überlandleitungen wird um ein Stahlseil Kupfer (Luxusausführung) oder Aluminium (das Übliche) gewickelt. Dies erhöht den WIDERSTAND kaum, da der Skin-Effekt die Stromleitung bei 50 Hz auf etwa 1 cm Tiefe beschränkt.

Die Berechnung der Skintiefe kann nach Jackson $[Jac75, pp. 334-338]^2$ aus dem Ampèreschen Gesetz Gleichung (3.8.32), dem Faraday'schen Gesetz Gleichung (4.1.24) und dem mikroskopischen Ohm'schen Gesetz (3.2.2) abgeleitet werden. Wir beginnen mit den drei Gleichungen

$$\mathbf{rot} \ \boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{B} = \mu \mu_0 \boldsymbol{i} \tag{4.1.159}$$

$$\mathbf{rot} \ \mathbf{E} = \mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{4.1.160}$$

$$\boldsymbol{i} = \sigma \boldsymbol{E} \tag{4.1.161}$$

und damit

$$\boldsymbol{\nabla} \times \boldsymbol{B} = \mu \mu_0 \sigma \boldsymbol{E} \tag{4.1.162}$$

Wir nehmen mit Jackson eine harmonische Welle an, also $\boldsymbol{B} = \boldsymbol{B}_0 \exp(i\omega t)$ und $\boldsymbol{E} = \boldsymbol{E}_0 \exp(i\omega t)$. Damit können die obigen Gleichungen umgeschrieben werden

$$\boldsymbol{\nabla} \times \boldsymbol{B}_0 = \mu \mu_0 \sigma \boldsymbol{E}_0 \tag{4.1.163}$$

$$\boldsymbol{\nabla} \times \boldsymbol{E} = -i\omega \boldsymbol{B}_0 \tag{4.1.164}$$

Wenn n der nach aussen zeigende Normalenvektor auf die Grenzfläche Vakuum-Metall ist und ξ die nach innen zeigende Koordinate ist, kann in der Nähe der Oberfläche der Nabla-Operator als

$$\boldsymbol{\nabla} \simeq -\boldsymbol{n} \frac{\partial}{\partial \xi} \tag{4.1.165}$$

geschrieben werden. Gleichungen (4.1.163) und (4.1.164) lauten dann

²Jackson rechnet im cgs-System!

$$-\frac{\partial}{\partial\xi} \left(\boldsymbol{n} \times \boldsymbol{B}_0 \right) = \mu \mu_0 \sigma \boldsymbol{E}_0 \tag{4.1.166}$$

$$-\frac{\partial}{\partial\xi} \left(\boldsymbol{n} \times \boldsymbol{E}_0 \right) = -i\omega \boldsymbol{B}_0 \tag{4.1.167}$$

Um die beiden Gleichungen zu kombinieren, multiplizieren wir mit dem Kreuzprodukt oder Vektorprodukt von links mit $-\boldsymbol{n}\frac{\partial}{\partial\xi}$ und verwenden weiter, dass nach (C.8.1) $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = (\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b} - (\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$ ist.

$$\frac{\partial^2}{\partial\xi^2} \left(\boldsymbol{n} \times \left(\boldsymbol{n} \times \boldsymbol{B}_0 \right) \right) = \frac{\partial^2}{\partial\xi^2} \left(\left(\boldsymbol{n} \cdot \boldsymbol{B}_0 \right) \boldsymbol{n} - \left(\boldsymbol{n} \cdot \boldsymbol{n} \right) \boldsymbol{B}_0 \right)$$
$$= -\mu \mu_0 \sigma \frac{\partial}{\partial\xi} \left(\boldsymbol{n} \times \boldsymbol{E}_0 \right) = i\mu \mu_0 \sigma \omega \boldsymbol{B}_0 \qquad (4.1.168)$$

Diese Gleichung hat zwei Komponenten. Es gibt Summanden, die in die Richtung von B_0 zeigen und Summanden, die in die Richtung von n zeigen. Die Summanden für die beiden Richgtungen ergeben die folgenden zwei Gleichungen, da das Resultat ja unabhängig von den einzelnen Vektoren sein muss.

$$\frac{\partial^2}{\partial \xi^2} \boldsymbol{B}_0 + i\mu\mu_0 \sigma \omega \boldsymbol{B}_0 = 0 \tag{4.1.169}$$

$$\boldsymbol{n} \cdot \boldsymbol{B_0} = 0 \tag{4.1.170}$$

Gleichung (4.1.169) ist eine Differentialgleichung zweiter Ordnung. Deshalb machen wir den Lösungsansatz $B_0(\xi) = B_{0,0} \exp(a\xi)$ und setzen

$$\frac{2i}{\delta^2} = i\mu\mu_0\sigma\omega \Longrightarrow \delta = \sqrt{\frac{2}{\mu\mu_0\sigma\omega}}$$
(4.1.171)

und erhalten über

$$\frac{\partial^2}{\partial \xi^2} \boldsymbol{B}_0 + \frac{2i}{\delta^2} \boldsymbol{B}_0 = 0 \tag{4.1.172}$$

die charakteristische Gleichung

$$a^2 + \frac{2i}{\delta^2} = 0 \tag{4.1.173}$$

die Lösungen

$$a = \pm \frac{\sqrt{2i}}{\delta} = \pm \frac{i-1}{\delta} \tag{4.1.174}$$

Das Vorzeichen + ist physikalisch sinnvoll (es gibt keine zunehmende Amplitude). Damit ist besteht die Lösung aus einem exponentiellen Abfall mit der Abfalllänge δ und einem örtlich oszillierenden Teil, also

$$\boldsymbol{B}(\xi,t) = \boldsymbol{B}_{0,0} \exp\left(-\frac{\xi}{\delta}\right) \exp\left(i\left(\omega t - \frac{\xi}{\delta}\right)\right)$$
(4.1.175)

Damit ist

$$\delta = \sqrt{\frac{2}{\mu\mu_0\sigma\omega}} = \frac{1}{\sqrt{\pi\mu\mu_0\sigma\nu}} \tag{4.1.176}$$

die Skintiefe bei der Frequenz ω eines Metalls mit der relativen Permeabilität μ und der Leitfähigkeit σ . Aus Gleichung (4.1.176) kann abgelesen werden, dass

- die Skintiefe mit zunehmender LEITFÄHIGKEIT abnimmt,
- mit zunehmender relativer PERMEABILITÄT abnimmt und
- mit zunehmender FREQUENZ abnimmt.

	1 Hz	$16.67~\mathrm{Hz}$	50 Hz	100 Hz	1 kHz	$10 \mathrm{~kHz}$	100 kHz]
Kupfer	66 mm	16 mm	9.3 mm	6.6 mm	2.1 mm	660 µm	21 µm	(
Aluminium	83 mm	$20 \mathrm{mm}$	12 mm	8.3 mm	2.6 mm	830 µm	$26 \ \mu m$	8
Eisen $(\mu = 10^4)$	1.6 mm	$390 \ \mu m$	230 µm	160 µm	$50 \ \mu m$	$16 \ \mu m$	$5.0 \ \mu m$	1
Edelstahl ($\mu = 300$)	25 mm	6.0 mm	3.5 mm	2.5 mm	780 µm	$250 \ \mu m$	$78~\mu{ m m}$	
Meerwasser	230 m	$55 \mathrm{m}$	32 m	$23 \mathrm{m}$	7.1 m	$2.3 \mathrm{m}$	$710 \mathrm{~mm}$	
Leitungswasser	7.1 km	1.7 km	1.0 km	712 m	230 m	71 m	23 m	

Tab. 4.2.: Skintiefen verschiedener Materialien (nach [Wik16a; Wik16b])

4.2. Energie des Magnetfeldes

Abb. 4.31.: Berechnung der Energie im Magnetfeld

Wir betrachten eine mit einer Wechselstromquelle $U(t) = U_0 \sin(\omega t)$ verbundene reale Spule. Diese Spule wird modelliert durch einen WIDERSTAND R und eine ideale Spule L. Die Differentialgleichung dieses Kreises lautet

$$U(t) = L \cdot \dot{I}(t) + R \cdot I(t) \tag{4.2.1}$$

Die stationäre Lösung dieser Gleichung hat die Form

$$I_S(t) = I_0 \cos(\omega t - \delta) \tag{4.2.2}$$

Für den Fall, dass $R\ll \omega L$ ist, bekommt man

$$I_S(t) = -\frac{U_0}{\omega L} \cdot \cos \omega t \tag{4.2.3}$$

Die momentane Leistung der Spannungsquelle ist

$$P_U(t) = U(t) \cdot I(t) = -\frac{U_0^2}{\omega L} \cdot \sin \omega t \cdot \cos \omega t = -\frac{U_0^2}{\omega L} \cdot \frac{1}{2} \sin(2\omega t)$$
(4.2.4)

Die Leistung der Spannungsquelle kann nur die Energie des **B**-Feldes ändern, da wir keine dissipativen Elemente haben (R = 0). Wenn man die Differentialgleichung für den Fall mit I(t) multipliziert, bekommt man

$$P_U = U(t) \cdot I(t) = L \cdot I \cdot \dot{I} = \frac{d}{dt} \left(\frac{L}{2}I^2\right)$$
(4.2.5)

Nun ist aber P = dE/dt. Damit ist die Energie des Magnetfeldes

$$E_L = \frac{L}{2}I^2 \tag{4.2.6}$$

Um die Energiedichte eines Magnetfeldes zu berechnen betrachten wir eine Spule

$$B = \mu_0 n I \tag{4.2.7}$$

mit der Selbstinduktivität

$$L = \mu_0 n^2 A \ell \tag{4.2.8}$$

wobe
iAder Querschnitt der Spule und ℓ ihre Länge ist. Einges
etzt in die Gleichung für die Energie E_L bekommt man

$$E_L = \frac{1}{2} \cdot \mu_0 n^2 A \ell \cdot \left(\frac{B}{\mu_0 n}\right)^2 = \frac{B^2}{2\mu_0} A \ell$$
 (4.2.9)

Deshalb ist die Energiedichte des B-Feldes

$$w_B = \frac{B^2}{2\mu_0} \tag{4.2.10}$$

4.3. Magnetische Eigenschaften der Materie

Wir haben bei Magnetfeldern wie bei elektrischen Feldern zwei Grössen, die diese Felder beschreiben. Bei elektrischen Feldern haben wir einerseits die materieunabhängige Grösse ELEKTRISCHES FELD E und die materieabhängige Grösse DIELEK-TRISCHE VERSCHIEBUNG D. Die beiden Grössen sind bei isotropen Materialien parallel, müssen es aber nicht sein. Der Zusammenhang ist:

$$\boldsymbol{D} = \varepsilon \varepsilon_0 \boldsymbol{E} = (1 + \chi_E) \varepsilon_0 \boldsymbol{E}$$
(4.3.1)

Dabei ist $\varepsilon = 1 + \chi_e$ die RELATIVE ELEKTRISCHE PERMITTIVITÄT, eine Materialkonstante. Sie wird auch RELATIVE DIELEKTRIZITÄTSZAHL genannt und manchmal als ε_r geschrieben. χ_E ist die ELEKTRISCHE SUSZEPTIBILITÄT und auch eine Materialkonstante. Beide, ε und χ_E können Tensoren sein.

Bei den magnetischen Feldern haben wir die materialunabhängige Grösse MAGNE-TISCHES FELD H und die materialabhängige Grösse MAGNETISCHE FLUSSDICH-TE oder MAGNETISCHE INDUKTION B. Analog zu den elektrostatischen Grössen hängen diese über

$$\boldsymbol{B} = \mu \mu_0 \boldsymbol{H} = (1 + \chi) \,\mu_0 \boldsymbol{H} \tag{4.3.2}$$

zusammen. Dabei ist $\mu = 1 + \chi$ die RELATIVE ELEKTRISCHE PERMEABILITÄT, eine Materialkonstante. χ ist die (magnetische) SUSZEPTIBILITÄT und auch eine Materialkonstante. Beide, μ und χ können Tensoren sein.

4.3.1. Kugeln im inhomogenen Magnetfeld

Abb. 4.32.: Diamagnetische (Bi), paramagnetische (Al) und ferromagnetische (Fe) Materialien im inhomogenen Magnetfeld.

Versuch 73: Versuch zur Vorlesung: Dia- und Paramagnetismus (Versuchskarte EM-177, Video)

Versuch 74: Versuch zur Vorlesung: Dia- und Paramagnetismus (Versuchskarte EM-177, Video)

Versuch 75: Versuch zur Vorlesung:

Dia- und Paramagnetismus (Versuchskarte EM-177, Video (VPN oder intern))

Materie im inhomogenen Magnetfeld zeigt drei verschiedene Verhalten:

- diamagnetisches Verhalten Die Materie wird aus dem starken magnetischen Feld herausgedrückt ($\chi < 0$).
- paramagnetisches Verhalten Die Materie wird in das starke Feld hineingezogen $(\chi > 0)$.
- ferromagnetisches Verhalten Die Materie wird in das starke Feld hineingezogen, aber sehr viel stärker als bei paramagnetischen Substanzen. Zudem zeigen diese Substanzen ein remanentes Magnetfeld, auch wenn das äussere Magnetfeld wieder verschwunden ist $(\chi(H))$.
- Es gibt alle möglichen Zwischenzustände in Materialien, so zum Beispiel
- **ferrimagnetisch** 2 ferromagnetische Gitter mit antiparalleler Orientierung, die sich aber nicht komplett kompensieren.
- antiferromagnetisch Je nach Ausrichtung, permanente magnetische Momente kompensieren sich (Spinwellen)

Abb. 4.33.: Kreisströme als Ursache des Dia- und des Paramagnetismus

Die Materie im inhomogenen Magnetfeld verhält sich wie wenn die Materie aus einem Kreisstrom bestände. Auf diesen Kreisstrom wirkt, je nach Umlaufsinn eine Kraft zum hohen oder zum niedrigen Feld. Das magnetische Moment der Kreisströme ist beim DIAMAGNETISMUS antiparallel zu \boldsymbol{B} . Beim PARAMAGNETISMUS und beim FERROMAGNETISMUS zeigt das magnetische Moment in die Richtung von \boldsymbol{B} . Der Kreisstrom ist induziert, das heisst, dass seine Richtung von der von \boldsymbol{B} abhängt. Die resultierende Kraft ist die Biot-Savart-Kraft (Siehe Gleichung (3.8.16)). Sie ist proportional zum Produkt $\boldsymbol{B} \times d\boldsymbol{\ell}$. Wenn man die Richtung des Magnetfeldes umkehrt, wird auch $d\boldsymbol{\ell}$ umgekehrt. Die Richtung der Kraft ist als unabhängig von der Richtung von \boldsymbol{B} . Wenn der Kreisstrom (die Materie) sich auf der Symmetrieachse eines rotationssymmetrischen inhomogenen Magnetfeldes befindet, ist

$$F_z = m_z \cdot \frac{\partial B_z \left(z, 0 \right)}{\partial z} \tag{4.3.3}$$

wobe
i m_z das induzierte magnetische Moment des Kreisstromes
ist.

4.3.2. Der Satz von Larmor

(Siehe Leisi, Klassische Physik II [Lei98, pp. 162])

Abb. 4.34.: Illustration zum Satz von Larmor

Wir hatten postuliert, dass das Verhalten der Materie in einem Gradienten eines Magnetfeldes durch atomare Kreisströme gegeben ist. Wenn wir ein Modell (nach der Quantenphysik nicht realistisch) eines Atoms betrachten, bei dem ein einzelnes Elektron auf einer Bahn mit dem Radius r sich um den positiv geladenen Kern bewegt, ist der resultierende STROM

$$I = -e\frac{v}{2\pi r} \tag{4.3.4}$$

Der Betrag des magnetischen Momentes ist dann

$$|\boldsymbol{m}| = \pi r^2 I = \frac{1}{2} \boldsymbol{e} \cdot \boldsymbol{v} \cdot \boldsymbol{r} \tag{4.3.5}$$

Die Wirkung eines äusseren Magnetfeldes wird berechnet, indem man betrachtet, wie ein einzelnes Atom auf ein von null anwachsendes äusseres Feld reagiert.

182

Abb. 4.35.: Langsames Einschalten eines Magnetfeldes für ein Elektron in einem Atom. Im linken Schaubild sind die positiven Richtungen definiert.

Im Ausgangszustand ist die Zentripetalkraft $\mathbf{F}_0 = -m_e v^2/r$ die Coulombanziehung zwischen dem Elektron und dem Kern sowie durch die gemittelte Coulombabstossung durch die anderen Elektronen gegeben. Das anwachsende Magnetfeld hat die gleiche Wirkung wie beim Betatron: es entsteht ein tangentiales \mathbf{E} -Feld, das das Elektron beschleunigt. Wir setzen die z-Achse nach oben an. In einem rechtshändigen System ist dann

- das Magnetfeld: -B, Betrag: B
- die Geschwindigkeit: -v, Betrag: v
- die Zentripetalkraft: $-F_0$, Betrag: F_0
- das induzierte elektrische Feld: E, Betrag: E

Wir setzen diese Grössen ein, um vorzeichenrichtig zu rechnen. Aus dem Induktionsgesetz (Siehe Gleichung (4.1.22)) folgt

$$\oint_{S(r)} \boldsymbol{E} \cdot d\boldsymbol{r} = 2\pi \cdot r \cdot E(t) = -\frac{\partial \phi_B}{\partial t} = -\pi r^2 \cdot \frac{d\left(-B(t)\right)}{dt} = \pi r^2 \cdot \frac{dB(t)}{dt} \qquad (4.3.6)$$

Dabei ist $\phi_B = (-B) \cdot A$. Wir erhalten also

$$E(t) = \frac{r}{2} \cdot \frac{dB(t)}{dt} \tag{4.3.7}$$

Die Beschleunigung des Elektrons (nicht-relativistisch) ist durch das zweite Newtonsche Gesetz gegeben

$$m_e \frac{dv}{dt} = -e \cdot E = -\frac{e \cdot r}{2} \cdot \frac{dB(t)}{dt}$$
(4.3.8)

Hier ist m_e die Ruhemasse des Elektrons. Die Geschwindigkeitsänderung hängt also mit der Magnetfeldänderung wie folgt zusammen

$$dv = -\frac{e \cdot r}{2m_e} \cdot dB \tag{4.3.9}$$

Der gesamte Geschwindigkeitszuwachs des Elektrons ist also

$$\Delta v = -\frac{e \cdot r}{2m_e} \cdot B \tag{4.3.10}$$

wenn B das Feld im Endzustand ist. Der Betrag der Geschwindigkeit hat also zugenommen. Nun bewirkt das äussere **B**-Feld die Lorentzkraft

$$\boldsymbol{F}_L = -e \cdot (-v) \cdot (-B) \boldsymbol{e}_r \tag{4.3.11}$$

die, nach der rechten Hand-Regel, zum Kreiszentrum zeigt. Die Zentripetalkraft ist im Endzustand durch

$$F = -m_e \frac{(-v + \Delta v)^2}{r}$$
(4.3.12)

Da $v\gg\Delta v$ ist, können wir nach Taylor entwickeln

$$F \approx -\frac{m_e}{r} \left(v^2 - 2v \cdot \Delta v \right)$$

$$= -\frac{m_e}{r} \left(v^2 + 2v \cdot \frac{e \cdot r}{2m_e} \cdot B \right)$$

$$= -\frac{m_e}{r} v^2 - e \cdot v \cdot B$$

$$= F_0 + F_L$$

$$(4.3.13)$$

Die Lorentz-Kraft bewirkt also, dass die Elektronenbahnen für kleine Geschwindigkeitsänderungen sich nicht ändern. Die LARMORWINKELGESCHWINDIGKEIT in Abhängigkeit der Zunahme der Bahngeschwindigkeit und der magnetischen Induktion ist

$$\Omega \equiv \frac{\Delta v}{r} = \frac{e \cdot B}{2m_e} \tag{4.3.14}$$

und vektoriell geschrieben

Larmorwinkelgeschwindigkeit

$$\boldsymbol{\Omega} = \frac{e}{2m_e} \boldsymbol{B} \tag{4.3.15}$$

In einem mit der Winkelgeschwindigkeit Ω rotierenden System sind die Elektronenbahnen im Atom unverändert.

Der SATZ VON LARMOR gilt allgemein, auch bei beliebiger Orientierung von Magnetfeld und Bahnebene des Elektrons. Der Satz von Larmor bildet die Grundlage des Verständnisses des Diamagnetismus.

Abb. 4.36.: Berechnung der Larmorfrequenz mit einem Kreisel

Man kann den SATZ VON LARMOR aus der Kreiseltheorie ableiten. Das Elektron ist, bei einer Bahn mit konstantem Radius, ein starrer Körper. Dieser Kreisel hat den Drehimpuls

$$\boldsymbol{L} = m_e \cdot (\boldsymbol{r} \times \boldsymbol{v}) \tag{4.3.16}$$

Das magnetische Moment des Kreisstromes ist nach Gleichung (4.3.5)

$$\boldsymbol{m} = -\frac{e}{2m_e}\boldsymbol{L} \tag{4.3.17}$$

Der Kreisel erfährt ein mechanisches Drehmoment (Siehe Gleichung (3.8.25))

$$\boldsymbol{T} = \boldsymbol{m} \times \boldsymbol{B} \tag{4.3.18}$$

Der Drehimpulssatz bedeutet, dass

$$\frac{d\boldsymbol{L}}{dt} = \boldsymbol{T} = -\frac{e}{2m_e}\boldsymbol{L} \times \boldsymbol{B} = \frac{e}{2m_e}\boldsymbol{B} \times \boldsymbol{L}$$
(4.3.19)

Wir erhalten also eine Präzessionsbewegung des Drehimpuslvektors L um B mit der Winkelgeschwindigkeit Ω (siehe auch [Mar14, Seite 190, Gleichung (6.3.30)])

$$\frac{d\boldsymbol{L}}{dt} = \boldsymbol{\Omega} \times \boldsymbol{L} \tag{4.3.20}$$

Wir erhalten die

vektorielle Schreibweise der LARMORKREISFREQUENZ

$$\boldsymbol{\Omega} = \frac{e}{2m_e} \boldsymbol{B} \tag{4.3.21}$$

Bemerkung:

In der Physik wird manchmal auch der Ausdruck «Frequenz» für die «Kreisfrequenz» gebraucht, eine ungenaue Ausdrucksweise.

4.3.3. Diamagnetismus

Abb. 4.37.: Berechnung des Diamagnetismus

Im diamagnetischen Atom ist die Summe aller magnetischer Momente der Elektronen exakt null.

$$\boldsymbol{m}_A = \sum_j \boldsymbol{m}_j = 0 \tag{4.3.22}$$

Man kann sich dies vereinfacht so vorstellen, dass jede Elektronenbahn von zwei gegenläufigen Elektronen besetzt ist. Ein diamagnetisches Atom hat deshalb, ohne äusseres B-Feld eine kugelsymmetrische Ladungsverteilung. Diese entsteht, weil sich die einzelnen Elektronenbewegungen über die Zeit ausmitteln.

Wenn ein **B**-Feld eingeschaltet wird, beginnt diese kugelsymmetrische Ladungsverteilung mit der Larmorfrequenz zu präzedieren. Durch diese Präzession im Magnetfeld entsteht ein von null verschiedenes magnetisches Moment m_A , das zum Diamagnetismus führt. Zur vereinfachten Berechnung nimmt man an, dass das Atom eine homogen geladene Kugel ist mit der Ladungsdichte

$$\rho_{el} = -\frac{Ze}{(4/3)\pi R^3} \tag{4.3.23}$$

wobe
i ${\mathbb Z}$ die Kernladungszahl und ${\mathbb R}$ der Radius der Elektronen
wolke ist.

Abb. 4.38.: Ein einzelner Kreisstrom

Diese homogen geladene Kugel rotiert im äusseren Magnetfeld mit

$$\Omega = \frac{e}{2m_e}B\tag{4.3.24}$$

Durch ein raumfestes Flächenelement fliesst der STROM

$$\delta I = \rho_{el} \cdot r \cdot dr \cdot d\varphi \cdot v (r, \varphi) \tag{4.3.25}$$

 mit

$$v(r,\varphi) = \Omega \cdot r \cdot \sin\varphi \tag{4.3.26}$$

Da die LADUNGEN negativ sind, ist das magnetische Moment m_A entgegengesetzt zu Ω und entgegengesetzt zu B, hier also nach unten, gerichtet. Dieses magnetische Moment ist

$$\delta m_A(r,\varphi) = \text{Fläche} \cdot \text{Strom} = \pi r^2 \sin^2 \varphi \cdot \delta I$$
 (4.3.27)

 oder

$$\delta m_A(r,\varphi) = \pi r^2 \sin^2 \varphi \cdot \rho_{el} \cdot r \cdot dr \cdot d\varphi \cdot v(r,\varphi) \qquad (4.3.28)$$
$$= \pi r^2 \sin^2 \varphi \cdot \rho_{el} \cdot r \cdot dr \cdot d\varphi \cdot \Omega \cdot r \cdot \sin \varphi$$
$$= \pi r^4 \sin^3 \varphi \cdot \rho_{el} \cdot \Omega \cdot dr \cdot d\varphi$$

Der Betrag des gesamten magnetischen Momentes erhält man durch Integration

©2005-2020 Ulm University, Othmar Marti, C) BY-SA

über r und φ Er ist

$$|\mathbf{m}_{A}| = \int_{0}^{R} \int_{0}^{\pi} \delta m_{A}(r,\varphi) dr d\varphi \qquad (4.3.29)$$

$$= \pi \cdot \rho_{el} \cdot \Omega \cdot \int_{0}^{R} r^{4} \cdot dr \cdot \int_{0}^{\pi} \sin^{3} \varphi \cdot d\varphi$$

$$= \pi \cdot \rho_{el} \cdot \Omega \cdot \int_{0}^{R} r^{4} \cdot dr \cdot \frac{4}{3}$$

$$= \pi \cdot \rho_{el} \cdot \Omega \cdot \frac{R^{5}}{5} \cdot \frac{4}{3}$$

$$= \pi \cdot \frac{Z \cdot e}{\frac{4\pi}{3}R^{3}} \cdot \Omega \cdot \frac{R^{5}}{5} \cdot \frac{4}{3}$$

$$= \pi \cdot \frac{Z \cdot e}{\frac{4\pi}{3}R^{3}} \cdot \frac{eB}{2m_{e}} \cdot \frac{R^{5}}{5} \cdot \frac{4}{3}$$

$$= \frac{Z \cdot e^{2} \cdot B \cdot R^{2}}{10m_{e}}$$

Vektoriell geschrieben erhalten wir für das diamagnetische Moment

$$\boldsymbol{m}_A = -\frac{Z \cdot e^2 \cdot R^2}{10m_e} \boldsymbol{B} \tag{4.3.30}$$

Diese diamagnetische Moment ist in allen Atomen vorhanden. Bei paramagnetischen und ferromagnetischen Substanzen wird es unterdrückt.

4.3.4. Magnetisierung

(Siehe Leisi, Klassische Physik II [Lei98, pp. 170])

Abb. 4.39.: Atomare Kreisströme

Die gesamte makroskopische MAGNETISIERUNG ist das mittlere magnetische Mo-

ment pro Volumeneinheit

$$\boldsymbol{M}(\boldsymbol{R}) = \frac{\sum_{\Delta V} \boldsymbol{m}_{A_i}}{\Delta V} \tag{4.3.31}$$

Dabei ist \boldsymbol{m}_{A_1} das magnetische Moment eines Atoms oder einer Atomgruppe, wobei ΔV ein geeignetes Volumenelement ist. Eine Probe heisst homogen magnetisiert, wenn $\boldsymbol{M}(\boldsymbol{r})$ unabhängig vom Probenort ist.

Die Einheit der Magnetisierung ist $[\mathbf{M}] = A m^{-1}$.

Das externe Magnetfeld soll senkrecht zur Bildebene des obigen Bildes sein. Die atomaren Kreisströme müssen dann in der Bildebene liegen. Betrachten wir ein Flächenelement da, das senkrecht zur Bildebene liegt, dann stellen wir fest, dass alle Kreisströme zweimal durch dieses Ebenenelement gehen, einmal in positiver und einmal in negativer Richtung. Bis auf die Ströme an den Rändern heben sich alle Ströme auf. Das heisst, dass das mittlere Stromdichtefeld

$$\boldsymbol{i} = 0 \tag{4.3.32}$$

ist, da $dI(a) = \mathbf{i} \cdot d\mathbf{a}$. Nur die Ströme am Rand, die Oberflächenströme mit der Stromdichte *j*, können deshalb die Quelle der beobachteten makroskopischen Magnetisierung sein. Für eine Probe der Höhe Δz ist der gesamte STROM an der Oberfläche

$$\Delta I = \Delta z \cdot j \tag{4.3.33}$$

Diese makroskopischen Oberflächenströme erklären die experimentellen Beobachtungen. Da für ein diamagnetisches Atom m entgegengesetzt zum Magnetfeld gerichtet ist, und da damit auch die makroskopische Magnetisierung M entgegengesetzt zum Magnetfeld gerichtet ist, wird diese Probe wie beobachtet vom Magnetfeldgradienten abgestossen.

Das magnetische Feld aller Kreisströme muss identisch mit dem externen Feld B sein. Nun ist aber das magnetische Moment eines Kreisströmes in genügender Entfernung nicht von der Fläche dieses Strömes abhängig. Deshalb muss die Summe aller einzelner atomarer magnetischer Momente dem magnetischen Moment des Oberflächenströmes gleich sein.

$$m_a \cdot n \cdot A \cdot \Delta z = A \cdot I = A \cdot j \cdot \Delta z \tag{4.3.34}$$

wobei n die Volumendichte der Atome ist. Die Oberflächenstromdichte

$$j = m_a \cdot n = M \tag{4.3.35}$$

ist gleich der Magnetisierung.

4.3.5. Das magnetische Moment des Elektrons: Spin

Neben den von der Bahnbewegung herrührenden magnetischen Momenten hat zum Beispiel das ELEKTRON ein magnetisches Moment, das von seinem Drehimpuls \boldsymbol{s} (SPIN) herrührt.

Abb. 4.40.: Elektronenspin

Zu diesem Drehimpuls oder Spin gehört ein entsprechendes magnetisches Moment m_s . Aus der Quantenmechanik weiss man, dass die Projektion des Spins auf eine raumfeste Achse einen festen Betragswert

$$s_z = \frac{1}{2} \frac{h}{2\pi} = \frac{1}{2}\hbar \tag{4.3.36}$$

hat, wobei das Plancksche Wirkungsquantum durch

$$h = 6.63 \cdot 10^{-34} \text{ J s} \tag{4.3.37}$$

oder mit $2\pi\hbar = h$

$$\hbar \approx 10^{-34} \text{ J s}$$

ist. Nach der Quantenmechanik gilt

$$\boldsymbol{m}_s = -\frac{e}{m_e} \boldsymbol{s} \tag{4.3.38}$$

Nach der klassischen Mechanik (rotierende homogen geladene Kugel) wäre $\mathbf{m}_{s,klass} = -(1/2)\frac{e}{m_s}\mathbf{s}$. Die Grösse des magnetischen Momentes eines Elektrons ist

$$|m_{s,z,klass}| = \frac{e}{2m_e}\hbar \equiv 1\mu_B = 0.927 \cdot 10^{-23} \text{ Am}^2$$
 (4.3.39)

auch bekannt unter dem Namen BOHRSCHES MAGNETON. Das magnetische Moment des Elektrons ist dann

$$\boldsymbol{m}_s = g\mu_B \boldsymbol{e}_s \tag{4.3.40}$$

Hier ist g der LANDÉ-FAKTOR, der für die klassische Quantenmechanik und das Elektron g = -2 und gemessen g = -2.00231930436182(52) ist[codata2017]. (52) ist die Unsicherheit der letzten zwei Stellen. Dieser Wert ist in Übereinstimmung mit der QUANTENELEKTRODYNAMIK. g-Faktoren können auch für Atome und andre Objekte definiert werde. Für das Proton erhält man $g_p = 5.585694702(17)$ [Cod17].

4.3.6. Paramagnetismus

(Siehe Kneubühl, Repetitorium der Physik [Kne78, pp. 262])

Bei paramagnetischen Atomen hebt sich das magnetische Bahnmoment der einzelnen Elektronen eines Atoms sowie deren von den Spins herrührendes magnetisches Moment nicht vollständig auf.

$$\boldsymbol{m}_A \neq 0 \tag{4.3.41}$$

Das magnetische Moment eines paramagnetischen Atoms hat die Grössenordnung eines Bohrsche Magneton $1\mu_B$. Ohne äusseres Magnetfeld verschwindet die makroskopische Magnetisierung, da die einzelnen atomaren magnetischen Momente ungeordnet sind. Im äusseren Magnetfeld ordnen sich die magnetischen Momente teilweise, da die thermische Brownsche Bewegung, temperaturabhängig, für Unordnung sorgt.

Die Magnetisierung kann mit der folgenden Überlegung berechnet werden. Wir setzen an

$$H = (0, 0, H)$$

$$m = (m \sin \Theta \cos \phi, m \sin \Theta \sin \phi, m \cos \Theta)$$

$$d\Omega = sin\Theta d\Theta d\phi = -d(\cos \Theta) d\phi$$

$$(4.3.42)$$

Die Energie des magnetischen Dipols m im Magnetfeld H hängt nur von Θ ab. Wir machen eine Koordinatentransformation auf $u = \cos \Theta$. Die Energie ist dann

$$E_{pot} = -\boldsymbol{m}_A \cdot \boldsymbol{B} = -\boldsymbol{m}_A \cdot (\mu_0 \boldsymbol{H}) = -\mu_0 m_A H \cos \Theta = -\mu_0 m_A H u \qquad (4.3.43)$$

Die Magnetisierung M_z in der z-Richtung, der Richtung des Magnetfeldes H ist

$$M_{z} = \frac{1}{V} \left(\sum \boldsymbol{m}_{A} \right)_{z} = n m_{A} \left\langle \cos \Theta \right\rangle = n m_{A} \left\langle u \right\rangle$$
(4.3.44)

Hier ist $n = \frac{N}{V}$ die ZAHLENDICHTE der magnetischen Momente. Bei endlichen Temperaturen müssen die potentiellen Energien E_{pot} nach der BOLTZMANNSTA-TISTIK verteilt sein, also

$$\left\langle \cos\Theta\right\rangle = \frac{\int_{\Omega} \cos\Theta e^{-E_{pot}/k_B T} d\Omega}{\int_{\Omega} e^{-E_{pot}/k_B T} d\Omega} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi} \cos\Theta e^{x\cos\Theta} \sin\Theta d\Theta d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi} e^{x\cos\Theta} \sin\Theta d\Theta d\phi}$$
(4.3.45)

mit $x = \mu_0 m H/k_B T$. In der Koordinate u und nach Ausführen der trivialen Integration über ϕ lautet die Gleichung

$$\langle u \rangle = \frac{\int_{-1}^{1} u e^{xu} du}{\int_{-1}^{1} e^{xu} du}$$
(4.3.46)

Wir wechseln auf $\hat{u} = -u$ und erhalten

$$\langle u \rangle = -\frac{\int_{-1}^{1} \hat{u} e^{-x\hat{u}} d\hat{u}}{\int_{-1}^{1} e^{-x\hat{u}} d\hat{u}} = \coth x - \frac{1}{x} = L(x)$$
(4.3.47)

wobei L(x) die LANGEVIN-FUNKTION ist. Also ist

$$M_{z} = nm_{A} L\left(\frac{\mu_{0}m_{A}H}{kT}\right)$$

$$= nm_{A} L\left(\frac{m_{A}B}{k_{B}T}\right)$$

$$= nm_{A} \left[\operatorname{coth}\left(\frac{m_{A}B}{k_{B}T}\right) - \frac{k_{B}T}{m_{A}B} \right]$$

$$(4.3.48)$$

wobei n die Zahlendichte der Spins ist.

Diese klassisch berechnete Magnetisierung ist für kleine Magnetfelder, also $kT \gg m_A B$ verifizierbar. Da für $x \ll 1$ die Reihenentwicklung $L(x) = x/3 + O(x^2)$ gilt, bekommen wir das CURIE-GESETZ

$$M = \frac{1}{3} \frac{nm_A^2}{k_b T} B = \chi H = \frac{C}{T} H$$
(4.3.49)

Hier ist C die volumenbezogene CURIE-KONSTANTE

$$C = \mu_0 n \frac{m_A^2}{3k_b} \tag{4.3.50}$$

Alternativ kann die Curie-Konstante auch mit molaren Grössen ausgedrückt werden, indem wir $m_{mol} = N_A m_A$ setzen.

$$C_{mol} = \mu_0 \frac{m_{mol}^2}{3R} \tag{4.3.51}$$

Abb. 4.41.: Schematischer Verlauf der Magnetisierung (CURIE-GESETZ für kleine B). M_S ist die Sättigungsmagnetisierung.

Die magnetische Induktion ${\cal B}$ ist durch das Magnetfeld ${\cal H}$ und die Magnetisierung ${\cal M}$ gegeben

$$\boldsymbol{B} = \mu_0 \left(\boldsymbol{M} + \boldsymbol{H} \right) = \mu_0 \left(\chi + 1 \right) \boldsymbol{H} = \mu_0 \mu \boldsymbol{H}$$
(4.3.52)

Für ein homogenes Material zeigt Abbildung 4.42 den Zusammenhang zwischen dem Magnetfeld $|\mathbf{H}|$, der Magnetisierung $|\mathbf{M}|$ und der magnetischen Induktion $|\mathbf{B}/\mu_0|$. Während die Magnetisierung \mathbf{M} für grosse Magnetfelder \mathbf{H} sättigt (alle Dipole sind ausgerichtet), steigt die magnetische Induktion \mathbf{B} weiter an, aber mit kleinerer Steigung.

Abb. 4.42.: Beispielhafter Zusammenhang zwischen dem Magnetfeld |H|, der Magnetisierung |M| und der magnetischen Induktion |B| für ein isotropes Material

4.3.7. Ferromagnetismus

Versuch 76: Versuch zur Vorlesung: Ferromagnetismus - Modellversuch (Versuchskarte EM-175)

Ferromagnetische Atome haben genau so wie paramagnetische Atome ein permanentes magnetisches Moment m_A . Im Gegensatz zu den Paramagneten bleibt jedoch auch ohne äusseres Magnetfeld ein magnetisches Moment übrig. Die Magnetisierung als Funktion des Magnetfeldes kann mit der unten stehenden Apparatur gemessen werden.

Abb. 4.43.: Messung der Hysterese eines Ferromagneten. Rot ist der Primärkreis, grün der Sekundärkreis.

Versuch 77: Versuch zur Vorlesung: Hysterese des Ferromagneten (Versuchskarte EM-205, Video)


```
Versuch 78: Versuch zur Vorlesung:
Hysterese des Ferromagneten (Versuchskarte EM-205, Video (VPN
oder intern))
```


Versuch 79: Versuch zur Vorlesung: Hysterese des Ferromagneten (Versuchskarte EM-205, Video)

Unter Vernachlässigung der Selbstinduktion ist die Differentialgleichung für den Sekundärkreis

$$-A \cdot \frac{dB(t)}{dt} - \frac{Q(t)}{C} = R_2 \cdot I_2(t)$$
 (4.3.53)

Dabei ist Q(t) die LADUNG am Kondensator. Wir schreiben den STROM als zeitliche Ableitung der LADUNG.

$$-\frac{A}{R_2} \cdot \frac{dB(t)}{dt} = \frac{Q(t)}{R_2C} + \frac{dQ(t)}{dt}$$
(4.3.54)

Die Anregung in dieser Schaltung ist ein STROM $I_1(t)$, der die Frequenz ω hat. Also ist auch Q(t) eine periodische Funktion mit der gleichen Frequenz. Bei harmonischen Funktionen gilt, dass $dQ(t)/dt \approx \omega Q(t)$ ist. Wenn $1/RC \ll \omega$ ist, kann der erste Term auf der rechten Seite vernachlässigt werden. Dann gilt

$$Q(t) = \text{const} \cdot B(t) \tag{4.3.55}$$

und damit für die SPANNUNG am Kondensator

$$U_C(t) = Q(t)/C \propto B(t) \tag{4.3.56}$$

Der Ausgangsstrom I(t) selber erzeugt das anregende Feld.

Abb. 4.44.: Hysteresekurve eines Ferromagneten

Diese Abbildung zeigt das skizzierte Resultat des obigen Versuches. Interessant ist, dass bei I = 0, also ohne anregendes Magnetfeld, trotzdem ein Feld $B \neq 0$ gemessen wird. Diese Feld kann nur von einer nichtverschwindenden Magnetisierung ohne äusseres Feld herrühren. Diese nichtverschwindende Magnetisierung $M \neq 0$ ist das Kennzeichen eines FERROMAGNETEN.

Andererseits gibt es zwei Punkte, bei denen das resultierende Magnetfeld null ist, obwohl ein äusseres Magnetfeld angelegt wurde. Dies kann nur sein, wenn die Magnetisierung im Material das äussere Feld gerade kompensiert.

Weiter nimmt für sehr grosse anregende Felder das resultierende Magnetfeld kaum mehr zu. Man spricht von einer Sättigung der Magnetisierung.

Versuch 80: Versuch zur Vorlesung: Magnetische Bezirke (Versuchskarte EM-178, Video (VPN oder intern))

Abb. 4.45.: Ferromagnetische Domänen

Das beobachtete Verhalten kann mit FERROMAGNETISCHEN DOMÄNEN, auch Weisssche Bezirke genannt, erklärt werden. Das Material besteht, wie oben skizziert, aus einer grossen Zahl kleiner Bereiche, die jeder seine eigene Orientierung der Magnetisierung haben. Die gemittelte Magnetisierung hängt davon ab, wie zufällig die Domänen verteilt sind.

Abb. 4.46.: Änderung der Domänenstruktur bei stärker werdendem äusserem Magnetfeld

Wird ein äusseres Magnetfeld angelegt, beginnen die Domänen, die bezüglich des externen Feldes richtig orientiert sind, zu wachsen, die anderen schrumpfen. Die makroskopische Magnetisierung wächst, hinkt aber hinter der Anregung zurück. Domänen ändern die Richtung ihrer Magnetisierung nicht, sie ändern nur ihre Grösse.

Bei der Änderung der Grösse der Domänen müssen Domänenwände verschoben werden. Dies kostet Energie und zeigt sich als HYSTERESE. Dieser Energieverlust bei der Grössenänderung stabilisiert aber auch die Domänen.

Abb. 4.47.: Löschen des remanenten Magnetismus

Um die makroskopische Orientierung der Domänen zum Verschwinden zu bringen, muss man die ferromagnetische Substanz langsam aus einem Wechselfeld entfernen. Das Bild oben zeigt die resultierenden Hysteresekurven. Die Hystereseschlaufe wird so quasikontinuierlich auf einen Punkt, den Ursprung des Koordinatensystems zusammengezogen.

Anwendung: Entmagnetisieren von Schraubenziehern, Löschen von Tonbändern.

4.4. Zusammenfassung: Elektrodynamik: zeitlich veränderliche Magnetfelder

Magnetischer Fluss Gleichung (4.1.4)

$$\phi_B = \iint\limits_A \boldsymbol{B} \cdot d\boldsymbol{a}$$

Lorentztransformation der EMK Gleichung (4.1.11)

$$U_{EMK}' = \gamma(v)U_{EMK}$$

Induktionsgesetz von Faraday Gleichung (4.1.22)

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\iint_{A(S)} \frac{\partial}{\partial t} \boldsymbol{B} \cdot d\boldsymbol{a}$$

Differentielle Form des Induktionsgesetzes von Faraday Gleichung (4.1.24)

$$\mathbf{rot} \; oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$$

Magnetfeld einer langen Spule Gleichung (4.1.37)

$$B = \mu_0 \frac{N}{\ell} I$$

Fluss einer langen Spule Gleichung (4.1.38)

$$\phi_B = N \cdot B \cdot A = \mu_0 \frac{N^2}{\ell} I \cdot A = \mu_0 n^2 A \ell I$$

Selbstinduktivität einer langen Spule Gleichung (4.1.39)

$$L = \frac{\phi_B}{I} = \mu_0 \frac{N^2}{\ell} A = \mu_0 n^2 A \ell$$

Selbstinduktionsspannung Gleichung (4.1.42)

$$U = -\frac{d\phi_m}{dt} = -L\frac{dI}{dt}$$

Übersetzungsverhältnis eines Transformators Gleichung (4.1.54)

$$U_2 = -\frac{N_2}{N_1}U_1$$

Übersetzungsverhältnis eines Transformators Gleichung (4.1.55)

$$I_2 = -\frac{N_1}{N_2}I_1$$

Übersetzungsverhältnis eines Transformators für Leistungen Gleichung (4.1.56)

$$U_2I_2 = U_1I_1$$

Maschenregel Gleichung (4.1.57)

$$\sum_{\forall k \text{ Quellen}} U_k = \sum_{\forall j \text{ Verbraucher}} U_j$$

Knotenregel Gleichung (4.1.58)

$$\sum_{\forall k \text{ eines Knotens}} I_k = 0$$

Effektivspannung Gleichung (4.1.68)

$$U_{eff} = U_{rms} = \sqrt{\frac{1}{T} \int_{t}^{t+T} U^2(\tau) d\tau}$$

Reelle Impedanz einer Spule Gleichung (4.1.78)

$$X_L = \omega L$$

Komplexe Impedanz einer Spule Gleichung (4.1.85)

$$Z_L = i\omega L$$

Reelle Impedanz eines Kondensators Gleichung (4.1.91)

$$X_C = \frac{1}{\omega C}$$

Komplexe Impedanz eines Kondensators Gleichung (4.1.97)

$$Z_C = \frac{1}{i\omega C}$$

Berechnung nichtlinearer Gleichungen mit komplexen Impedanzen Beispiel Leistung, Gleichung (4.1.86)

$$P(t) = \Re(U(t))\Re(I(t)) = \frac{1}{2}\left(U(t) + U^*(t)\right) \cdot \frac{1}{2}\left(I(t) + I^*(t)\right) = \text{usw}.$$

Schwingkreis Gleichung (4.1.107)

$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = 0$$

Induzierte Spannung in Generator Gleichung (4.1.120)

$$U_{eff,i} = \frac{NBA\omega}{\sqrt{2}}$$

Drehmomentkurve eines Nebenschlussmotors Gleichung (4.1.126)

$$T_{eff}(\omega) = \frac{NAB}{\sqrt{2}} \left(\frac{U}{R} - \frac{NBA}{R\sqrt{2}} \omega \right) = \frac{NABU}{R\sqrt{2}} - \frac{N^2 A^2 B^2}{2R} \omega$$

©2005-2020 Ulm University, Othmar Marti, CC) BY-SA

Drehmomentkurve eines Hauptschlussmotors Gleichung (4.1.147)

$$T_{eff}(\omega) = \frac{2 N A K U_0^2}{\left[\sqrt{2} R + \sqrt{2} R_E + K N A \omega\right]^2}$$

Wideroe-Beziehung für das Betatron Gleichung (4.1.155)

$$B(t) = 2 \cdot B(t)$$

Skin-Effekt Gleichung (4.1.158)

$$\frac{\partial E\left(r,t\right)}{\partial r}=\frac{\partial B\left(r,t\right)}{\partial t}$$

Skin-Tiefe Gleichung (4.1.176)

$$\delta = \sqrt{\frac{2}{\mu\mu_0\sigma\omega}} = \frac{1}{\sqrt{\pi\mu\mu_0\sigma\nu}}$$

Energiedichte des Magnetfeldes Gleichung (4.2.10)

$$w_B = \frac{B^2}{2\mu_0}$$

Larmorfrequenz Gleichung (4.3.21)

$$\boldsymbol{\Omega} = \frac{e}{2m} \boldsymbol{B}$$

Diamagnetisches Moment Gleichung (4.3.30)

$$\boldsymbol{m}_A = -\frac{Z \cdot e^2 \cdot R^2}{10m_e} \boldsymbol{B}$$

Magnetisches Moment des Elektrons Gleichung (4.3.38)

$$oldsymbol{m}_s = -rac{e}{m_e}oldsymbol{s}$$

Langevin-Funktion Gleichung (4.3.47)

$$L(x) = \coth x - \frac{1}{x}$$

Curie-Gesetz Gleichung (4.3.49)

$$M = \frac{1}{3} \frac{n \, m_A^2}{k_b T} B = \chi H = \frac{C}{T} H$$

Curie-Kontante Gleichung (4.3.50)

$$C = \mu_0 n \frac{m_A^2}{3k_b}$$

molare Curie-Konstante Gleichung (4.3.51)

$$C_{mol} = \mu_0 \frac{m_{mol}^2}{3R}$$

Magnetisierung und magnetische Induktion Gleichung (4.3.52)

$$\boldsymbol{B} = \mu_0 \left(\boldsymbol{M} + \boldsymbol{H} \right) = \mu_0 \left(\chi + 1 \right) \boldsymbol{H} = \mu_0 \mu \boldsymbol{H}$$

5. Die Maxwellschen Gleichungen

5.1. Was wissen wir?

(Siehe Leisi, Klassische Physik II [Lei98, pp. 251])

Maxwellgleichungen werden gebraucht, um die Funktionsweise von

- Radiowellen
- Mikrowellen
- Mobiltelefonen

zu erklären.

Bis jetzt kennen wir die folgenden Gleichungen um die elektrischen Phänomene zu beschreiben:

Gausssches Gesetz $(2.3.9)$	div D :	$= \rho_{el}$	I
Induktionsgesetz $(4.1.24)$	$\operatorname{rot} E$	$= -\frac{\partial B}{\partial t}$	II
Quellenfreiheit $(3.8.43)$	div \boldsymbol{B}	$= 0^{0}$	III
Durchflutungsgesetz $(3.8.35)$	$\operatorname{rot} H$	= i	\mathbf{IV}

5.2. Auflösung des Widerspruchs zur Kontinuitätsgleichung, Maxwellgleichungen

Zusätzlich zu den obigen Gleichungen muss die Kontinuitätsgleichung für LADUN-GEN gelten

div
$$\mathbf{i} = -\frac{\partial \rho_{el}}{\partial t}$$
 (5.2.1)

Diese Kontinuitätsgleichung ist im Widerspruch zum Durchflutungsgesetz. Dies sieht man, indem man die Divergenz auf das Durchflutungsgesetz anwendet.

div
$$(\boldsymbol{i}) = -\frac{\partial \rho_{el}}{\partial t} = \text{div } \mathbf{rot} \ \boldsymbol{H} \equiv 0$$
 (5.2.2)

im Widerspruch zur Kontinuitätsgleichung. Dieser Widerspruch wurde von MAX-WELL aufgelöst, indem er das Durchflutungsgesetz ergänzt hat.

$$rot \ \boldsymbol{H} = \boldsymbol{i} + \frac{\partial \boldsymbol{D}}{\partial t}$$
(5.2.3)

Die Grösse $\frac{\partial D}{\partial t}$ hat die Dimension einer Stromdichte. Diese MAXWELLSCHE VER-SCHIEBUNGSSTROMDICHTE macht das Durchflutungsgesetz mit der Kontinuitätsgleichung kompatibel. Der Strom ist bei dem modifizierten Durchflutungsgesetz durch

$$i = \operatorname{rot} H - \frac{\partial D}{\partial t}$$
 (5.2.4)

Die Divergenz davon ist (mit div rot $X \equiv 0$)

div
$$\boldsymbol{i} = -\operatorname{div}\left(\frac{\partial \boldsymbol{D}}{\partial t}\right) = -\frac{\partial}{\partial t}\left(\operatorname{div}\boldsymbol{D}\right) = -\frac{\partial \rho_{el}}{\partial t}$$
 (5.2.5)

Damit ist gezeigt, dass die Gleichungen **I-III** zusammen mit dem modifizierten Durchflutungsgesetz auch die Kontinuitätsgleichung beinhalten.

5.3. Maxwellgleichungen

Dieser Satz Gleichungen wird die

Maxwell-Gleichungen		
div $oldsymbol{D}= ho_{el}$	Ι	(5.3.1a)
$\mathbf{rot}\; oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$	II	(5.3.1b)
div $\boldsymbol{B} = 0$	III	(5.3.1c)
$\mathbf{rot} \; oldsymbol{H} = oldsymbol{i} + rac{\partial oldsymbol{D}}{\partial t}$	IV	(5.3.1d)

genannt. (Ursprüngliche Ableitung der Gleichungen: (2.3.9), (4.1.24), (3.8.43) und (5.2.3))

Zusammen mit dem Kraftgesetz (siehe (4.1.21))

$$\boldsymbol{F} = q \cdot (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \tag{5.3.2}$$

hat man eine vollständige Charakterisierung der Elektrodynamik für isotrope Materialien.

Die Maxwellsche Verschiebungsstromdichte, die eingeführt wurde um die Maxwellgleichungen mit der Kontinuitätsgleichung kompatibel zu machen, führt dazu, dass man aus den Maxwellgleichungen elektromagnetische Wellen vorhersagen kann.

Die Maxwellgleichungen sind nicht invariant unter der Galilei-Transformation. Diese Beobachtung war ein wichtiger Meilenstein auf dem Weg zur speziellen Relativitätstheorie. Die Integralform des modifizierten Durchflutungsgesetzes lautet

$$\iint_{A(S)} \operatorname{rot} \boldsymbol{H} \cdot d\boldsymbol{a} = \iint_{A(S)} \left(\boldsymbol{i} + \frac{\partial \boldsymbol{D}}{\partial t} \right) \cdot d\boldsymbol{a} = \oint_{S} \boldsymbol{H} \cdot d\boldsymbol{s}$$
(5.3.3)

wenn man den Satz von Stokes (Siehe Gleichung (C.11.1)) anwendet. S ist eine beliebige Kurve und A(S) die durch sie berandete Fläche.

Das Gausssche Gesetz liefert

$$\frac{\partial \rho_{el}}{\partial t} = \frac{\partial}{\partial t} \left(\operatorname{div} \boldsymbol{D} \right) = \operatorname{div} \left(\frac{\partial \boldsymbol{D}}{\partial t} \right)$$
(5.3.4)

Damit wird die Kontinuitätsgleichung

div
$$\mathbf{i} + \frac{\partial \rho_{el}}{\partial t} = 0 = \operatorname{div} \mathbf{i} + \operatorname{div} \left(\frac{\partial \mathbf{D}}{\partial t}\right) = \operatorname{div} \left(\mathbf{i} + \frac{\partial \mathbf{D}}{\partial t}\right)$$
 (5.3.5)

Damit ist das Integral über die Fläche in Gleichung (5.3.3) unabhängig von S.

Die Integralformeln der Maxwellgleichungen lauten (ursprüngliche Ableitungen: (2.3.7), (4.1.22), (3.8.42) und (5.3.3))

$$\iint_{A(V)} \boldsymbol{D} \cdot d\boldsymbol{a} = \iiint_{V} \rho_{el}(\boldsymbol{r}) dV \qquad \qquad \mathbf{I} \qquad (5.3.6a)$$

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\frac{\partial}{\partial t} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a} \qquad \qquad \mathbf{II} \qquad (5.3.6b)$$

$$\iint_{A(V)} \boldsymbol{B} \cdot d\boldsymbol{a} = 0 \qquad \qquad \mathbf{III} \qquad (5.3.6c)$$

$$\oint_{S} \boldsymbol{H} \cdot d\boldsymbol{s} = \iint_{A(S)} \left(\boldsymbol{i} + \frac{\partial \boldsymbol{D}}{\partial t} \right) \cdot d\boldsymbol{a} \qquad \text{IV} \qquad (5.3.6d)$$

Der Unterschied zwischen der zweiten und der dritten Maxwellgleichung ist, dass in der zweiten Gleichung über eine einfache, von der Kurve S aufgespannte Fläche A(S) integriert wird, während in der dritten Gleichung über die das Volumen Veinschliessende Fläche A(V) integriert wird.

Die angegebenen Maxwellgleichungen gelten für alle Medien, auch mit tensoriellen Eigenschaften. Dort benötigt man die beiden Materialgleichungen

$$\boldsymbol{D} = \varepsilon \varepsilon_0 \boldsymbol{E} \tag{5.3.7a}$$

$$\boldsymbol{B} = \mu \mu_0 \boldsymbol{H} \tag{5.3.7b}$$

$$\boldsymbol{E} = \varepsilon^{-1} \frac{1}{\varepsilon_0} \boldsymbol{D} \tag{5.3.7c}$$

$$\boldsymbol{H} = \boldsymbol{\mu}^{-1} \frac{1}{\mu_0} \boldsymbol{B}$$
(5.3.7d)

um das elektrische Feld und die dielektrische Verschiebung, bzw. das magnetische Feld und die magnetische Induktion miteinander zu verknüpfen, wobei ε und μ Tensoren sind.

Die Maxwellgesetze mit explizit eingesetzen Materialgesetzen lauten für beliebige Materialien

$$\varepsilon_0 \operatorname{div} (\varepsilon \boldsymbol{E}) = \rho_{el}$$
 I (5.3.8a)

$$\mathbf{rot} \ \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \qquad \mathbf{II} \qquad (5.3.8b)$$

div
$$\boldsymbol{B} = 0$$
 III (5.3.8c)

rot
$$\left(\mu^{-1}\frac{\boldsymbol{B}}{\mu_{0}}\right) = \left(\boldsymbol{i} + \varepsilon_{0}\frac{\partial\left(\varepsilon\boldsymbol{E}\right)}{\partial t}\right)$$
 IV (5.3.8d)

in der differentiellen Schreibweise und

$$\iint_{A(V)} \varepsilon \varepsilon_0 \boldsymbol{E} \cdot d\boldsymbol{a} = \iiint_V \rho_{el}(\boldsymbol{r}) dV \qquad \qquad \mathbf{I} \qquad (5.3.9a)$$

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\frac{\partial}{\partial t} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a} \qquad \qquad \mathbf{II} \qquad (5.3.9b)$$

$$\iint_{A(V)} \boldsymbol{B} \cdot d\boldsymbol{a} = 0 \qquad \qquad \text{III} \qquad (5.3.9c)$$

$$\oint_{S} \left(\mu^{-1} \frac{\boldsymbol{B}}{\mu_{0}} \right) \cdot d\boldsymbol{s} = \iint_{A(S)} \left(\boldsymbol{i} + \varepsilon_{0} \frac{\partial \left(\varepsilon \boldsymbol{E} \right)}{\partial t} \right) \cdot d\boldsymbol{a} \qquad \qquad \mathbf{IV}$$
(5.3.9d)

in der Integralschreibweise. Beachten Sie, dass sowohl ε wie auch μ sowohl von der Zeit wie auch vom Ort abhängen können!

5.4. Maxwellgleichungen in isotropen zeitunabhängigen Medien

Die Maxwellgesetze beliebige isotrope und zeitunabhängige Materialien

div
$$(\boldsymbol{E}) = \frac{1}{\varepsilon \varepsilon_0} \rho_{el}$$
 I (5.4.1a)

rot
$$E = -\frac{\partial B}{\partial t}$$
 II (5.4.1b)

div
$$\boldsymbol{B} = 0$$
 III (5.4.1c)

rot
$$\boldsymbol{B} = \mu \mu_0 \left(\boldsymbol{i} + \varepsilon \varepsilon_0 \frac{\partial \left(\boldsymbol{E} \right)}{\partial t} \right)$$
 IV (5.4.1d)

in der differentiellen Schreibweise und

$$\iint_{A(V)} \boldsymbol{E} \cdot d\boldsymbol{a} = \iiint_{V} \frac{1}{\varepsilon \varepsilon_{0}} \rho_{el}(\boldsymbol{r}) dV \qquad \qquad \mathbf{I} \qquad (5.4.2a)$$

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\frac{\partial}{\partial t} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a} \qquad \qquad \mathbf{II} \qquad (5.4.2b)$$

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{s} = \iint_{A(S)} \mu \mu_0 \left(\boldsymbol{i} + \varepsilon \varepsilon_0 \frac{\partial \left(\boldsymbol{E} \right)}{\partial t} \right) \cdot d\boldsymbol{a} \qquad \qquad \mathbf{IV} \qquad (5.4.2d)$$

in der Integralschreibweise.

5.5. Anwendung der Maxwellgleichungen

Beispiel: Anwendung

Wir betrachten einen langen kreiszylindrischen Leiter mit dem Durchmesser R, aus dem eine Scheibe mit der Dicke $d \ll R$ herausgeschnitten wurde. Dieser Leiter werde an eine Gleichstromquelle mit $I(t) = I_0$ angeschlossen. Die Endflächen beim herausgeschnittenen Stück wirken wie ein Kondensator. Also ist

$$Q(t) = I_0 \cdot t \tag{5.5.1}$$

Da wir eine zeitlich konstante Situation haben, sind alle zeitlichen Ableitungen null. Mit der Integralform des Gaussschen Gesetzes bekommt man mit einer geschlossenen Fläche A, die eine Kondensatorplatte beinhaltet

$$\varepsilon_0 \iint\limits_A \boldsymbol{E} \cdot d\boldsymbol{a} = \iint\limits_{V(A)} \rho_{el} dV$$
 (5.5.2a)

$$\varepsilon_0 E(t)\pi R^2 = Q(t) \tag{5.5.2b}$$

wobei wir berücksichtigt haben, dass innerhalb des Leiters sowie ausserhalb des herausgeschnittenen Stückes E = 0 gilt. Damit erhalten wir

$$E(t) = \frac{Q(t)}{\varepsilon_0 \pi R^2} = \frac{I_0(t)}{\varepsilon_0 \pi R^2} t = \frac{i_0}{\varepsilon_0} t$$
(5.5.3)

Dabei ist i_0 die Stromdichte im Draht, nicht in der Lücke. Das VEKTORFELD

$$\left(\boldsymbol{i} + \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \right)$$

ist homogen im ganzen Zylinder, einschliesslich des herausgeschnittenen Stückes. Im Leiter ist E = 0, also

$$i_0 = \frac{I_0}{\pi R^2} \tag{5.5.4}$$

Im herausgeschnittenen Stück ist i = 0 und damit

$$i' = \varepsilon_0 \frac{\partial}{\partial t} \frac{I_0(t)}{\varepsilon_0 \pi R^2} t = \frac{I_0}{\pi R^2} = i_0 \tag{5.5.5}$$

Deshalb muss B über den ganzen Leiter, inklusive des herausgeschnittenen Stückes, tangential und translationsinvariant entlang des Leiters sein.

$$B(r) = \frac{\mu_0}{2\pi} I_0 \cdot \frac{r}{R^2}$$
 für $r < R$ (5.5.6)

sowie

$$B(r) = \frac{\mu_0}{2\pi} I_0 \cdot \frac{1}{r} \qquad \text{für} \qquad r \ge R \tag{5.5.7}$$

Der Maxwellsche Verschiebungsstrom bewirkt also, dass die Stromverteilung im Leiter in den Zwischenraum verschoben wird. Das modifizierte Ampèresche Durchflutungsgesetz ist die physikalische Rechtfertigung für den umgangssprachlichen Ausdruck **der Strom fliesst durch den Kondensator**.

6. Elektromagnetische Wellen

6.1. Die Wellengleichung im Vakuum

Im VAKUUM gibt es keine Teilchen, also auch keine geladenen Teilchen. Wir können also setzen:

$$ho_{el}(oldsymbol{r}) = 0$$

 $oldsymbol{i}(oldsymbol{r}) = 0$

Damit lauten die Maxwellgleichungen [Max73] in der Integralform

$$\iint_{A(V)} \boldsymbol{D} \cdot d\boldsymbol{a} = 0 \qquad \qquad \mathbf{I} \qquad (6.1.1a)$$

$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{s} = -\frac{\partial}{\partial t} \iint_{A(S)} \boldsymbol{B} \cdot d\boldsymbol{a} \qquad \qquad \mathbf{II} \qquad (6.1.1b)$$

$$\oint_{S} \boldsymbol{H} \cdot d\boldsymbol{s} = \varepsilon \varepsilon_0 \iint_{A(S)} \frac{\partial}{\partial t} \boldsymbol{E} \cdot d\boldsymbol{a} \qquad \qquad \mathbf{IV} \qquad (6.1.1d)$$

oder in der differentiellen Form

div
$$\boldsymbol{D} = 0$$
 I (6.1.2a)

rot
$$\boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$
 II (6.1.2b)

div
$$\boldsymbol{B} = 0$$
 III (6.1.2c)

rot
$$\boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t}$$
 IV (6.1.2d)

Im Vakuum ist $\boldsymbol{B} = \mu_0 \boldsymbol{H}$ sowie $\boldsymbol{D} = \varepsilon_0 \boldsymbol{E}$ sowie $\mu = 1$ und $\varepsilon = 1$. Zur Ableitung der Wellengleichung sind die differentiellen Maxwellgleichungen besser als die integralen geeignet. Wir verwenden $\mu_0 \varepsilon_0 = 1/c^2$ und erhalten also

div
$$E = 0$$
 I (6.1.3a)

$$\mathbf{rot} \ \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \qquad \mathbf{II} \qquad (6.1.3b)$$

div
$$\boldsymbol{B} = 0$$
 III (6.1.3c)

rot
$$\boldsymbol{B} = \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} = \frac{1}{c^2} \frac{\partial \boldsymbol{E}}{\partial t}$$
 IV (6.1.3d)

Die Maxwellgleichungen im VAKUUM (Gleichung (6.1.3)) sind symmetrisch bezüglich E und B. Wir nehmen die Rotation der zweiten Maxwellgleichung.

rot rot
$$\boldsymbol{E} = -\operatorname{rot} \frac{\partial \boldsymbol{B}}{\partial t} = -\frac{\partial}{\partial t} \operatorname{rot} \boldsymbol{B}$$
 (6.1.4)

Indem wir die Austauschbarkeit von Ableitungen verwenden. Nun setzt man die vierte Maxwellgleichung in die zweite Gleichung ein. Wir erhalten eine Differentialgleichung für E allein.

rot rot
$$\boldsymbol{E} = -\frac{\partial}{\partial t} \frac{1}{c^2} \frac{\partial \boldsymbol{E}}{\partial t} = -\frac{1}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$$
 (6.1.5)

Nun gilt die Vektoridentität

rot rot $E = \operatorname{grad} \operatorname{div} E - \operatorname{div} \operatorname{grad} E = \operatorname{grad} \operatorname{div} E - \Delta E$ (6.1.6)

Wegen der ersten Maxwellgleichung verschwindet der erste Term auf der rechten Seite. Also lauten die WELLENGLEICHUNGEN

$$\frac{\partial^2 \boldsymbol{E}}{\partial t^2} = c^2 \Delta \boldsymbol{E} \tag{6.1.7}$$

sowie nach einer analogen Ableitung für \boldsymbol{B}

$$\frac{\partial^2 \boldsymbol{B}}{\partial t^2} = c^2 \Delta \boldsymbol{B} \tag{6.1.8}$$

Die nicht-trivialen Lösungen der WELLENGLEICHUNGEN heissen ELEKTROMA-GNETISCHE WELLEN. Dieses Phänomen ist implizit in den Maxwellgleichungen enthalten, die aus makroskopischen Experimenten abgeleitet wurden. Die WEL-LENGLEICHUNG beschreibt alle Wellenphänomene aus der Kommunikationstechnik, der OPTIK und der Wechselwirkung von Atomen und Molekülen untereinander, für Abstände von 1nm oder mehr. Die Maxwellgleichungen sind invariant unter der LORENTZ-TRANSFORMATION, nicht aber unter der GALILEI-TRANSFORMATION. In jedem Inertialsystem im Vakuum ist die Ausbreitungsgeschwindigkeit

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \text{ m s}^{-1} \tag{6.1.9}$$

Damit haben die Maxwellgleichungen implizit schon 1864 die spezielle Relativitätstheorie vorweggenommen.

In Medien ist die Ausbreitungsgeschwindigkeit entsprechend

$$c_m = \frac{1}{\sqrt{\mu\mu_0\varepsilon\varepsilon_0}} = \frac{1}{\sqrt{\mu\varepsilon}} \cdot c \tag{6.1.10}$$

wobei μ die relative Permeabilität und ε die relative Permittivität ist.

6.2. Allgemeine Lösung der Wellengleichung

Es gibt eine grosse Klasse von Funktionen (skalar oder vektoriell), die die Wellenleitergleichung lösen. Im Folgenden besprechen wir skalare Funktionen, die aber auch als eine Vektorkomponente aufgefasst werden können. Alle Funktionen, die nur von einer skalaren Variablen

$$u = \mathbf{k} \cdot \mathbf{r} - \omega t \tag{6.2.1}$$

abhängen lösen die Wellengleichung, wenn sie genügend oft stetig differenzierbar sind. Wir betrachten die Funktion $f(u) = f(u(\boldsymbol{r}, t))$. und setzen sie in $c^2 \Delta f(u(\boldsymbol{r}, t)) = (\partial^2/\partial t^2) f(u(\boldsymbol{r}, t))$ ein. Die Kettenregel der Differentiation ergibt für $u = \boldsymbol{k} \cdot \boldsymbol{r} - \omega t = k_x x + k_y y + k_z z - \omega t$

$$\frac{\partial}{\partial t}f(u(x,y,z,t)) = \frac{\partial f(u)}{\partial u} \cdot \frac{\partial u}{\partial t}$$
(6.2.2a)
$$\frac{\partial^{2}}{\partial t^{2}}f(u(x,y,z,t)) = \frac{\partial}{\partial t} \cdot \left[\frac{\partial f(u(x,y,z,t))}{\partial u} \cdot \frac{\partial u}{\partial t}\right]$$

$$= \frac{\partial^{2}f(u)}{\partial u^{2}} \cdot \frac{\partial u}{\partial t} \cdot \frac{\partial u}{\partial t} + \frac{\partial f(u(x,y,z,t))}{\partial u} \cdot \frac{\partial^{2}u}{\partial t^{2}}$$

$$= \frac{\partial^{2}f(u)}{\partial u^{2}} \cdot \left(\frac{\partial u}{\partial t}\right)^{2}$$
(6.2.2b)

Die letzte Umformung in Gleichung (6.2.2b) beruht auf

$$\frac{\partial^2}{\partial t^2}u(\boldsymbol{r},t) = \frac{\partial^2}{\partial t^2}\left(k_x x + k_y y + k_z z - \omega t\right) = 0$$

Da $(\partial/\partial t)u = -\omega$ ist, ist auch

$$\frac{\partial^2}{\partial t^2} f(u(x, y, z, t)) = \frac{\partial^2 f(u)}{\partial u^2} \cdot \omega^2$$
(6.2.3)

Analog erhalten wir für die Raumkomponente x

©2005-2020 Ulm University, Othmar Marti, CC) BY-SA

$$\frac{\partial}{\partial x}f(u(x,y,z,t)) = \frac{\partial f(u)}{\partial u} \cdot \frac{\partial u}{\partial x}$$
(6.2.4a)
$$\frac{\partial^{2}}{\partial x^{2}}f(u(x,y,z,t)) = \frac{\partial}{\partial x} \cdot \left[\frac{\partial f(u(x,y,z,t))}{\partial u} \cdot \frac{\partial u}{\partial x}\right]$$

$$= \frac{\partial^{2} f(u)}{\partial u^{2}} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial x} + \frac{\partial f(u(x,y,z,t))}{\partial u} \cdot \frac{\partial^{2} u}{\partial x^{2}}$$

$$= \frac{\partial^{2} f(u)}{\partial u^{2}} \cdot \left(\frac{\partial u}{\partial x}\right)^{2}$$
(6.2.4b)

Also ist wieder mit $\frac{d^2 u}{dx^2}=0$ und zyklisch für x,y,z

$$\begin{split} \Delta f(\boldsymbol{r},t) &= \Delta f(u(\boldsymbol{r},t)) \\ &= \left(\frac{\partial^2}{\partial x^2} f(u(x,y,z,t))\right) + \left(\frac{\partial^2}{\partial y^2} f(u(x,y,z,t))\right) + \left(\frac{\partial^2}{\partial z^2} f(u(x,y,z,t))\right) \\ &= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(\left(\frac{\partial}{\partial x}u\right)^2 + \left(\frac{\partial}{\partial y}u\right)^2 + \left(\frac{\partial}{\partial z}u\right)^2\right) \\ &= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(k_x^2 + k_y^2 + k_z^2\right) \\ &= \frac{\partial^2 f(u)}{\partial u^2} \cdot \left(\boldsymbol{k}^2\right) \end{split}$$
(6.2.5)

Damit lautet die Wellengleichung mit Gleichung (6.2.2b), Gleichung (6.2.4b), Gleichung (6.2.3) und Gleichung (6.2.5)

$$c^{2}\Delta f(\boldsymbol{r},t) = c^{2}\Delta f(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t) = \frac{\partial^{2}}{\partial t^{2}}f(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t) = \frac{\partial^{2}}{\partial t^{2}}f(\boldsymbol{r},t)$$

$$c^{2}\frac{\partial^{2}f(u)}{\partial u^{2}}\cdot\left(\boldsymbol{k}^{2}\right) = \frac{\partial^{2}f(u)}{\partial u^{2}}\cdot\omega^{2}$$

$$c^{2}\boldsymbol{k}^{2} = c^{2}|\boldsymbol{k}|^{2} = \omega^{2}$$
(6.2.6)

Damit können wir sagen:

Jede Funktion $\boldsymbol{E}(u)$ mit $u = \boldsymbol{k} \cdot \boldsymbol{r} - \omega t$ ist eine Lösung der Wellengleichung $c^2 \Delta \boldsymbol{E}(u(\boldsymbol{r}, t)) = \frac{\partial^2}{\partial t^2} \boldsymbol{E}(u(\boldsymbol{r}, t)),$ (6.2.7) sofern $c = \frac{\omega}{|\boldsymbol{k}|}$ (6.2.8)

gilt.

Aus den Gleichungen (6.1.3) kann die ORIENTIERUNG VON k, E UND B berechnet werden. Wir verwenden die Gleichungen (6.2.7) und (6.2.8) und schreiben alle Ableitungen nach x, y, z und t als Kettenableitungen zuerst nach u. Wenn E(u)aus der Wellengleichung bekannt ist, verwenden wir die II. Maxwellgleichung aus (6.1.3) und erhalten

$$\mathbf{rot} \ \mathbf{E}(u) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \mathbf{E}(u) = \begin{pmatrix} \frac{\partial u}{\partial x} \frac{d}{\partial u} \\ \frac{\partial u}{\partial y} \frac{d}{\partial u} \\ \frac{\partial u}{\partial z} \frac{d}{\partial u} \end{pmatrix} \times \mathbf{E}(u) = \mathbf{k} \times \frac{d}{du} \mathbf{E}(u)$$
$$= -\frac{\partial}{\partial t} \mathbf{B}(u) = \frac{\partial u}{\partial t} \frac{d}{du} \mathbf{B}(u) = \omega \frac{d}{du} \mathbf{B}(u)$$

$$\boldsymbol{k} \times \frac{d}{du} \boldsymbol{E}(u) = \omega \frac{d}{du} \boldsymbol{B}(u) \tag{6.2.9}$$

Wir haben dabei verwendet, dass $du/dx = k_x$, $du/dy = k_y$, $du/dz = k_z$ und $du/dt = -\omega$. Damit ist auch $(du/dx, du/dz, du/dz)^T = (k_x, k_y, k_z)^T = \mathbf{k}$. Integrieren wir die Gleichung (6.2.9) nach u erhalten wir

$$\boldsymbol{k} \times \boldsymbol{E} = \omega \boldsymbol{B} \tag{6.2.10}$$

k, E und B bilden in dieser Reihenfolge ein RECHTSHÄNDIGES DREIBEIN. Die drei Vektoren stehen paarweise rechtwinklig aufeinander.

Hätten wir die Wellengleichung für \boldsymbol{B} gelöst, hätten wir die Beziehung

$$\boldsymbol{k} \times \boldsymbol{B} = -\frac{\omega}{c^2} \boldsymbol{E} \tag{6.2.11}$$

bekommen. Diese Beziehung (6.2.11) ist aber unter Verwendung von (6.2.8) identisch mit (6.2.10).

Betragsmässig haben wir im Vakuum weiter die Beziehung

$$|\boldsymbol{E}| = c |\boldsymbol{B}|. \tag{6.2.12}$$

6.3. Elektromagnetische Wellen im Doppelleitersystem

Wir untersuchen die Wellenphänomene an 3 Testsystemen,

A. Doppelleitung oder LECHER-LEITUNG, die besonders einfach auszumessen ist

- B. Der Doppelleitung aus parallelen Ebenen, die wichtig für die Printplattentechnologie ist und besonders einfach zu berechnen ist
- C. dem Koaxialkabel, der technisch wichtigen Anwendung für Verbindungen.

Versuch 81: Versuch zur Vorlesung: Lecherleitung (Versuchskarte SW-025, Video (VPN oder intern))

Versuch 82: Versuch zur Vorlesung: Koaxialleitung (Versuchskarte SW-085, Video)

Abb. 6.1.: 3 mögliche DOPPELLEITERSYSTEME. Links die Lecherleitung, in der Mitte eine Doppelleiterleitung, wie sie bei Printplatten üblich ist und rechts ein Koaxialkabel

Wenn man das Doppelleitersystem mit elektromagnetischen Wellen mit einer Wellenlänge von etwa $\lambda = 1$ m speist, beobachtet man folgendes

- 1. Das am Ende offene Doppelleitersystem zeigt Knoten und Bäuche des Eund des B-Feldes in Richtung des Wellenleiters. Der Abstand der Intensitätsmaxima beträgt $\lambda/2$ für beide Felder. Die Maxima der E-Feldes sind gegen denen des B-Feldes verschoben. Wir haben stehende Wellen.
- 2. Das am Ende mit einem Kurzschlussbügel versehene System zeigt das gleiche Verhalten wie vorher. Die Maxima sind jedoch verschoben. Wieder haben wir stehende Wellen.
- 3. Wenn das Doppelleitersystem mit einem WIDERSTAND von etwa 400 Ω abgeschlossen ist, verschwinden die Maxima. Es gibt keine stehenden Wellen.
- 4. Die Richtungen von \boldsymbol{E} und \boldsymbol{B} sind analog wie beim Kondensator.

Ansicht von oben Bestückungsseite

Ansicht von unten Seite mit Wellenleitern

Abb. 6.2.: 800 MHz-Breitbandverstärker für Fernsehsignale. Auf der Unterseite sind die Wellenleiterstrukturen sichtbar (Mittlere Struktur in Abbildung 6.1)

Abbildung 6.2 zeigt beispielshaft eine Hochfrequenzschaltung. Die Wellenlänge der verstärkten Signale ist zwar einiges grösser als die Schaltung. Die auf der Unterseite sichtbaren Wellenleiterstrukturen verhindern eine unkontrollierte Abstrahlung elektromagnetischer Energie.

Abb. 6.3.: Magnetfelder und elektrische Felder bei einer Lecherleitung.

Abb. 6.4.: Magnetfelder und elektrische Felder bei einer Doppelleitung aus parallelen Platten

Wir setzen für die E-Welle in der Geometrie der obigen Zeichnung an

$$E_x(z,t) = -E_0 \cos(kz - \omega t)$$

$$E_y(z,t) = 0$$

$$E_z(z,t) = 0$$
(6.3.1)

Dieses Feld erfüllt die Wellengleichung. Wir behaupten, dass das B-Feld durch

$$B_x(z,t) = 0$$

$$B_y(z,t) = -\frac{E_0}{c} \cos(kz - \omega t)$$

$$B_z(z,t) = 0$$
(6.3.2)

gegeben ist. Auch diese Gleichung erfüllt sie Wellengleichung. Wir verwenden die zweite Maxwellgleichung, um zu zeigen, dass die Kopplung richtig ist. Wir schreiben rot $\boldsymbol{E} = -(\partial/\partial t)\boldsymbol{B}$ in Komponenten

$$\left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}, \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) = -\left(\frac{\partial B_x}{\partial t}, \frac{\partial B_y}{\partial t}, \frac{\partial B_z}{\partial t}\right)$$
(6.3.3)

Die x- und die z-Komponenten sind null, nach der Voraussetzung. Die y-Komponente lautet

$$\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t} \tag{6.3.4}$$

Mit $c = \omega/k$ ist diese Kopplungsgleichung, die zweite Maxwellgleichung erfüllt. Die vierte Maxwellgleichung ist ebenfalls erfüllt. Aus ihr erhält man

$$\frac{\partial E_x}{\partial t} = -c^2 \frac{\partial B_y}{\partial z} \tag{6.3.5}$$

216

Abb. 6.5.: Ausbreitung von elektromagnetischen Wellen

Diese elektromagnetischen Wellen im Innenraum zwischen den beiden Leitern müssen auch in den angrenzenden Leitern Ladungswellen und Stromwellen erzeugen, die mit den Maxwellgleichungen kompatibel sind. Für die LADUNGEN gilt mit der ersten Maxwellschen Gleichung für die Oberflächenladungsdichte

$$\sigma(z,t) = -\varepsilon_0 E_x(z,t) = \varepsilon_0 E_0 \cdot \cos(kz - \omega t)$$
(6.3.6)

Die Oberflächenladungsdichte ist eine fortlaufende Welle. Die Erhaltung der elektrischen LADUNG bedingt für die Oberflächenladungsdichte in einem Abschnitt der Breiteb

$$b \cdot [j(z+dz,t) - j(z,t)] = -\frac{\partial \sigma(z,t)}{\partial t} \cdot b \cdot dz$$
(6.3.7)

und damit

$$\frac{\partial j(z,t)}{\partial z} = -\frac{\partial \sigma(z,t)}{\partial t} = \varepsilon_0 E_0 \cdot \omega \cdot \sin(kz - \omega t)$$
(6.3.8)

Die Integration über z und die Verwendung von $c = \omega/k$ ergibt

$$j(z,t) = \varepsilon_0 E_0 \cdot c \cdot \cos(kz - \omega t) \tag{6.3.9}$$

Abb. 6.6.: Integrationspfad zur Anwendung des vierten Maxwellschen Gesetzes

Mit dem vierten Maxwellschen Gesetz $\oint_{S} \mathbf{B} \cdot d\mathbf{s} = \iint_{A(S)} \mu_0 \left(\mathbf{i} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \cdot d\mathbf{a}$ erhalten wir mit dem eingezeichneten Integrationsweg, da der Term mit \mathbf{E} keinen Beitrag gibt (er liegt in der Integrationsebene)

$$-B_{y}(z,t) \cdot h = \mu_{0} \cdot h \cdot j(z,t) = \mu_{0} \cdot h \cdot \varepsilon_{0} \cdot E_{0} \cdot c \cdot \cos(kz - \omega t)$$
(6.3.10)

Mit $\varepsilon_0 \cdot \mu_0 = 1/c^2$ folgt

$$B_y(z,t) = -\frac{E_0}{c} \cdot \cos(kz - \omega t) \tag{6.3.11}$$

eine identische Gleichung zu der im Zwischenraum abgeleiteten. Die Lösung für die auf dem Zweileitersystem transportierten Wellen ist also kompatibel mit den Maxwellgleichungen. LADUNGEN und Ströme bewegen sich als Wellen auf der Innenseite der Leiter.

6.3.1. Wellenwiderstand

Durch die in Abschnitt 6.3 abgeleiteten Gleichungen sind an jedem Ort z entlang des Doppelleitersystems und zu jeder Zeit t die lokal fliessenden Ströme I(z,t)und die elektromotorische Kraft (Spannung) $U_{EMK}(z,t)$ gegeben. Wenn wir nun an einer festen Stelle z in Gedanken einen ohmschen Widerstand zwischen den beiden Leitern einfügen, so muss dieser WIDERSTAND einen vom Wellenleitersystem gegeben Wert haben, dass die elektromotorische Kraft $U_{EMK}(z,t)$ genau den Strom I(z,t) durch den WIDERSTAND treibt. U_{EMK} und I sind dabei von der Wellengleichung gegeben. Nur wenn der WIDERSTAND angepasst ist, also wenn

$$U_{emk}(z,t) = \int_{unten}^{oben} \boldsymbol{E} \cdot d\boldsymbol{s} = -d \cdot E_x(z,t) = d \cdot E_0 \cdot \cos(kz - \omega t)$$
(6.3.12)

gilt, wird aller Strom verbraucht. In allen anderen Fällen bleibt Strom übrig, der an der Stelle reflektiert werden kann, oder die elektromotorische Kraft treibt zusätz-

218

lichen Strom durch den WIDERSTAND: dieser wird mit umgekehrtem Vorzeichen reflektiert.

Der gesamte Oberflächenstrom auf der oberen Platte an der Stelle z ist

$$I(z,t) = b \cdot j(z,t) = b \cdot \varepsilon_0 \cdot E_0 \cdot c \cdot \cos(kz - \omega t)$$
(6.3.13)

Wenn man an einer beliebigen Stelle das Doppelleitersystem entzweischneidet und dort den WIDERSTAND

$$R^{*} = \frac{U_{emk}(z,t)}{I(z,t)} = \frac{d}{b} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$$
(6.3.14)

den WELLENWIDERSTAND, anschliesst, gibt es einen reflexionsfreien Abschluss, wir haben eine reine fortlaufende Welle. Das gleiche gilt für jede beliebige fortlaufende Welle, auch wenn sie nicht harmonisch ist.

Das Zweidraht-Doppelleitersystem hat den Wellenwiderstand

$$R^* = \frac{1}{\pi} \ln\left(\frac{4a}{d}\right) \sqrt{\frac{\mu_0}{\varepsilon_0}} \tag{6.3.15}$$

Die Grösse

$$R_0^* = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \ \Omega \tag{6.3.16}$$

ist der Wellenwiderstand des Vakuums.

Der Wellenwiderstand ist wichtig für das korrekte Arbeiten von Hoch- und Höchstfrequenzschaltungen.

Abb. 6.7.: Pulse in einem Koaxialkabel. Oben links: korrekter Abschlusswiderstand, Oben Mitte zu kleiner und rechts zu grosser Abschlusswiderstand. Unten links ein Kurzschluss und rechts ein offenes Ende. Wellenleiter (KOAXIALKABEL, LECHERLEITUNGEN, HOHLLEITER) erzeugen nur dann keine Reflexionen, wenn sie mit einem Abschlusswiderstand mit dem Wert ihres Wellenwiderstandes abgeschlossen werden (Siehe Abbildung 6.7).

6.3.2. Stehende Wellen

Versuch 83: Versuch zur Vorlesung: Stehende Wellen (Versuchskarte SW-032, Video)

Versuch 84: Versuch zur Vorlesung:

Stehende Wellen (Versuchskarte SW-032, Video (VPN oder intern))

Stehende Wellen werden aus zwei fortlaufenden Wellen mit entgegengesetztem Wellenvektor k zusammengesetzt. Dabei müssen E, B und k in dieser Reihenfolge ein Rechtssystem bilden¹. Die nach rechts laufende Welle wurde schon berechnet (hier sind nur die von null verschiedenen Komponenten angegeben)

$$E_x(z,t) = -E_0 \cos(kz - \omega t) \qquad (6.3.17a)$$

$$B_y(z,t) = -\frac{E_0}{c}\cos(kz - \omega t)$$
(6.3.17b)

Die nach links laufende Welle ist dann gegeben durch (Rechtssystem!)

$$E'_{x}(z,t) = -E_{0}\cos(kz + \omega t)$$
(6.3.18a)

$$B'_{y}(z,t) = \frac{E_0}{c}\cos(kz + \omega t) \tag{6.3.18b}$$

Die Superposition der beiden Wellen ergibt die folgenden nicht verschwindenden Komponenten

$$\hat{E}_x(z,t) = -2E_0\cos(kz)\cos(\omega t) \tag{6.3.19a}$$

$$\hat{B}_y(z,t) = -2\frac{E_0}{c}\sin(kz)\sin(\omega t)$$
(6.3.19b)

Im Gegensatz zu laufenden Wellen sind bei **stehenden Wellen** die Orte der Extrema (Maxima oder Minima) der E- Felder und der B-Felder gegeneinander um $\lambda/4$ verschoben.

Sensoren, die auf elektrische Felder empfindlich und Sensoren, die auf magnetische

¹Wegen der Rotation in den Maxwellgleichungen!

Induktionen empfindlich sind, zeigen Extrema im Abstand einer halben Wellenlänge. Die Extrema von \boldsymbol{E} und \boldsymbol{B} sind dann um $\lambda/4$ gegeneinander örtlich verschoben.

6.4. Poynting-Vektor und Energiefluss

Abb. 6.8.: Berechnung des Poynting-Vektors

Wir hatten gesehen, dass das elektrische wie das magnetische Feld eine Energiedichte haben. Da sich bei Wellen diese Felder mit der Geschwindigkeit c ausbreiten, muss es einen Energiefluss geben. Wir betrachten einen Rechteckpuls auf einem Zweileitersystem. Der Energiefluss durch eine raumfeste Fläche $A = b \cdot d$ bezeichnen wir mit S_z , dem Energiefluss pro Flächen- und Zeiteinheit. Die in der Zeit dttransportierte Energie ist

$$S_z \cdot A \cdot dt = \left(\frac{\varepsilon_0}{2}E_x^2 + \frac{1}{2\mu_0}B_y^2\right) \cdot A \cdot dt \cdot c \tag{6.4.1}$$

Für beliebige fortlaufende Wellen im Vakuum gilt

$$B_{y}(z,t) = \frac{1}{c} E_{x}(z,t)$$
(6.4.2)

Wir können damit die Gleichung (6.4.1) symmetrisch schreiben

$$S_{z} = \left(\frac{\varepsilon_{0} \cdot c}{2}E_{x} \cdot B_{y} + \frac{1}{2\mu_{0} \cdot c}E_{x} \cdot B_{y}\right) \cdot c$$
$$= \frac{1}{2\mu_{0}}E_{x} \cdot B_{y} + \frac{1}{2\mu_{0}}E_{x} \cdot B_{y}$$
$$= \frac{1}{\mu_{0}}E_{x} \cdot B_{y}$$
(6.4.3)

Mit $H = \frac{1}{\mu\mu_0}B = \frac{1}{c\mu\mu_0}E = \sqrt{\frac{\varepsilon\varepsilon_0}{\mu\mu_0}}E$ bekommen wir

$$S = \sqrt{\frac{\varepsilon\varepsilon_0}{\mu\mu_0}} E^2 \tag{6.4.4}$$

Damit ist auch klar, dass das E-Feld und das B-Feld je zur Hälfte zum Energiefluss beitragen.

Die allgemeine Form des Energieflusses im Vakuum ist

$$\boldsymbol{S}(\boldsymbol{r},t) = \frac{1}{\mu_0} \boldsymbol{E}(\boldsymbol{r},t) \times \boldsymbol{B}(\boldsymbol{r},t)$$
(6.4.5)

In Medien muss der Energiefluss wie

$$\boldsymbol{S}(\boldsymbol{r},t) = \boldsymbol{E}(\boldsymbol{r},t) \times \boldsymbol{H}(\boldsymbol{r},t)$$
(6.4.6)

geschrieben werden. |S| gibt die in Richtung S fliessende Energie pro Flächeneinheit und Zeit wieder. Die Einheit von S ist J m⁻² s⁻¹. Da H und B über einen TENSOR verbunden sein können, muss der Energiefluss nicht unbedingt in die Richtung des Wellenvektors zeigen. Dieses Verhalten ist die Grundlage von optisch doppelbrechenden Materialien.

Ein ähnliches Verhalten zeigen Wasserwellen am Strand. Die Energie der Wellen fliesst zum Strand, aber die Wellen können sich durchaus schräg dazu bewegen.

6.4.1. Energiefluss bei stehenden Wellen

Wir können nun den Poynting-Vektor einer stehenden Welle (siehe Abschnitt 6.3.2 berechnen. Wir verwenden die Gleichungen (6.3.19) und (6.4.5). Ausgeschrieben und mit Vektoren erhalten wir

$$S(z,t) = \frac{1}{\mu_0} E(z,t) \times B(z,t)$$

$$= \frac{1}{\mu_0} \begin{pmatrix} -2E_0 \cos(kz) \cos(\omega t) \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ -2\frac{E_0}{c} \sin(kz) \sin(\omega t) \\ 0 \end{pmatrix}$$

$$= \frac{1}{\mu_0 c} \begin{pmatrix} 0 \\ 4E_0^2 \cos(kz) \cos(\omega t) \sin(kz) \sin(\omega t) \end{pmatrix}$$

$$= \frac{E_0^2}{2\mu_0 c} \begin{pmatrix} 0 \\ 0 \\ \cos(2kz - 2t\omega) - \cos(2kz + 2t\omega) \end{pmatrix}$$
(6.4.7)

Das Zeitintegral über eine Zeitperiode $2\pi/\omega$ ergibt den Nullvektor! Bei einer stehenden Welle wird keine Energie transportiert.

6.5. Elektromagnetische Wellen im Raum

Hier soll mit einer beschleunigten LADUNG erklärt werden, wie Wellen im Raum entstehen.

Versuch 85: Versuch zur Vorlesung: Hertzscher Dipol (Versuchskarte SW-099, Video)

Versuch 86: Versuch zur Vorlesung:

Hertzscher Dipol (Versuchskarte SW-099, Video)

Versuch 87: Versuch zur Vorlesung:

Hertzscher Dipol (Versuchskarte SW-099, Video (VPN oder intern))

Abb. 6.9.: Wellenausbreitung

Wir betrachten eine LADUNG q, die die folgende Geschwindigkeit hat

$$\boldsymbol{v} = \begin{cases} 0 & \text{für } -\infty < t < 0 \\ \boldsymbol{a} \cdot t & \text{für } 0 \le t < \Delta t \\ \boldsymbol{a} \cdot \Delta t & \text{für } t \ge \Delta t \end{cases}$$

Die Beschleunigungszeit Δt sowie die Beschleunigung \boldsymbol{a} sollen so gewählt sein, dass

$$a \cdot \Delta t = v \ll c$$

gilt. Die Behauptung ist, dass das elektrische Feld E für $t \gg \Delta t$ wie in der Zeichnung oben aussicht. In der Beschleunigungsphase soll eine elektromagnetische Welle erzeugt worden sein. Ausserhalb der Kugel mit dem Radius

$$r = c \cdot t$$

muss das elektrische Feld das Feld einer im Ursprung ruhenden LADUNG sein, da nach der RELATIVITÄTSTHEORIE die Information über die Beschleunigung diesen Raum noch nicht erreicht haben kann.

Innerhalb der Kugel mit

$$r \le c(t - \Delta t)$$

haben wir das Feld der LADUNG q, die sich mit der konstanten Geschwindigkeit vbewegt, denn in diesem Bereich ist die noch unbekannte Welle erzeugt durch die Beschleunigung einer Ladung schon wieder vorbei. Die Feldlinien im Laborsystem können wir erhalten, indem wir das elektrische Feld im Ruhesystem der LADUNG (radiale Feldlinien) in das Laborsystem transformieren. Wenn $v \ll c$ ist, haben wir auch im Laborsystem radiale Feldlinien, die von der momentanen Position der LADUNG weggehen. Die Maxwellgleichung im Vakuum div E = 0 bedingt, dass die Feldlinien geschlossen und stetig sind. Die Vermutung ist, dass die Feldlinien in der Wellenzone linear die beiden Feldlinienmuster miteinander verbinden.

Abb. 6.10.: Berechnung der Wellenausbreitung

Da $t \gg \Delta t$ ist, kann die Beschleunigungsphase für die Bestimmung der Position der LADUNG zur Zeit t vernachlässigt werden. Wir haben also

$$x(t) = v \cdot t \tag{6.5.1}$$

Wegen $v \ll c$ ist dann auch

$$r = c \cdot t \gg x \tag{6.5.2}$$

sowie wegen $t \gg \Delta t$ auch

$$r \gg c \cdot \Delta t \tag{6.5.3}$$

Wir bezeichnen mit \perp die Richtung senkrecht zum Radiusvektor r. Wir erhalten dann, unter der Annahme, dass das E-Feld in der Wellenzone linear sei,

$$\frac{E_{\perp}}{E_{\parallel}} = \frac{v_{\perp} \cdot t}{c \cdot \Delta t} \tag{6.5.4}$$

Mit

$$v_{\perp} = a_{\perp} \cdot \Delta t \tag{6.5.5}$$

sowie mit t = r/c bekommen wir

$$\frac{E_{\perp}}{E_{\parallel}} = a_{\perp} \frac{r}{c^2} \tag{6.5.6}$$

Wenn wir die Integralform der ersten Maxwellgleichung auf den kleinen Zylinder an der Stelle r anwenden, erhalten wir andererseits

$$\iint \boldsymbol{E} \cdot d\boldsymbol{a} = 0 \tag{6.5.7}$$

und damit mit dem Coulombgesetz

$$E_{\parallel} = E_r = \frac{q}{4\pi\varepsilon_0} \cdot \frac{1}{r^2} \tag{6.5.8}$$

Dies bedeutet, dass das radiale E_r -Feld sich stetig durch die Kugelschale hindurch fortsetzt. Die Komponente E_{\perp} existiert nur in der Wellenzone. Das E_{\perp} -Feld ist das gesuchte Feld der elektromagnetischen Feldes, das STRAHLUNGSFELD. Seine Grösse ist

$$E_{\perp} = \frac{q}{4\pi\varepsilon_0} \cdot \frac{a_{\perp}}{c^2 \cdot r} \tag{6.5.9}$$

Vektoriell geschrieben lautet diese Gleichung

$$\boldsymbol{E}(\boldsymbol{r},t) = -\frac{q}{4\pi\varepsilon_0 c^2} \cdot \frac{\boldsymbol{a}_{\perp}(t')}{r} \qquad t' = t - \frac{r}{c}$$
(6.5.10)

Das elektrische Feld E an der Stelle r ist proportional zur senkrechten Komponente der Beschleunigung, aber zur RETARDIERTEN ZEIT t' = t - r/c. Zum Strahlungsfeld gehört auch ein B-Feld, das so gerichtet ist, dass E, B und kein Rechtssystem bilden. k ist die Ausbreitungsrichtung. Das Magnetfeld ist, in vektorieller Schreibweise,

$$\boldsymbol{B}(\boldsymbol{r},t) = \frac{1}{c} \left(\frac{\boldsymbol{k}}{k}\right) \times \boldsymbol{E}(\boldsymbol{r},t)$$
(6.5.11)

Wenn wir Δt halbieren, bleibt der äussere Teil der des Strahlungsfeldes konstant, der innere Teil liegt dann in der Mitte der Verbindungslinie durch die Wellenzone. Durch fortgesetzte Anwendung dieses Verfahrens wird die Linearität des elektrischen Feldes in der Wellenzone gezeigt.

Wenn $\mathbf{a} \perp \mathbf{b}$ ist, gilt die Vektoridentität $\mathbf{a} \times \mathbf{b} \times \mathbf{a} = (\mathbf{a} \cdot \mathbf{a}) \mathbf{b} = |\mathbf{a}|^2 \mathbf{b}$. Also ist im Vakuum

$$\boldsymbol{S} = \boldsymbol{E} \times \boldsymbol{H} = \frac{1}{\mu_0} \boldsymbol{E} \times \boldsymbol{B} = \frac{1}{\mu_0} \boldsymbol{E} \times \frac{1}{c} \left(\frac{\boldsymbol{k}}{k} \right) \times \boldsymbol{E} = \frac{1}{\mu_0 c} |\boldsymbol{E}|^2 \frac{\boldsymbol{k}}{k}$$
(6.5.12)

Also ist S kollinear zur Ausbreitungsrichtung k. Mit $\sqrt{\varepsilon_0 \mu_0} = 1/c$ erhalten wir auch im Vakuum

$$\boldsymbol{S} = \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| \boldsymbol{E} \right|^2 \frac{\boldsymbol{k}}{k} \tag{6.5.13}$$

Diese Gleichung kann auf lokal isotrope Medien erweitert werden (ε und μ sind Zahlen!)

$$\boldsymbol{S} = \sqrt{\frac{\varepsilon\varepsilon_0}{\mu\mu_0}} \left|\boldsymbol{E}\right|^2 \frac{\boldsymbol{k}}{k} \tag{6.5.14}$$

Beispiel: Ein Elektron in einem Atom führe in die *z*-Richtung die harmonische Bewegung

$$z(t') = z_0 \cdot \sin \omega t' \tag{6.5.15}$$

aus. Dabei ist t' die retardierte Zeit. Die Beschleunigung ist

$$a(t') = \ddot{z}(t') = -z_0 \cdot \omega^2 \cdot \sin \omega t' \tag{6.5.16}$$

Aus dem Wellenvektor \mathbf{k} und der Beschleunigung \mathbf{a} kann mit $\mathbf{a}_{\perp} = \frac{\mathbf{k}}{k} \times \left(\mathbf{a} \times \frac{\mathbf{k}}{k}\right)$ die Senkrechtkomponente von \mathbf{a} genannt \mathbf{a}_{\perp} berechnet werden. Das linke Kreuzprodukt mit der Klammer dreht den Vektor in die richtige Richtung, da die Klammer und \mathbf{k} schon senkrecht sind. Das eingeklammerte Produkt ergibt dann den Zwischenwinkel $\sin(\Theta)$. Durch die Normierung von \mathbf{k} kann dieser Zwischenwinkel direkt in die Gleichung für den Betrag des elektrischen Feldes

$$E(r,\Theta,t) = \frac{e}{4\pi\varepsilon_0 c^2} \cdot \frac{1}{r} \cdot |a_{\perp}(t')| = \frac{e}{4\pi\varepsilon_0 c^2} \cdot \frac{1}{r} \cdot \left| \frac{\mathbf{k}}{\mathbf{k}} \times \left(\mathbf{a}(t') \times \frac{\mathbf{k}}{\mathbf{k}} \right) \right|$$
$$= \frac{e}{4\pi\varepsilon_0 c^2} \cdot \frac{1}{r} \cdot |a(t')| \sin\Theta = \frac{ez_0 \omega^2}{4\pi\varepsilon_0 c^2} \cdot \frac{1}{r} \cdot \sin\left[\omega\left(t - \frac{r}{c}\right)\right] \sin\Theta \quad (6.5.17)$$

eingetragen werden. Das Magnetfeld ist

$$B(r,\Theta,t) = \frac{1}{c}E(r,\Theta,t)$$
(6.5.18)

Der Poynting-Vektor oder Energiefluss ist

$$S(r,\Theta,t) = \sqrt{\frac{\varepsilon_0}{\mu_0}} E^2(r,\Theta,t)$$
(6.5.19)

Mit $\langle \sin^2(\omega t - kr) \rangle_t = 1/2$ wird die Intensität

$$I(r,\Theta) = \langle S(r,\Theta,t) \rangle_t = \sqrt{\frac{\varepsilon_0}{\mu_0}} \frac{e^2 z_0^2 \omega^4}{(4\pi\varepsilon_0 c^2)^2} \frac{\sin^2 \Theta}{2r^2}$$
(6.5.20)

Damit haben wir gezeigt, dass die Annahme eines harmonischen Oszillators das Strahlungsfeld eines Atoms erklären kann. Die abgeführte Energie dämpft dabei den Oszillator. Je stärker die Dämpfung ist, das heisst, je kürzer die Lebensdauer ist, desto breiter wird das Frequenzspektrum sein.

6.5.1. Ebene Wellen

Abb. 6.11.: Bild einer ebenen Welle

Eine ebene Welle entsteht aus der allgemeinen Wellengleichung dadurch, dass die AMPLITUDE und der Wellenvektor nicht vom Ort abhängen. Eine ebene Transversalwelle des elektromagnetischen Feldes ist durch

$$\boldsymbol{E}(\boldsymbol{x}) = \boldsymbol{E}_0 \cos(\boldsymbol{k} \cdot \boldsymbol{x} - \omega t) \quad \text{mit} \quad \boldsymbol{E}_0 \cdot \boldsymbol{k} = 0 \quad (6.5.21)$$

gegeben. Der Vektor \mathbf{k} , der , gibt die Ausbreitungsrichtung an, der Betrag $|\mathbf{k}| = k = \frac{2\pi}{\lambda}$ heisst die WELLENZAHL. Bei elektromagnetischen Wellen im Sichtbaren kann man alternativ auch von LICHTSTRAHLEN sprechen. Zum Vergleich, eine Longitudinalwelle ist eine örtliche Schwankung einer skalaren Funktion, zum Beispiel, des Druckes, gegeben durch

$$\Psi(\boldsymbol{x}) = \Psi_0 \cos(\boldsymbol{k} \cdot \boldsymbol{x} - \omega t) \tag{6.5.22}$$

6.5.2. Kugelwellen

Literatur: (Siehe Hecht, Optik [Hec05, pp. 48, 710]) (Siehe Pérez, Optik [Pér96, pp. 287])

Versuch 88: Versuch zur Vorlesung: Wellenwanne (Versuchskarte O-021, Video)

Versuch 89: Versuch zur Vorlesung: Wellenwanne (Versuchskarte O-021, Video (VPN oder intern))

Eine weitere häufig vorkommende Form von Wellen sind die Kugelwellen. Wir können die Amplitudenabhängigkeit durch folgende Überlegung erhalten.

- Wir denken uns eine Kugeloberfläche um die Quelle, wobei die Quelle im Mittelpunkt der Kugel sein soll.
- Der Energiefluss pro Zeit, die Leistung, die durch die gesamte Kugeloberfläche fliesst ist konstant, unabhängig vom Radius der Kugel.
- Damit diese Gleichung für alle r gilt muss $E(r) = \mathfrak{E}_0 \frac{r_0}{r}$ sein.

Abb. 6.12.: AMPLITUDE und INTENSITÄT einer Kugelwelle in Abhängigkeit der Distanz r von der Quelle. Links eine lineare, rechts eine logarithmische Darstellung.

Bei elektromagnetischen Wellen gilt

$$\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}(r,\phi,\theta) = \frac{\hat{\boldsymbol{E}}_{0}(\phi,\theta)}{r}\cos(kr-\omega t) \quad \text{mit} \quad \boldsymbol{r} \cdot \boldsymbol{E}_{0}(\phi,\theta) = 0 \quad (6.5.23)$$

Wenn im Abstand r_0 von der Quelle der Kugelwelle der Betrag der Amplitude des elektrischen Feldes E_0 oder die Intensität I_0 ist, können der ortsabhängige Betrag der Amplitude E(r) oder die ortsabhängige Intensität I_0 vereinfacht geschrieben werden.

Bei einer Kugelwelle ist

- die Betrag der Amplitude: $E(r) = E_0 \frac{r_0}{r}$
- die Intensität $I(r) = I_0 \frac{r_0^2}{r^2}$

 ${\cal E}_0$ beziehungsweise ${\cal I}_0$ enthalten die Details der Physik und kapseln diese.

6.6. Lichtgeschwindigkeit im Medium und Intensität

In einem Medium bewegen sich elektromagnetische Wellen langsamer. Die einfallende Welle regt die polarisierbaren Atome zum Schwingen an. Diese schwingen mit der gleichen Frequenz, aber mit einer frequenzabhängigen Phasenverschiebung. Die Resonanzfrequenz des Elektron-Atomrumpfsystems liegt im Ultravioletten. In der Summe wird die elektromagnetische Welle durch diese mit der zunehmenden Frequenz zunehmenden Phasenverschiebung verlangsamt. Mit dem (frequenzabhängigen) BRECHUNGSINDEX $n = \sqrt{\varepsilon \mu}$ bekommt man

$$c_m = \frac{1}{\sqrt{\mu\mu_0\varepsilon\varepsilon_0}} = \frac{c}{n} \tag{6.6.1}$$

wobei c die Lichtgeschwindigkeit im Vakuum ist. Die BRECHZAHL oder der BRE-CHUNGSINDEX n gibt an, um wieviel langsamer elektromagnetische Wellen in einem Medium sind als im Vakuum. Die INTENSITÄT ist gegeben durch den Mittelwert des Poynting-Vektors $\mathbf{S}(\mathbf{r}) = \mathbf{S}_0(\mathbf{r}) \sin^2(\mathbf{k} \cdot \mathbf{r} - \omega t)$. Für harmonische Schwingungen erhält man für die auf die Fläche mit der Flächennormale \mathbf{a} einfallende Intensität

$$I_{\boldsymbol{a}}(\boldsymbol{r}) = \langle |\boldsymbol{S}(\boldsymbol{r})| \rangle_{t} = \frac{1}{2} \boldsymbol{S}_{0}(\boldsymbol{r}) \cdot \frac{\boldsymbol{a}}{|\boldsymbol{a}|}$$
$$= \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_{0}}{\mu \mu_{0}}} |\boldsymbol{E}|^{2} \cos(\angle \boldsymbol{S}_{0}, \boldsymbol{a})$$
$$= \frac{n \varepsilon_{0} c}{2 \mu} E^{2} \cos(\angle \boldsymbol{S}_{0}, \boldsymbol{a})$$
(6.6.2)

wenn *E* das elektrische Feld, d.h. eine der beiden möglichen Amplituden der elektromagnetischen Welle ist. $\varepsilon_0 = 8.8542 \cdot 10^{-12} \frac{AS}{Vm}$ ist die VAKUUMPERMITTIVITÄT

und $c = 2.9979 \cdot 10^8 \frac{m}{s}$ die Lichtgeschwindigkeit im Vakuum. Der Vorfaktor $\frac{1}{2}$ entsteht durch die Mittelung über viele Perioden. Bei nichtmagnetischen Materialien $(\mu = 1)$ kann man auch schreiben:

$$I_{\boldsymbol{a}}(\boldsymbol{r}) = \frac{n\varepsilon_0 c}{2} E^2 \cos(\angle \boldsymbol{S}_0, \boldsymbol{a})$$
(6.6.3)

Gleichung (6.6.2) kann auch so geschrieben werden:

$$I = \frac{n}{\mu} E^2 \cdot 1.3272 \cdot 10^{-3} \frac{A}{V}$$
(6.6.4)

6.7. Polarisation

Literatur: (Siehe Hecht, Optik [Hec05, pp. 475]) (Siehe Tipler, Physik [TM04, pp. 1044])

Versuch 90: Versuch zur Vorlesung:

Polarisiertes Licht: Polarisator und Analysator (Versuchskarte SW-048, Video (VPN oder intern))

Elektromagnetische Wellen (auch Licht) sind transversale Wellen. Das heisst, dass das elektrische und das magnetische Feld senkrecht zur Ausbreitungsrichtung schwingen. Die Wellengleichung für das elektrische Feld und damit auch für die elektromagnetischen Wellen sind durch $\boldsymbol{E}(\boldsymbol{x},t) = \boldsymbol{E}_0(\boldsymbol{x})\cos(\boldsymbol{k}(\boldsymbol{x})\cdot\boldsymbol{x}-\omega t)$ und $\boldsymbol{B}(\boldsymbol{x},t) = \boldsymbol{B}_0(\boldsymbol{x})\cos(\boldsymbol{k}(\boldsymbol{x})\cdot\boldsymbol{x}-\omega t)$ gegeben. Die Tatsache, dass wir eine Transversalwelle haben erfordert, dass \boldsymbol{E}_0 der Bedingung

$$\boldsymbol{E}_0 \cdot \boldsymbol{k} = 0 \tag{6.7.1}$$

gilt.

Wenn wir nun, ohne Einschränkung der Allgemeinheit, die Ausbreitungsrichtung der Welle in die x-Richtung legen, dann sind

- der Wellenvektor $\boldsymbol{k} = (k; 0; 0)$
- und die AMPLITUDE $\boldsymbol{E}_0 = (0; E_y; E_z)$

Diese Wahl erfüllt die Bedingung der Transversalität.

Es gibt zwei mögliche orthogonale Orientierungen von E_0 sowie die daraus folgenden Linearkombinationen. Die Richtung, in die E_0 zeigt ist die **Polarisationsrichtung**.

6.7.1. Polarisation durch Absorption (Dichroismus)

Literatur: (Siehe Pérez, Optik [Pér96, pp. 323]) (Siehe Hecht, Optik [Hec05, pp. 487]) (Siehe Tipler, Physik [TM04, pp. 1044])

Abb. 6.13.: Polarisation durch Absorption in einem Drahtpolarisator

Wenn das elektrische Feld einer Mikrowellen entlang eines Drahtes zeigt, kann dieses Feld im Draht Ladungen bewegen und so Energie abgeben. Die INTENSITÄT der Welle und damit die die Absorption hängen von der Polarisation ab. Ebenso gibt es Moleküle mit Doppelbindungen zwischen den Kohlenstoffatomen, bei denen π -Elektronen beweglich sind, die wie Drähte wirken. Werden diese Moleküle orientiert zu einer Folie gemacht, so erhält man eine polarisierende Folie.

Abb. 6.14.: Elektromagnetische Wellen durchstrahlen durch einen POLARISA-TOR und einen ANALYSATOR mit gekreuzten Polarisationsrichtungen. Darunter die gleiche Anordnung, aber der Analysator ist nun um $\pi/4$ gedreht.

Bei einer Anordnung von ANALYSATOR und POLARISATOR polarisiert der POLARISATOR die elektromagnetische Welle. Der ANALYSATOR lässt nur die Projektion des E-Feldes auf seine Durchlassachse durch. Für die AMPLITUDE gilt

$$E = E_0 \cos \theta \tag{6.7.2}$$

wobei θ der Winkel zwischen den Polarisationsrichtungen von POLARISATOR und ANALYSATOR ist. Da die INTENSITÄT der elektromagnetischen Welle durch $I = \frac{n\varepsilon_0 c}{2}E^2$ ist und somit proportional zum Quadrat der AMPLITUDE $I \propto E^2$, gilt

$$I = I_0 \cos^2 \theta \tag{6.7.3}$$

(Gesetz von Malus). Wenn zwischen gekreuzten Polarisatoren und Analysatoren eine Substanz eingebracht wird, die die Polarisationsebene der elektromagnetischen Welle dreht (eine "OPTISCH AKTIVE SUBSTANZ") eingebracht wird, kann mit dieser Anordnung die Grösse der optischen Aktivität gemessen werden².

Abb. 6.15.: Dichroismus in einem Kristall von $NaVO_4Mn$ (gezüchtet von A. Lentz, fotographiert von M. Pietralla, verwendet mit Erlaubnis des Fotografen).

6.8. Die Fresnelschen Formeln

Literatur: (Siehe Hecht, Optik [Hec05, pp. 190]) (Siehe Gerthsen, Physik [Mes06, pp. 539])

²Die Analyse von Spannungen in Bauteilen nachgebildet mit Plexiglas war eine wichtige Anwendung (heute gibt es Programme zur Finite-Elemente-Analyse)

Abb. 6.16.: Das gleiche Gebäude mit Polarisationsfilter aufgenommen. Die Achse des Polarisationsfilters wurde dabei um 90° gedreht. Links sind die Reflexionen im Glas kaum zu erkennen, rechts ist dafür der Kontrast des Himmels schwächer.

Die beiden Aufnahmen in Abbildung 6.16 wurden mit dem POLARISATIONSFIL-TER in zwei um 90° gedrehten Stellungen aufgenommen. Aus den Abschnitten 2.9, 6.5 und 6.7.1 wissen wir, dass Licht vom Himmel polarisiert ist. Links wird durch den Polarisator das diffus gestreute Licht mit der falschen Polarisation unterdrückt. Links ist die Spiegelung des linken Gebäudes im rechten nicht sichtbar, Die Fensterfront ist hell. Rechts ist das linke Gebäude dunkel. Das bedeutet, dass das gespiegelte Licht polarisiert ist. Die im folgenden abgeleiteten Fresnelschen Formeln erklären dieses Phänomen, aber auch die Spiegelung an Metallen. Sie beschreiben die Wechselwirkung von elektromagnetischen Wellen mit Grenzflächen jeder Art.

Versuch 91: Versuch zur Vorlesung: Fresnelsche Formeln (Versuchskarte O-039)

Abb. 6.17.: Definition der S-POLARISATION und der P-POLARISATION

Die REFLEXION und die Brechung von elektromagnetischen Wellen werden durch die Maxwellschen Gleichungen und die daraus abgeleiteten Randbedingungen bestimmt. Die resultierenden Beziehungen für die Amplituden und die Intensitäten werden die FRESNELSCHEN FORMELN genannt. Zur Berechnung verwenden die Definitionen

- Der einfallende und der reflektierte Strahl elektromagnetischer Wellen definiert die EINFALLSEBENE. Diese ist senkrecht zur Grenzfläche der beiden Medien.
- Elektromagnetische Wellen, deren Polarisationsebene senkrecht zur EINFALL-SEBENE liegt, heissen S-POLARISIERT. Die Polarisationsebene gibt die Richtung des elektrischen Feldes an.
- Elektromagnetische Wellen, deren Polarisationsebene parallel zur EINFALL-SEBENE liegt, heissen P-POLARISIERT.
- Für die INTENSITÄT der elektromagnetischen Wellen in nichtmagnetischen Medien gilt $I \propto \sqrt{\varepsilon}E^2$, wobei $\varepsilon = n^2$ ist.
- Genauer gilt für die Intensität: $I = \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} E^2 = \frac{n \varepsilon_0 c}{2\mu} E^2$ für sinusförmige Wellen mit der Amplitude E.

Wir betrachten eine Welle E_e , die aus dem Medium mit μ_1 und ε_1 auf eine ebene Grenzfläche zum Medium mit μ_2 und ε_2 fällt. Neben der einfallenden Welle existierten eine reflektierte und eine transmittierte elektromagnetische Welle

$$\boldsymbol{E}_{e} = \boldsymbol{\mathfrak{E}}_{e} \cos\left(\boldsymbol{k}_{e} \cdot \boldsymbol{r} - \omega_{e} t\right) \tag{6.8.1a}$$

$$\boldsymbol{E}_{r} = \boldsymbol{\mathfrak{E}}_{r} \cos\left(\boldsymbol{k}_{r} \cdot \boldsymbol{r} - \omega_{r} t + \varphi_{r}\right) \tag{6.8.1b}$$

$$\boldsymbol{E}_t = \boldsymbol{\mathfrak{E}}_t \cos\left(\boldsymbol{k}_t \cdot \boldsymbol{r} - \omega_t t + \varphi_t\right) \tag{6.8.1c}$$

$$\boldsymbol{E}_e = \boldsymbol{\mathfrak{E}}_e e^{i(\boldsymbol{k}_e \cdot \boldsymbol{r} - \omega_e t)} \tag{6.8.1d}$$

$$\boldsymbol{E}_{r} = \boldsymbol{\mathfrak{E}}_{r} e^{i(\boldsymbol{k}_{r} \cdot \boldsymbol{r} - \omega_{r} t + \varphi_{r})} \tag{6.8.1e}$$

$$\boldsymbol{E}_t = \boldsymbol{\mathfrak{E}}_t e^{i(\boldsymbol{k}_t \cdot \boldsymbol{r} - \omega_t t + \varphi_t)} \tag{6.8.1f}$$

Gegeben sind $\mathfrak{E}_e, \mu_1, \varepsilon_1, \mu_2, \varepsilon_2, \mathbf{k}_e$ und $\omega_e(|\mathbf{k}_e|)$. An den Grenzflächen gilt

- Die tangentiale Komponente von \boldsymbol{E} ist stetig.
- Die tangentiale Komponente von \boldsymbol{H} ist stetig.

Sei e_n der Normaleneinheitsvektor auf die Grenzfläche. Der resultierende Vektor des Kreuzproduktes von E_e mit e_n liegt senkrecht zu e_n und damit in der Grenzfläche der beiden Medien. Um den Tangentialvektor in die ursprüngliche Richtung zurück zu drehebn, wenden wir nochmals ein Kreuzprodukt mit e_n an. Unabhängig von der Richtung von E_e bekommt man mit dieser Operation immer die Komponente von E_e tangential zur Grenzfläche

$$\boldsymbol{E}_{e,\text{tangential}} = \boldsymbol{e}_n \times \boldsymbol{E}_e \times \boldsymbol{e}_n \tag{6.8.2}$$

Mit der gleichen Methode kann man auch die Komponenten der Vektoren E_r und E_t in der Grenzfläche berechnen. Die Bedingung der Stetigkeit der Tangentialkomponente des elektrischen Feldes kann dann mit den Kreuzprodukten so geschrieben werden

$$\boldsymbol{e}_n \times \boldsymbol{E}_e \times \boldsymbol{e}_n + \boldsymbol{e}_n \times \boldsymbol{E}_r \times \boldsymbol{e}_n = \boldsymbol{e}_n \times \boldsymbol{E}_t \times \boldsymbol{e}_n \tag{6.8.3}$$

Die Gleichung besagt, dass die Summe der Tangentialkomponenten des elektrischen Feldes im Medium 1 (einfallende und reflektierte Welle) gleich der Tangentialkomponente der transmittierten Welle ist. Ausgeschrieben erhalten wir

$$\boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{e} \cos\left(\boldsymbol{k}_{e} \cdot \boldsymbol{r} - \omega_{e} t\right) \times \boldsymbol{e}_{n} + \boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{r} \cos\left(\boldsymbol{k}_{r} \cdot \boldsymbol{r} - \omega_{r} t + \varphi_{r}\right) \times \boldsymbol{e}_{n}$$
$$= \boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{t} \cos\left(\boldsymbol{k}_{t} \cdot \boldsymbol{r} - \omega_{t} t + \varphi_{t}\right) \times \boldsymbol{e}_{n} \quad (6.8.4a)$$

$$\boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{e} e^{i(\boldsymbol{k}_{e} \cdot \boldsymbol{r} - \omega_{e}t)} \times \boldsymbol{e}_{n} + \boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{r} e^{i(\boldsymbol{k}_{r} \cdot \boldsymbol{r} - \omega_{r}t + \varphi_{r})} \times \boldsymbol{e}_{n}$$

$$= \boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{t} e^{i(\boldsymbol{k}_{t} \cdot \boldsymbol{r} - \omega_{t}t + \varphi_{t})} \times \boldsymbol{e}_{n}$$

$$e^{i(\boldsymbol{k}_{e} \cdot \boldsymbol{r} - \omega_{e}t)} \boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{e} \times \boldsymbol{e}_{n} + e^{i(\boldsymbol{k}_{r} \cdot \boldsymbol{r} - \omega_{r}t + \varphi_{r})} \boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{r} \times \boldsymbol{e}_{n}$$

$$= e^{i(\boldsymbol{k}_{t} \cdot \boldsymbol{r} - \omega_{t}t + \varphi_{t})} \boldsymbol{e}_{n} \times \boldsymbol{\mathfrak{E}}_{t} \times \boldsymbol{e}_{n} \qquad (6.8.4b)$$

Die Gleichung (6.8.4) muss für alle Zeiten und alle Orte auf der Grenzfläche gelten. Deshalb gilt

$$\cos \left(\boldsymbol{k}_{e} \cdot \boldsymbol{r} - \omega_{e} t \right) \big|_{\text{in der Grenzfläche}} = \cos \left(\boldsymbol{k}_{r} \cdot \boldsymbol{r} - \omega_{r} t + \varphi_{r} \right) \big|_{\text{in der Grenzfläche}} = \cos \left(\boldsymbol{k}_{t} \cdot \boldsymbol{r} - \omega_{t} t + \varphi_{t} \right) \big|_{\text{in der Grenzfläche}}$$
(6.8.5a)

$$e^{i(\boldsymbol{k}_{e}\cdot\boldsymbol{r}-\omega_{e}t)}\Big|_{\text{in der Grenzfläche}} = e^{i(\boldsymbol{k}_{r}\cdot\boldsymbol{r}-\omega_{r}t+\varphi_{r})}\Big|_{\text{in der Grenzfläche}}$$
$$= e^{i(\boldsymbol{k}_{t}\cdot\boldsymbol{r}-\omega_{t}t+\varphi_{t})}\Big|_{\text{in der Grenzfläche}}$$
(6.8.5b)

wobei \mathbf{r} nach Definition ein Vektor in der Grenzfläche ist, also mit $\mathbf{e}_n \cdot \mathbf{r} = 0$. Damit Gleichung (6.8.5) zu allen Zeiten an einem beliebigen Punkt gilt, müssen die Kreisfrequenzen gleich sein

$$\omega_e = \omega_r = \omega_t \tag{6.8.6}$$

Weiter muss dann gelten: Die Gleichung (6.8.4) muss für alle Zeiten und alle Orte auf der Grenzfläche gelten. Deshalb gilt

$$\begin{aligned} \mathbf{k}_{e} \cdot \mathbf{r}|_{\text{in der Grenzfläche}} &= \mathbf{k}_{r} \cdot \mathbf{r} + \varphi_{r}|_{\text{in der Grenzfläche}} \\ &= \mathbf{k}_{t} \cdot \mathbf{r} + \varphi_{t}|_{\text{in der Grenzfläche}} \end{aligned}$$
(6.8.7)

r zeigt auf einen Punkt in der Grenzfläche. Da der Ursprung des Koordinatensystems nicht in der Grenzfläche liegen muss, ist r im Allgemeinen nicht parallel zur Grenzfläche. Aus der ersten Gleichung in (6.8.7) folgt

$$\left(\left(\boldsymbol{k}_{e}-\boldsymbol{k}_{r}\right)\cdot\boldsymbol{r}\right)_{\text{in der Grenzfläche}}=\varphi_{r}$$
(6.8.8)

Eine Gleichung vom Typ $\boldsymbol{a} \cdot \boldsymbol{r} = \boldsymbol{\varpi}$ beschreibt eine Ebene. Die Endpunkte von \boldsymbol{r} liegen in der Ebene mit dem Normalenvektor \boldsymbol{a} . $\boldsymbol{\varpi}$ gibt die Verschiebung zum Nullpunkt an. Gleichung (6.8.8) ist also die Gleichung einer Ebene, die senkrecht zu $\boldsymbol{k}_e - \boldsymbol{k}_r$ liegt. Andererseits wissen wir, nach unserer Konstruktion, dass \boldsymbol{r} in der Grenzfläche mit dem Normalenvektor \boldsymbol{e}_n liegt. \boldsymbol{e}_n ist also parallel zu $\boldsymbol{k}_e - \boldsymbol{k}_r$. Weiter sind beide Wellen im gleichen Medium 1, das heisst $|\boldsymbol{k}_e| = k_e = |\boldsymbol{k}_r| = k_r$. Wir können also schreiben

$$\boldsymbol{e}_n \times (\boldsymbol{k}_e - \boldsymbol{k}_r) = 0 \tag{6.8.9}$$

Mit Beträgen geschrieben heisst dies

$$k_e \sin \alpha = k_r \sin \beta \Rightarrow \sin \alpha = \sin \beta \Rightarrow \alpha = \beta \tag{6.8.10}$$

Dabei ist α der Winkel zwischen der Oberflächennormale \boldsymbol{e}_n und dem Wellenvektor der einfallenden Welle \boldsymbol{k}_e und β der Winkel zwischen der Oberflächennormale \boldsymbol{e}_n und dem Wellenvektor der reflektierten Welle \boldsymbol{k}_r .

Das Reflexionsgesetz besagt, dass
$$\alpha = \beta \tag{6.8.11}$$
 (Einfallswinkel=Ausfallswinkel)

Aus Gleichung (6.8.7) folgt weiter

$$\left(\left(\boldsymbol{k}_{e}-\boldsymbol{k}_{t}\right)\cdot\boldsymbol{r}\right)_{\text{Grenzfläche}}=\varphi_{t} \tag{6.8.12}$$

Gleichung (6.8.8) ist also die Gleichung einer Ebene, die senkrecht zu $\mathbf{k}_e - \mathbf{k}_t$ liegt. Andererseits wissen wir, nach unserer Konstruktion, dass \mathbf{r} in der Grenzfläche mit dem Normalenvektor \mathbf{e}_n liegt. \mathbf{e}_n ist also parallel zu $\mathbf{k}_e - \mathbf{k}_t$. Wir können also schreiben

$$\boldsymbol{e}_n \times (\boldsymbol{k}_e - \boldsymbol{k}_t) = 0 \tag{6.8.13}$$

Mit Beträgen geschrieben heisst dies

$$k_e \sin \alpha = k_t \sin \gamma \tag{6.8.14}$$

Dabei ist α der Winkel zwischen der Oberflächennormale \boldsymbol{e}_n und dem Wellenvektor der einfallenden Welle \boldsymbol{k}_e und γ der Winkel zwischen der Oberflächennormale \boldsymbol{e}_n und dem Wellenvektor der transmittierten Welle \boldsymbol{k}_t . Aus der Wellengleichung folgt

$$\frac{\omega}{k_i} = c_i = \frac{1}{\sqrt{\mu_i \mu_0 \varepsilon_i \varepsilon_0}} \tag{6.8.15}$$

Da $\omega_e = \omega_r = \omega_t$ ist, kann Gleichung (6.8.14) auch als

$$\frac{\omega_e}{c_e} \sin \alpha = \frac{\omega_t}{c_t} \sin \gamma \tag{6.8.16}$$

 oder

$$\sqrt{\mu_1 \mu_0 \varepsilon_1 \varepsilon_0} \sin \alpha = \sqrt{\mu_2 \mu_0 \varepsilon_2 \varepsilon_0} \sin \gamma \Rightarrow \sqrt{\mu_1 \varepsilon_1} \sin \alpha = \sqrt{\mu_2 \varepsilon_2} \sin \gamma \qquad (6.8.17)$$

Mit der Definition (6.6.1)
$$(n = \sqrt{\mu \varepsilon})$$
 bekommt man auch
 $n_1 \sin(\alpha) = n_2 \sin(\gamma)$ (6.8.18)

Dies ist das Brechungsgesetz nach Snellius.

Schliesslich können wir noch eine Beziehung der Tangentialkomponenten aller Felder erhalten. Analog zur Gleichung (6.8.3) können wir die Tangentialkomponenten der Wellenvektoren angeben:

$$\boldsymbol{k}_{e,tangential} = \boldsymbol{e}_n \times \boldsymbol{k}_e \times \boldsymbol{e}_n$$
 (6.8.19a)

$$\boldsymbol{k}_{r,tangential} = \boldsymbol{e}_n \times \boldsymbol{k}_r \times \boldsymbol{e}_n \tag{6.8.19b}$$

$$\boldsymbol{k}_{t,tangential} = \boldsymbol{e}_n \times \boldsymbol{k}_t \times \boldsymbol{e}_n \tag{6.8.19c}$$

Wir subtrahieren Gleichung (6.8.19a) von Gleichung (6.8.19b), beziehungsweise von Gleichung (6.8.19c) erhalten wir die Beziehungen

$$\boldsymbol{k}_{r,tangential} - \boldsymbol{k}_{e,tangential} = \boldsymbol{e}_n \times (\boldsymbol{k}_r - \boldsymbol{k}_e) \times \boldsymbol{e}_n \tag{6.8.20a}$$

$$\boldsymbol{k}_{t,tangential} - \boldsymbol{k}_{e,tangential} = \boldsymbol{e}_n \times (\boldsymbol{k}_t - \boldsymbol{k}_e) \times \boldsymbol{e}_n \tag{6.8.20b}$$

Gleichungen (6.8.9) und (6.8.13) sagen, dass $\mathbf{k}_t - \mathbf{k}_e$ und $\mathbf{k}_t - \mathbf{k}_e$ parallel zu \mathbf{e}_n sind. Damit können wir $\mathbf{k}_r - \mathbf{k}_e = \Gamma_{re} \mathbf{e}_n$ und $\mathbf{k}_t - \mathbf{k}_e = \Gamma_{te} \mathbf{e}_n$ schreiben. Wir könne die Gleichungen (6.8.20a) beziehungsweise (6.8.20b) umformen

$$\mathbf{k}_{r,tangential} - \mathbf{k}_{e,tangential} = \mathbf{e}_n \times (\mathbf{k}_r - \mathbf{k}_e) \times \mathbf{e}_n = \mathbf{e}_n \times \Gamma_{re} \mathbf{e}_n \times \mathbf{e}_n = 0 \quad (6.8.21a)$$

$$\mathbf{k}_{t,tangential} - \mathbf{k}_{e,tangential} = \mathbf{e}_n \times (\mathbf{k}_t - \mathbf{k}_e) \times \mathbf{e}_n = \mathbf{e}_n \times \Gamma_{te} \mathbf{e}_n \times \mathbf{e}_n = 0 \quad (6.8.21b)$$

Damit gilt für die Tangentialkomponenten der Wellenvektoren

Die Tangentialkomponenten der Wellenvektoren der einfallenden, reflektierten und gebrochenen Wellen sind gleich.

$$\boldsymbol{k}_{e,tangential} = \boldsymbol{k}_{r,tangential} = \boldsymbol{k}_{t,tangential}$$
 (6.8.22)

Die Änderung der Ausbreitungsrichtung bei Reflexion und Brechung stammt al-

©2005-2020 Ulm University, Othmar Marti, CC) BY-SA

leine von den Komponenten der Wellenvektoren, die parallel zum Normalenvektor der Grenzfläche liegen.

6.8.1. s-Polarisation

Zur Berechnung der Amplitude der reflektierten und transmittierten Wellen mit einer allgemeinen Polarisation verwenden wir zwei orthogonale Polarisationsrichtungen, die s-Polarisation und die p-Polarisation. Jeder Polarisationszustand kann als Linearkombination der s-Polarisation und der p-Polarisation geschrieben werden.

Wir beginnen die Rechnungen für elektromagnetische Wellen mit einer Polarisation senkrecht zur EINFALLSEBENE (S-POLARISATION).

Wenn in den beiden angrenzenden Medien die DIELEKTRIZITÄTSKONSTANTEN ε_1 und ε_2 sind, dann muss der POINTINGVEKTOR (Energiestrom) senkrecht zur Grenzfläche an der Grenzfläche kontinuierlich sein, also

$$\frac{1}{2}\sqrt{\frac{\varepsilon_1\varepsilon_0}{\mu_1\mu_0}}\left(\mathfrak{E}_e^2 - \mathfrak{E}_r^2\right)\cos\alpha = \frac{1}{2}\sqrt{\frac{\varepsilon_2\varepsilon_0}{\mu_2\mu_0}}\mathfrak{E}_t^2\cos\gamma \tag{6.8.23}$$

wobei α und γ die Winkel zur OBERFLÄCHENNORMALEN \boldsymbol{e}_n sind, $\boldsymbol{\mathfrak{E}}_e$ ist die Amplitude der \boldsymbol{E} -Feldkomponente der einfallenden elektromagnetischen Welle parallel zur OBERFLÄCHE (s-Polarisation), $\boldsymbol{\mathfrak{E}}_r$ die Amplitude der reflektierten und $\boldsymbol{\mathfrak{E}}_t$ die der gebrochenen elektromagnetischen Welle.

Vereinfacht kann man die Energieerhaltung schreiben als

$$\sqrt{\frac{\varepsilon_1}{\mu_1}} \left(\mathfrak{E}_e^2 - \mathfrak{E}_r^2 \right) \cos \alpha = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathfrak{E}_t^2 \cos \gamma \tag{6.8.24}$$

Die Komponente von E parallel zur OBERFLÄCHE muss stetig sein, also ist nach Gleichung (6.8.3)

$$\mathfrak{E}_e + \mathfrak{E}_r = \mathfrak{E}_t \tag{6.8.25}$$

Wir beachten, dass $a^2 - b^2 = (a-b)(a+b)$ ist und dividieren die beiden Gleichungen durcheinander. Wir erhalten

$$\sqrt{\frac{\varepsilon_1}{\mu_1}} \left(\mathfrak{E}_e - \mathfrak{E}_r \right) \cos \alpha = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathfrak{E}_t \cos \gamma \Rightarrow \sqrt{\frac{\varepsilon_1 \mu_2}{\mu_1 \varepsilon_2}} \left(\mathfrak{E}_e - \mathfrak{E}_r \right) \cos \alpha = \mathfrak{E}_t \cos \gamma \quad (6.8.26)$$

Aus der Kombination der Gleichungen (6.8.25) und (6.8.26) erhalten wir die Fresnelschen Gleichungen für die s-Polarisation. Die Fresnelschen Gleichungen für die s-Polarisation lauten

$$\mathfrak{E}_{r} = \mathfrak{E}_{e} \frac{\sqrt{\frac{\varepsilon_{1}}{\mu_{1}}} \cos \alpha - \sqrt{\frac{\varepsilon_{2}}{\mu_{2}}} \cos \gamma}{\sqrt{\frac{\varepsilon_{1}}{\mu_{1}}} \cos \alpha + \sqrt{\frac{\varepsilon_{2}}{\mu_{2}}} \cos \gamma}$$
(6.8.27a)

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha}{\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha + \sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\gamma}$$
(6.8.27b)

Mit den Brechungsindizes $n_1 = \sqrt{\mu_1 \varepsilon_1}$ und $n_2 = \sqrt{\mu_2 \varepsilon_2}$ erhält man

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\frac{n_1}{\mu_1} \cos \alpha - \frac{n_2}{\mu_2} \cos \gamma}{\frac{n_1}{\mu_1} \cos \alpha + \frac{n_2}{\mu_2} \cos \gamma}$$
(6.8.28a)

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2\frac{n_1}{\mu_1} \cos \alpha}{\frac{n_1}{\mu_1} \cos \alpha + \frac{n_2}{\mu_2} \cos \gamma}$$
(6.8.28b)

Nach dem Brechungsgesetz ist

$$\frac{\sin\gamma}{\sin\alpha} = \sqrt{\frac{\mu_1\varepsilon_1}{\mu_2\varepsilon_2}} = \frac{\mu_1}{\mu_2}\sqrt{\frac{\varepsilon_1\mu_2}{\mu_1\varepsilon_2}} \qquad \qquad \sqrt{\frac{\varepsilon_1\mu_2}{\mu_1\varepsilon_2}} = \frac{\mu_2}{\mu_1}\frac{\sin\gamma}{\sin\alpha}$$

Wir setzen dies ein und erhalten

$$\frac{\mu_2}{\mu_1} \frac{\sin \gamma}{\sin \alpha} \left(\mathfrak{E}_e - \mathfrak{E}_r \right) \cos \alpha = \mathfrak{E}_t \cos \gamma$$
$$\frac{\left(\mathfrak{E}_e - \mathfrak{E}_r \right) \cos \alpha \sin \gamma}{\mu_1} = \frac{\mathfrak{E}_t \cos \gamma \sin \alpha}{\mu_2} \tag{6.8.29}$$

Wir setzen $\mathfrak{E}_e + \mathfrak{E}_r = \mathfrak{E}_t$ ein und bekommen

Freshelsche Formeln für die S-POLARISATION

$$\mathfrak{E}_{r} = \mathfrak{E}_{e} \frac{\frac{1}{\mu_{1}} \sin \gamma(\alpha) \cos \alpha - \frac{1}{\mu_{2}} \sin \alpha \cos \gamma(\alpha)}{\frac{1}{\mu_{1}} \sin \gamma(\alpha) \cos \alpha + \frac{1}{\mu_{2}} \sin \alpha \cos \gamma(\alpha)}$$
(6.8.30a)

$$\mathfrak{E}_{t} = \mathfrak{E}_{e} \frac{\overline{\mu_{1}} \sin \gamma(\alpha) \cos \alpha}{\frac{1}{\mu_{1}} \sin \gamma(\alpha) \cos \alpha + \frac{1}{\mu_{2}} \sin \alpha \cos \gamma(\alpha)}$$
(6.8.30b)

Dabei ist

$$\sqrt{\mu_1\varepsilon_1}\sin\alpha = \sqrt{\mu_2\varepsilon_2}\sin\gamma$$

©2005-2020 Ulm University, Othmar Marti, C) BY-SA

Für nichtmagnetische Materialien können die Fresnelgleichungen umgeschrieben werden

Fresnelsche Formeln für die S-POLARISATION bei nichtmagnetischen Materialien

$$\mathfrak{E}_{r} = \mathfrak{E}_{e} \frac{\sin \gamma(\alpha) \cos \alpha - \sin \alpha \cos \gamma(\alpha)}{\sin \gamma(\alpha) \cos \alpha + \sin \alpha \cos \gamma(\alpha)}$$

$$= -\mathfrak{E}_{e} \frac{\sin(\alpha - \gamma(\alpha))}{\sin(\alpha + \gamma(\alpha))} \qquad (6.8.31a)$$

$$\mathfrak{E}_{t} = \mathfrak{E}_{e} \frac{2 \sin \gamma(\alpha) \cos \alpha}{\sin \gamma(\alpha) \cos \alpha + \sin \alpha \cos \gamma(\alpha)}$$

$$= \mathfrak{E}_{e} \frac{2 \sin \gamma(\alpha) \cos \alpha}{\sin(\alpha + \gamma(\alpha))} \qquad (6.8.31b)$$

Dabei ist

$$\sqrt{\varepsilon_1}\sin\alpha = \sqrt{\varepsilon_2}\sin\gamma$$

- Wenn $\alpha > \gamma$, wenn also die elektromagnetische Welle aus dem schnelleren Medium auf das langsamere Medium trifft, haben \mathfrak{E}_e und \mathfrak{E}_r unterschiedliche Vorzeichen: es tritt ein Phasensprung um π bei der REFLEXION auf.
- Bei der REFLEXION am schnelleren Medium $\alpha < \gamma$ ist $\sin(\alpha \gamma)$ negativ und \mathfrak{E}_r positiv. Es gibt keinen Phasensprung bei der REFLEXION. Dies erklärt zum Beispiel, warum Seifenlamellen in Reflexion schwarz werden, wenn die Dicke gegen null geht.
- Die Gesetze für die INTENSITÄT bekommt man durch quadrieren und unter Berücksichtigung der relativen Dielektrizitätszahl ε_1 und der relativen magnetischen Permeabilität μ_1 .
- Bei fast senkrechtem Einfall bekommt man $\mathfrak{E}_r \approx -\mathfrak{E}_e \frac{\sin \alpha \sin \gamma}{\sin \alpha + \sin \gamma} = -\mathfrak{E}_e \frac{n_2 n_1}{n_2 + n_1}$

Fresnelsche Formeln für die Intensität bei der S-POLARISATION für nichtmagnetische Materialien

$$I_r = I_e \frac{\left[\sin\gamma(\alpha)\cos\alpha - \sin\alpha\cos\gamma(\alpha)\right]^2}{\left[\sin\gamma(\alpha)\cos\alpha + \sin\alpha\cos\gamma(\alpha)\right]^2}$$
$$= I_e \frac{\sin^2(\alpha - \gamma(\alpha))}{\sin^2(\alpha + \gamma(\alpha))}$$
(6.8.32a)
$$I_t = \frac{n_2}{n_1} I_e \frac{4\sin^2\gamma(\alpha)\cos^2\alpha}{\sin^2(\alpha + \gamma(\alpha))}$$
(6.8.32b)

Wir haben die einfallende Intensität $I_e = n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2$ als Referenz verwendet. Deshalb erscheint der Vorfaktor $\frac{n_2}{n_1}$ für I_t . Im Medium mit dem Brechungsindex n_2 wird die Energie mit einer anderen Geschwindigkeit transportiert als im Medium mit dem Brechungsindex n_1 . Ist n_2 grösser als n_1 . so ist die Ausbreitungsgeschwindigkeit kleiner und I_2 muss grösser werden.

6.8.2. p-Polarisation

Abb. 6.18.: Stetigkeitsbedingungen für elektromagnetische Wellen mit p-Polarisation. Die dicken Vektoren stellen die k-Vektoren dar (rot für die einfallende elektromagnetische Welle, grün für die reflektierte und blau für die gebrochene elektromagnetische Welle.). Die E-Vektoren sind gestrichelt gezeichnet, ihre Projektion auf die Grenzfläche dünn.

Bei p-polarisierten elektromagnetischen Wellen ist die Bedingung für die Stetigkeit der Parallelkomponente von E durch

$$(\mathfrak{E}_e - \mathfrak{E}_r) \cos \alpha = \mathfrak{E}_t \cos \gamma \tag{6.8.33}$$

gegeben. Weiter gilt immer noch die Beziehung für den Poynting-Vektor (Energieerhaltung)

$$\sqrt{\frac{\varepsilon_1}{\mu_1}} \left(\mathfrak{E}_e^2 - \mathfrak{E}_r^2 \right) \cos \alpha = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathfrak{E}_t^2 \cos \gamma \tag{6.8.34}$$

Wir teilen die beiden Gleichungen und erhalten

$$\sqrt{\frac{\varepsilon_1}{\mu_1}} \left(\mathfrak{E}_e + \mathfrak{E}_r \right) = \sqrt{\frac{\varepsilon_2}{\mu_2}} \mathfrak{E}_t \tag{6.8.35}$$

Damit müssen wir das Gleichungssystem

$$\mathfrak{E}_{e}\sqrt{\frac{\varepsilon_{1}}{\mu_{1}}} = -\sqrt{\frac{\varepsilon_{1}}{\mu_{1}}}\mathfrak{E}_{r} + \mathfrak{E}_{t}\sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}$$
$$\mathfrak{E}_{e}\cos\alpha = \mathfrak{E}_{r}\cos\alpha + \mathfrak{E}_{t}\cos\gamma \qquad (6.8.36)$$

lösen. Wir multiplizieren die erste Gleichung mit $\cos \alpha$ und die zweite mit $\sqrt{\frac{\varepsilon_1}{\mu_1}}$

$$\mathfrak{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \alpha = -\sqrt{\frac{\varepsilon_1}{\mu_1}} \mathfrak{E}_r \cos \alpha + \mathfrak{E}_t \sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha$$
$$\mathfrak{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \alpha = \mathfrak{E}_r \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \alpha + \mathfrak{E}_t \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma$$

und addieren

$$2\mathfrak{E}_e \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \alpha = \mathfrak{E}_t \left(\sqrt{\frac{\varepsilon_2}{\mu_2}} \cos \alpha + \sqrt{\frac{\varepsilon_1}{\mu_1}} \cos \gamma \right) \tag{6.8.37}$$

Um \mathfrak{E}_r zu bekommen multiplizieren wir die obere Gleichung in (6.8.36) mit $\cos \gamma$ und die untere mit $\sqrt{\frac{\varepsilon_2}{\mu_2}}$

$$\begin{split} \mathbf{\mathfrak{E}}_{e}\sqrt{\frac{\varepsilon_{1}}{\mu_{1}}}\cos\gamma &= -\sqrt{\frac{\varepsilon_{1}}{\mu_{1}}}\mathbf{\mathfrak{E}}_{r}\cos\gamma + \mathbf{\mathfrak{E}}_{t}\sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}\cos\gamma \\ \mathbf{\mathfrak{E}}_{e}\sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}\cos\alpha &= \mathbf{\mathfrak{E}}_{r}\sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}\cos\alpha + \mathbf{\mathfrak{E}}_{t}\sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}\cos\gamma, \end{split}$$

subtrahieren und erhalten

$$\mathfrak{E}_e\left(\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\gamma - \sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\alpha\right) = -\mathfrak{E}_r\left(\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\gamma + \sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\alpha\right) \tag{6.8.38}$$

Damit erhält man

Fresnelsche Formeln (p-Polarisation):

$$\mathfrak{E}_{r} = \mathfrak{E}_{e} \frac{\sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}\cos\alpha - \sqrt{\frac{\varepsilon_{1}}{\mu_{1}}}\cos\gamma}{\sqrt{\frac{\varepsilon_{1}}{\mu_{1}}}\cos\gamma + \sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}\cos\alpha}$$
(6.8.39a)

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha}{\sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\alpha + \sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\gamma} \tag{6.8.39b}$$

Mit den Brechungsindizes $n_1 = \sqrt{\mu_1 \varepsilon_1}$ und $n_2 = \sqrt{\mu_2 \varepsilon_2}$ erhält man

Fresnelsche Formeln (p-Polarisation):

$$\mathfrak{E}_{r} = \mathfrak{E}_{e} \frac{\frac{n_{2}}{\mu_{2}}\cos\alpha - \frac{n_{1}}{\mu_{1}}\cos\gamma}{\frac{n_{1}}{\mu_{1}}\cos\gamma + \frac{n_{2}}{\mu_{2}}\cos\alpha} \qquad (6.8.40a)$$

$$\mathfrak{E}_{t} = \mathfrak{E}_{e} \frac{2\frac{n_{1}}{\mu_{1}}\cos\alpha}{\frac{n_{2}}{\mu_{2}}\cos\alpha + \frac{n_{1}}{\mu_{1}}\cos\gamma} \qquad (6.8.40b)$$

Für nichtmagnetische Materialien vereinfachen sie sich zu

Fresnelsche Formeln (p-Polarisation) für nichtmagnetische Materialien:

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{n_2 \cos \alpha - n_1 \cos \gamma}{n_1 \cos \gamma + n_2 \cos \alpha} \tag{6.8.41a}$$

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2n_1 \cos \alpha}{n_2 \cos \alpha + n_1 \cos \gamma} \tag{6.8.41b}$$

Die Brechungsindizes n_1 und n_2 können mit dem Snelliusschen Gesetz $n_1\sin\alpha=n_2\sin\gamma$ eliminiert werden

Fresnelsche Formeln (p-Polarisation) für nichtmagnetische Materialien:

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\sin\alpha\cos\alpha - \sin\gamma\cos\gamma}{\sin\gamma\cos\gamma + \sin\alpha\cos\alpha} \tag{6.8.42a}$$

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2\sin\gamma\cos\alpha}{(6.8.42b)}$$

 $\sin \alpha \cos \alpha + \sin \gamma \cos \gamma$

Mit $\sin(\alpha \pm \gamma) \cos(\alpha \mp \gamma) = \sin \alpha \cos \alpha \pm \sin \gamma \cos \gamma$ werden die obigen Gleichungen

Fresnelsche Formeln (p-Polarisation) für nichtmagnetische Materialien:

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\sin(\alpha - \gamma)\cos(\alpha + \gamma)}{\sin(\alpha + \gamma)\cos(\alpha - \gamma)}$$
(6.8.43a)

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2\sin\gamma\cos\alpha}{\sin(\alpha+\gamma)\cos(\alpha-\gamma)} \tag{6.8.43b}$$

Die Quotienten aus sin und cos können zu tan zusammengefasst werden

Fresnelsche Formeln (p-Polarisation) bei nichtmagnetischen Materialien:

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\tan[\alpha - \gamma(\alpha)]}{\tan[\alpha + \gamma(\alpha)]} \tag{6.8.44a}$$

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2\sin\gamma(\alpha)\cos\alpha}{\sin[\alpha + \gamma(\alpha)]\cos[\alpha - \gamma(\alpha)]}$$
(6.8.44b)

Die Fresnelschen Formeln für die Intensität lauten

Fresnelsche Formeln für die Intensität bei (p-Polarisation) bei nichtmagnetischen Materialien:

$$I_r = I_e \frac{\tan^2[\alpha - \gamma(\alpha)]}{\tan^2[\alpha + \gamma(\alpha)]}$$
(6.8.45a)

$$I_t = \frac{n_2}{n_1} I_e \frac{4\sin^2 \gamma(\alpha) \cos^2 \alpha}{\sin^2[\alpha + \gamma(\alpha)] \cos^2[\alpha - \gamma(\alpha)]}$$
(6.8.45b)

Wir haben die einfallende Intensität $I_e = n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2$ als Referenz verwendet. Deshalb erscheint der Vorfaktor $\frac{n_2}{n_1}$ für I_t .

6.8.3. Grenzfall des senkrechten Einfalles

Abb. 6.19.: Darstellung der Richtungen der elektrischen Felder für die s- und p-Polarisation.

Im Grenzfall $\alpha \to 0$ müssen die Resultate für die s- und p-Polarisation übereinstimmen. Wir betrachten den Fall kleiner Winkel. Dann lautet das Snelliussche Brechungsgesetz

$$n_1 \sin \alpha = n_2 \sin \gamma \xrightarrow{\alpha \ll 1 \& \gamma \ll 1} n_1 \alpha = n_2 \gamma \Longrightarrow \gamma = \frac{n_1}{n_2} \alpha \tag{6.8.46}$$

Weiter gilt

$$\cos \alpha \stackrel{\alpha \ll 1}{=} 1 \qquad \qquad \sin \alpha \stackrel{\alpha \ll 1}{=} \alpha. \tag{6.8.47}$$

Lässt man in Gleichung (6.8.44) α gegen null gehen, ergibt sich für das reflektierte und das transmittierte elektrische Feld in der p-Polarisation

und damit $\mathfrak{E}_{r,p} > 0$. Andererseits hat der Grenzwert des elektrischen Feldes $\mathfrak{E}_{r,s}$ für α gegen Null bei der s-Polarisation in Gleichung (6.8.31)

$$\mathfrak{E}_{r,s} = \lim_{\alpha \to 0} \left(-\mathfrak{E}_{e} \frac{\sin(\alpha - \gamma(\alpha))}{\sin(\alpha + \gamma(\alpha))} \right) \\
\xrightarrow{\text{Snellius, } \alpha \ll 1 \& \gamma \ll 1} - \lim_{\alpha \to 0} \mathfrak{E}_{e} \frac{\sin(\alpha - \frac{n_{1}}{n_{2}}\alpha)}{\sin(\alpha + \frac{n_{1}}{n_{2}}\alpha)} \\
\xrightarrow{\alpha \ll 1} - \lim_{\alpha \to 0} \mathfrak{E}_{e} \frac{\left(\alpha - \frac{n_{1}}{n_{2}}\alpha\right)}{\left(\alpha + \frac{n_{1}}{n_{2}}\alpha\right)} = -\mathfrak{E}_{e} \frac{n_{2} - n_{1}}{n_{2} + n_{1}} \quad (6.8.49a)$$

$$\mathfrak{E}_{t,s} = \lim_{\alpha \to 0} \mathfrak{E}_{e} \frac{2\sin(\gamma(\alpha))\cos(\alpha)}{\sin(\alpha + \gamma(\alpha))} \\
\xrightarrow{\text{Snellius, } \alpha \ll 1 \& \gamma \ll 1} \lim_{\alpha \to 0} \mathfrak{E}_{e} \frac{2\sin\left(\frac{n_{1}}{n_{2}}\alpha\right)\cos(\alpha)}{\sin\left(\alpha + \frac{n_{1}}{n_{2}}\alpha\right)} \\
\xrightarrow{\alpha \ll 1} \lim_{\alpha \to 0} \mathfrak{E}_{e} \frac{2\left(\frac{n_{1}}{n_{2}}\alpha\right) \cdot 1}{\left(\alpha + \frac{n_{1}}{n_{2}}\alpha\right)} = \mathfrak{E}_{e} \frac{2n_{1}}{n_{2} + n_{1}} \quad (6.8.49b)$$

einen negativen Wert. Dies ist korrekt, da nach der Abbildung 6.19 und Abbildung ?? die Vektoren für beide Polarisationen in unterschiedliche Richtungen zeigen.

Abb. 6.20.: Richtungen der Felder bei senkrechtem Einfall. Links ist die s-Polarisation gezeigt, rechts die p-Polarisation. Die Wellen und Felder aus Abbildung 6.19 sind hier zu senkrechtem Einfall gedreht. Die gestrichelten Pfeile zeigen die Richtung der k aus Abbildung 6.19.

Wenn wir die einfallende Welle als Rechtssystem betrachten, dann muss das ganze Vektordreibein $(\mathbf{k}, \mathbf{E}, \mathbf{B})$ gedreht werden. Dies führt bei der p-Polarisation zu einer Situation, die mit der Lage der elektrischen Felder kompatibel ist. $\mathfrak{E}_{r,p}$ zeigt in die zu $\mathfrak{E}_{e,p}$ entgegengesetzte Richtung. Bei der s-Polarisation zeigen $\mathfrak{E}_{r,s}$ und $\mathfrak{E}_{e,s}$ in die gleiche Richtung. Deshalb existiert das Minuszeichen in Gleichung (6.8.49a). Also zeigen die beiden elektrischen Felder der reflektierten Wellen $\mathfrak{E}_{r,p}$ und $\mathfrak{E}_{s,p}$ in identische Richtungen.

Für die Intensitäten können wir die gleiche Rechnung durchführen, z.B. für die Gleichungen (6.8.45).

$$I_{r} = \lim_{\alpha \to 0} I_{e} \frac{\tan^{2}[\alpha - \gamma]}{\tan^{2}[\alpha + \gamma]} \xrightarrow{\text{Snellius, } \alpha \ll 1\gamma \ll 1} \lim_{\alpha \to 0} I_{e} \frac{\tan^{2}[\alpha - \frac{n_{1}}{n_{2}}\alpha]}{\tan^{2}[\alpha + \frac{n_{1}}{n_{2}}\alpha]}$$

$$\xrightarrow{\alpha \ll 1} \lim_{\alpha \to 0} I_{e} \frac{\left(\alpha - \frac{n_{1}}{n_{2}}\alpha\right)^{2}}{\left(\alpha + \frac{n_{1}}{n_{2}}\alpha\right)^{2}} = I_{e} \left(\frac{n_{2} - n_{1}}{n_{2} + n_{1}}\right)^{2}$$

$$I_{t} = \lim_{\alpha \to 0} \frac{n_{2}}{n_{1}} I_{e} \frac{4\sin^{2}(\gamma(\alpha))\cos^{2}(\alpha)}{\sin^{2}[\alpha + \gamma(\alpha)]\cos^{2}[\alpha - \gamma(\alpha)]}$$

$$\xrightarrow{\text{Snellius, } \alpha \ll 1 \ \& \ \gamma \ll 1} \lim_{\alpha \to 0} \frac{n_{2}}{n_{1}} I_{e} \frac{4\sin^{2}\left(\frac{n_{1}}{n_{2}}\alpha\right)\cos^{2}(\alpha)}{\sin^{2}\left[\alpha + \frac{n_{1}}{n_{2}}\alpha\right]\cos^{2}\left[\alpha - \frac{n_{1}}{n_{2}}\alpha\right]}$$

$$\xrightarrow{\alpha \ll 1} \lim_{\alpha \to 0} \frac{n_{2}}{n_{1}} I_{e} \frac{4\left(\frac{n_{1}}{n_{2}}\alpha\right)^{2} \cdot 1^{2}}{\left(\alpha + \frac{n_{1}}{n_{2}}\alpha\right)^{2} \cdot 1^{2}} = \frac{n_{2}}{n_{1}} I_{e} \frac{4n_{1}^{2}}{\left(n_{2} + n_{1}\right)^{2}} = I_{e} \frac{4n_{1}n_{2}}{\left(n_{2} + n_{1}\right)^{2}}$$

$$(6.8.50b)$$

Diese Gleichungen gelten sowohl für die s-Polarisation wie auch für die p-Polarisation. Die Summe der reflektierten und transmittierten Intensität ist

$$I_{tot} = I_r + I_t = I_e \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2 + I_e \frac{4n_1n_2}{(n_2 + n_1)^2} = I_e \frac{(n_2 - n_1)^2 + 4n_1n_2}{(n_2 + n_1)^2}$$
$$= I_e \frac{(n_2 + n_1)^2}{(n_2 + n_1)^2} = I_e \quad (6.8.51)$$

Sie ist gleich der eingestrahlten Intensität.

6.8.4. Brewster-Winkel

Wenn bei der p-Polarisation in der Gleichung (6.8.44) für \mathfrak{E}_r der Nenner $\alpha + \gamma(\alpha) = \pi/2$ ist, divergiert der Nenner. Wir erhalten also $\mathfrak{E}_r(\alpha = \pi/2 - \gamma(\alpha)) = 0$. Dies ist der BREWSTER-WINKEL.

Beim Brewsterwinkel gegeben durch

$$\alpha_{Brewster} + \gamma \left(\alpha_{Brewster} \right) = \pi/2 \tag{6.8.52}$$

ist $\mathfrak{E}_{r,p}$ für die p-Polarisation gleich null. Die elektromagnetische Welle ist s-polarisiert!

Gleichung (6.8.52) kann mit dem Brechungsgesetz (6.8.18) nach $\alpha_{Brewster}$ aufgelöst werden

$$\alpha_{Brewster} = \arctan\left(\frac{n_2}{n_1}\right) \tag{6.8.53}$$

Abb. 6.21.: Polarisation bei der Spiegelung an Wasser. Links ist der Analysator so gestellt, dass dass das an der Wasseroberfläche reflektierte Licht durchgelassen wird. Rechts die gleiche Szene, aber der Analysator blockt das an der Wasserfläche reflektierte Licht.

Abb. 6.22.: Polarisation bei der Spiegelung an Wasser. Die beiden Bilder aus Abbildung 6.21 sind hier übereinandergelegt.Die Trennlinie läuft entlang des Baumstammes.

Abb. 6.23.: Polarisation bei der Spiegelung an Wasser. Linkes und rechtes Bild wurden mit zwei Stellungen des Polarisationsfilters aufgenommen.

Versuch 92: Versuch zur Vorlesung: Brewsterwinkel (Versuchskarte O-115, Video)

Versuch 93: Versuch zur Vorlesung: Brewsterwinkel (Versuchskarte O-115, Video)

Versuch 94: Versuch zur Vorlesung: Brewsterwinkel (Versuchskarte O-115, Video (VPN oder intern))

Fresnel–Formeln: E–Feld, $n_2 > n_1$

0.6

6.8.5. Beispielkurven für die Fresnelformeln

0.2

0.4

Abb. 6.24.: Verlauf der AMPLITUDE des elektrischen Feldes für P- und S-POLARISATION, wenn elektromagnetische Wellen aus dem schnelleren Medium $(n_1 = 1)$ in das langsamere $(n_2 = 1.5)$ eintreten.

0.8

α

1

1.2

1.4

Abb. 6.25.: Verlauf der INTENSITÄT für P- und S-POLARISATION, wenn elektromagnetische Wellen aus dem schnelleren Medium $(n_1 = 1)$ in das langsamere $(n_2 = 1.5)$ eintreten. Die INTENSITÄT ist mit $I = n_i E^2$ berechnet worden, wobei n_i die für das jeweilige Medium gültige Brechzahl ist.

Abb. 6.26.: Verlauf der AMPLITUDE des elektrischen Feldes für P- und S-POLARISATION, wenn elektromagnetische Wellen aus dem langsameren $(n_1 = 1.5)$ Medium in das schnellere $(n_2 = 1)$ eintreten.

Abb. 6.27.: Verlauf der INTENSITÄT für P- und S-POLARISATION, wenn elektromagnetische Wellen aus dem langsameren $(n_1 = 1.5)$ Medium in das schnellere $(n_2 = 1)$ eintreten. Die INTENSITÄT ist mit $I = n_i E^2$ berechnet worden, wobei n_i die für das jeweilige Medium gültige Brechzahl ist.
6.8.6. Energiefluss senkrecht zur Grenzfläche

Wir können kontrollieren, ob im Energiefluss senkrecht zur Grenzfläche die Energie erhalten bleibt. Dazu müssen wir den Energiefluss durch eine Fläche parallel zur Oberfläche berechnen. Wir betrachten hier die p-Polarisation. Der einfallende Energiefluss ist

$$I_{e,\perp} = n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2 \cos \alpha \tag{6.8.54}$$

Der Fluss der reflektierten Energie (Betrag des Poynting-Vektors) durch eine Fläche parallel zur Grenzfläche ist

$$I_{r,\perp} = n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_r^2 \cos \alpha \tag{6.8.55}$$

Ebenso ist der Fluss der gebrochenen Energie durch eine Fläche parallel zur Grenzfläche

$$I_{t,\perp} = n_2 \frac{\varepsilon_0 c}{2} \mathfrak{E}_t^2 \cos \gamma(\alpha) \tag{6.8.56}$$

Die Energieerhaltung sagt nun, dass für die p-Polarisation

$$\begin{split} I_{e,p,\perp} &= n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2 \cos \alpha \\ &= I_{r,p,\perp} + I_{t,p,\perp} \\ &= n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2 \frac{\tan^2 [\alpha - \gamma(\alpha)]}{\tan^2 [\alpha + \gamma(\alpha)]} \cos \alpha \\ &+ n_2 \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2 \frac{4 \sin^2 \gamma(\alpha) \cos^2 \alpha}{\sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)]} \cos(\gamma(\alpha)) \\ &= \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2 \\ &\left[n_1 \frac{\sin^2 [\alpha - \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)] \cos \alpha}{\sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)]} \right] \\ &+ n_2 \frac{4 \sin^2 \gamma(\alpha) \cos^2 \alpha \cos(\gamma(\alpha))}{\sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)]} \right] \\ &= \frac{n_1 \varepsilon_0 c}{2} \mathfrak{E}_e^2 \\ &\left[\sin^2 [\alpha - \gamma(\alpha)] \cos^2 [\alpha + \gamma(\alpha)] \cos \alpha \\ &+ \frac{\sin \alpha}{\sin \gamma(\alpha)} \cdot 4 \sin^2 \gamma(\alpha) \cos^2 \alpha \cos(\gamma(\alpha)) \right] \\ &\cdot \left[\sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)] \right]^{-1} \\ &= \frac{n_1 \varepsilon_0 c}{2} \mathfrak{E}_e^2 \cos \alpha \\ &\left[\sin^2 [\alpha - \gamma(\alpha)] \cos^2 [\alpha + \gamma(\alpha)] \\ &+ 4 \sin \alpha \sin \gamma(\alpha) \cos \alpha \cos(\gamma(\alpha)) \right] \\ &\cdot \left[\sin^2 [\alpha + \gamma(\alpha)] \cos^2 [\alpha - \gamma(\alpha)] \right]^{-1} \end{aligned}$$
(6.8.57)

gilt.

Wir müssen also den Wert des Bruches

$$X = \left\{ \sin^2[\alpha - \gamma(\alpha)] \cos^2[\alpha + \gamma(\alpha)] + 4\sin\alpha\sin\gamma(\alpha)\cos\alpha\cos(\gamma(\alpha)) \right\}$$
$$\cdot \left\{ \sin^2[\alpha + \gamma(\alpha)] \cos^2[\alpha - \gamma(\alpha)] \right\}^{-1}$$

berechnen.

$$X = \left\{ \sin^{2}[\alpha - \gamma] \cos^{2}[\alpha + \gamma] + 4 \sin \alpha \sin \gamma \cos \alpha \cos(\gamma) \right\} \cdot \left\{ \sin^{2}[\alpha + \gamma] \cos^{2}[\alpha - \gamma] \right\}^{-1} = \left\{ \sin^{2}[\alpha - \gamma] \cos^{2}[\alpha + \gamma] + \sin(2\alpha) \sin(2\gamma) \right\} \cdot \left\{ \sin^{2}[\alpha + \gamma] \cos^{2}[\alpha - \gamma] \right\}^{-1} = \left\{ \frac{1}{2} \left(1 - \cos[2\alpha - 2\gamma] \right) \frac{1}{2} \left(1 + \cos[2\alpha + 2\gamma] \right) + \sin(2\alpha) \sin(2\gamma) \right\} \cdot \left\{ \frac{1}{2} \left(1 - \cos[2\alpha + 2\gamma] \right) \frac{1}{2} \left(1 + \cos[2\alpha - 2\gamma] \right) \right\}^{-1} = \left\{ (1 - \cos[2\alpha - 2\gamma]) \left(1 + \cos[2\alpha + 2\gamma] \right) + 4 \sin(2\alpha) \sin(2\gamma) \right\} \cdot \left\{ (1 - \cos[2\alpha + 2\gamma]) \left(1 + \cos[2\alpha - 2\gamma] \right) \right\}^{-1} = \left\{ (1 - \cos[2\alpha - 2\gamma]) \left(1 + \cos[2\alpha - 2\gamma] \right) \right\}^{-1} = \left\{ (1 - \cos[2\alpha - 2\gamma]) \left(1 + \cos[2\alpha - 2\gamma] \right) \right\}^{-1} = \left\{ (1 - \cos[2\alpha - 2\gamma]) \left(1 + \cos[2\alpha + 2\gamma] \right) + 2 \left(\cos[2\alpha - 2\gamma] - \cos[2\alpha + 2\gamma] \right) \right\}^{-1}$$
(6.8.58)

Wir setzen $A=\cos[2\alpha-2\gamma]$ und $B=\cos[2\alpha+2\gamma]$ und schreiben die Gleichung um

$$X = \frac{(1-A)(1+B) + 2A - 2B}{(1-B)(1+A)}$$
(6.8.59)
= $\frac{1-A+B-AB+2A-2B}{1+A-B-AB}$
= $\frac{1+A-B-AB}{1+A-B-AB}$
= 1

Da X = 1 ist, ist gezeigt, dass für den Energiefluss durch die Grenzfläche für p-Polarisation Energieerhaltung gilt.

Eine ähnliche Gleichung kann man für die *s*-Polarisation berechnen. In der Elektrizitätslehre würde man sagen, dass der Fluss anhand des Pointing-Vektors berechnet wurde.

Abb. 6.28.: Verlauf der mit der Fläche gewichteten INTENSITÄT für P- und S-POLARISATION, wenn elektromagnetische Wellen aus dem schnelleren $(n_1 = 1)$ Medium in das langsamere $(n_2 = 1.5)$ eintreten.

Abb. 6.29.: Verlauf der mit der Fläche gewichteten INTENSITÄT für P- und S-POLARISATION, wenn elektromagnetische Wellen aus dem langsameren $(n_1 = 1.5)$ Medium in das schnellere $(n_2 = 1)$ eintreten.

Für beide Bilder wurde die INTENSITÄT mit $I = n_i E^2 \cos(\alpha_i)$ berechnet, wobei n_i die für das jeweilige Medium gültige Brechzahl und α_i der entsprechende Winkel ist. Die drei Kurven für die gesamte Intensität bei der *p*-Polarisation und der *s*-Polarisation liegen über der Kurve der mit dem Winkel gewichteten Intensität der einfallenden elektromagnetischen Welle.

Parallel zur Oberfläche ist es wegen der Translationssymmetrie schwieriger Energieerhaltungsgrössen zu definieren.

Die dritte Stetigkeitsbedingung an der Grenzfläche, die der Normalkomponente von $\varepsilon E = D$ liefert das Snelliussche Gesetz.

6.8.7. Felder und Intensitäten bei senkrechtem Einfall

Da bei senkrechtem Einfall s- und p-Polarisation ununterscheidbar sind, können die Gleichungen am einfachsten aus Gleichung (6.8.41) abgeleitet werden. Aus dem Brechungsgesetz folgt, dass mit $\alpha = 0$ auch $\gamma = 0$ ist. Setzen wir diese beiden Werte in Gleichung (6.8.41) ein, erhalten wir

$$\frac{\mathfrak{E}_r}{\mathfrak{E}_e} = \frac{n_2 \cos(0) - n_1 \cos(0)}{n_1 \cos(0) + n_2 \cos(0)} = \frac{n_2 - n_1}{n_1 + n_2}$$
(6.8.60a)

$$\frac{\mathfrak{E}_t}{\mathfrak{E}_e} = \frac{2n_1 \cos(0)}{n_2 \cos(0) + n_1 \cos(0)} = \frac{2n_1}{n_2 + n_1} \tag{6.8.60b}$$

Die Intensitäten bei senkrechtem Einfall ist über

$$I_e = n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_e^2 \quad I_r = n_1 \frac{\varepsilon_0 c}{2} \mathfrak{E}_r^2 \quad I_t = n_2 \frac{\varepsilon_0 c}{2} \mathfrak{E}_t^2 \tag{6.8.61}$$

gegeben. Also haben wir (wir lassen die gleichen Faktoren in allen Intensitätsgleichungen weg)

$$\frac{I_r}{I_e} = \frac{n_1 \mathfrak{E}_r^2}{n_1 \mathfrak{E}_e^2} = \left(\frac{n_2 - n_1}{n_1 + n_2}\right)^2 \tag{6.8.62a}$$

$$\frac{I_t}{I_e} = \frac{n_2 \mathfrak{E}_t^2}{n_1 \mathfrak{E}_e^2} = \frac{n_2}{n_1} \left(\frac{2n_1}{n_2 + n_1}\right)^2 = \frac{4n_1 n_2}{(n_1 + n_2)^2}$$
(6.8.62b)

In beiden Fällen ist nur das Verhältnis der Brechungsindizes wichtig. Mit $a_n = n_2/n_1$ erhalten wir

$$\frac{\mathfrak{E}_r}{\mathfrak{E}_e} = \frac{a_n - 1}{a_n + 1} \tag{6.8.63a}$$

$$\frac{\mathfrak{E}_t}{\mathfrak{E}_e} = \frac{2}{a_n + 1} \tag{6.8.63b}$$

$$\frac{I_r}{I_e} = \left(\frac{a_n - 1}{a_n + 1}\right)^2 \tag{6.8.63c}$$

$$\frac{I_t}{I_e} = \frac{4a_n}{(a_n+1)^2} \tag{6.8.63d}$$

Aus den beiden Gleichungen (6.8.63c) und (6.8.63d) ersieht man leicht, das die Summe aus transmittierter und reflektierter Intensität

$$\frac{I_r}{I_e} + \frac{I_t}{I_e} = \left(\frac{a_n - 1}{a_n + 1}\right)^2 + \frac{4a_n}{(a_n + 1)^2} = \frac{a_n^2 - 2a_n + 1 + 4a_n}{(a_n + 1)^2} = \frac{a_n^2 + 2a_n}{(a_n + 1)^2} = 1 \quad (6.8.64)$$

ist. Wesentlich war dabei der Faktor n_2/n_1 bei der Berechnung der transmittierten Intensität. Die folgende Abbildung 6.30 zeigt das Verhalten der refektierten und transmittierten feldamplituden und Intensitäten als Funktion von $a_n = n_2/n_1$.

Abb. 6.30.: Feldamplituden und Intensitäten bei senkrechtem Einfall, abhängig von $a_n = n_2/n_1$.

Abbildung 6.31 zeigt die gleichen Kurven in logarithmischer Darstellung.

Abb. 6.31.: Feldamplituden und Intensitäten bei senkrechtem Einfall, abhängig von $a_n = n_2/n_1$, mit logarithmischer Abszisse.

6.8.8. Evaneszente Wellen

Literatur: (Siehe Hecht, Optik [Hec05, pp. 193, 196])

Versuch 95: Versuch zur Vorlesung: Evaneszente Wellen - tunneln mit Licht (Versuchskarte O-080)

Versuch 96: Versuch zur Vorlesung:

Tunneleffekt mit Mikrowellen (Versuchskarte O-079, Video)

Versuch 97: Versuch zur Vorlesung: Tunneleffekt mit Mikrowellen (Versuchskarte O-079, Video)

Versuch 98: Versuch zur Vorlesung:

Tunneleffekt mit Mikrowellen (Versuchskarte O-079, Video (VPN oder intern))

Aus den letzten Abbildungen ist ersichtlich, dass, wenn elektromagnetische Wellen aus dem langsameren Medium (n_1) in das schnellere $n_2 < n_1$ eintreten, es Winkel γ gibt $((n_1/n_2) \sin \alpha = \sin \gamma > 1)$, für die es keine reelle Lösung der Fresnelschen Formeln gibt. Die Lösung ist dann in die z-Richtung rein imaginär. Was bedeutet dies? Dies heisst, dass auch die z-Komponente des **k**-Vektor der elektromagnetischen Welle im schnelleren Medium imaginär wird. Darum wird aus $e^{ik_z z}$ mit $k_z = i\kappa_z$ der exponentielle Dämpfungsfaktor $e^{-\kappa_z z}$, wobei κ_z vom Einfallswinkel abhängt. Die elektromagnetischen Wellen aus dem langsameren Medium können sich im schnelleren Medium also nicht weiter in die z-Richtung bewegen: Wegen der Energieerhaltung ist die REFLEXION perfekt.

Abb. 6.32.: Momentaufnahme der Interferenz einer total reflektierten Welle mit sich selber sowie der evaneszenten Wellen.

Abb. 6.33.: Intensitätsverteilung einer total reflektierten Welle und der dazugehörigen evaneszenten Welle.

Wir suchen nun eine Beziehung zwischen dem Wellenvektor \mathbf{k}_t der transmittierten Welle und dem Wellenvektor \mathbf{k}_e der einfallenden Welle für den Fall, dass $n_1 \sin(\alpha) \ge n_2$ ist, also dass dass Snelliussche Brechungsgesetz (6.8.18) keine reelle Lösung hat.

Aus der Definition der Brechzahl n in Gleichung (6.6.1) und der Gleichung (6.8.15) folgt mit λ_{vac} der Vakuumwellenlänge und $c = 1/\sqrt{\varepsilon_0\mu_0}$ der Vakuumlichtgeschwindigkeit

$$\boldsymbol{k} = k\boldsymbol{e}_{k} = \frac{2\pi}{\lambda}\boldsymbol{e}_{k} = \frac{2\pi}{\frac{\lambda_{vac}}{n}}\boldsymbol{e}_{k} = \frac{2\pi n}{\lambda_{vac}}\boldsymbol{e}_{k} = n\boldsymbol{k}_{vac}$$
(6.8.65)

Der Betrag der Tangentialkomponente $k_{e,tangential}$ des Wellenvektors der einfallenden Welle kann mit dem Einfallswinkel berechnet werden:

$$|\mathbf{k}_{e,tangential}| = |\mathbf{k}_e|\sin(\alpha) = n_1 k_{vac}\sin(\alpha)$$
(6.8.66)

Der Betrag des Wellenvektors der transmittierten Welle ist andererseits

$$|\boldsymbol{k}_t| = \sqrt{\boldsymbol{k}_{t,tangential}^2 + \boldsymbol{k}_{t,senkrecht}^2} = n_2 k_{vac}$$
(6.8.67)

Wir stellen Gleichung (6.8.67) um und isolieren $k_{t,senkrecht}^2$, und setzen dann Gleichungen (6.8.22) und (6.8.66) ein

$$\boldsymbol{k}_{t,senkrecht}^{2} = n_{2}^{2}k_{vac}^{2} - \boldsymbol{k}_{t,tangential}^{2} = n_{2}^{2}k_{vac}^{2} - n_{1}^{2}k_{vac}^{2}\sin^{2}(\alpha)$$
$$= k_{vac}^{2}\left(n_{2}^{2} - n_{1}^{2}\sin^{2}(\alpha)\right)$$
(6.8.68)

Im Falle der Totalreflexion ist $n_1 \sin(\alpha) \ge n_2$ und damit $n_2^2 - n_1^2 \sin^2(\alpha) \le 0$. Damit erhalten wir für den Betrag von $\mathbf{k}_{t,senkrecht}$

$$k_{t,senkrecht} = \pm i \, k_{vac} \sqrt{n_1^2 \sin^2(\alpha) - n_2^2} = i\kappa_t \tag{6.8.69}$$

1

Die physikalisch sinnvolle Lösung für einen unendlich ausgedehnten Halbraum mit dem Brechungsindex n_2 ist die exponentiell abfallende Lösung

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{\mathfrak{E}}_{t} e^{i\left(\boldsymbol{k}_{t,tangential}\cdot\boldsymbol{r}-\omega t\right)} e^{-\kappa_{t}z}$$
(6.8.70)

Die resultierende Welle im Medium 2 hat dann die zeitgemittelte Intensität

$$I(x,z) = I_0 e^{-2\kappa_t z} (6.8.71)$$

Wir erhalten also für die Intensität einen exponentiellen Abfall mit einer Abfalllänge

$$\ell_0 = \frac{1}{2\kappa_t} = \frac{\lambda_{vac}}{4\pi} \frac{1}{\sqrt{n_1^2 \sin^2(\alpha) - n_2^2}}$$
(6.8.72)

Wenn eine Welle mit der Vakuumwellenlänge $\lambda_{vac} = 500$ nm und dem Einfallswinkel $\alpha = 5\pi/12 = 75^{\circ}$ von einem Medium mit dem Brechungsindex $n_1 = 1.55$ in Luft $n_2 = 1$ übertritt, ist $\lambda_0 = 35.71$ nm.

6.9. Zusammenfassung

Maxwellgleichungen im Vakuum Gleichung (6.1.3)

div
$$E$$
 = 0 I
rot E = $-\frac{\partial B}{\partial t}$ II
div B = 0 III
rot B = $\mu_0 \epsilon_0 \frac{\partial E}{\partial t} = \frac{1}{c^2} \frac{\partial E}{\partial t}$ IIII

Wellengleichung für E Gleichung (6.1.7)

$$\frac{\partial^2 \boldsymbol{E}}{\partial t^2} = -c^2 \Delta \boldsymbol{E}$$

Wellengleichung für B Gleichung (6.1.8)

$$\frac{\partial^2 \boldsymbol{B}}{\partial t^2} = -c^2 \Delta \boldsymbol{B}$$

Wellenwiderstand eines Zweidrahtsystems Gleichung (6.3.15)

$$R^* = \frac{1}{\pi} \ln\left(\frac{4a}{d}\right) \sqrt{\mu_0} \epsilon_0$$

Wellenwiderstand des Vakuums Gleichung (6.3.16)

$$R_0^* = \sqrt{\mu_0}\epsilon_0 = 377\Omega$$

Energiefluss im Vakuum, Poynting-Vektor Gleichung (6.4.5)

$$\boldsymbol{S}(\boldsymbol{r},t) = \frac{1}{\mu_0} \boldsymbol{E}(\boldsymbol{r},t) \times \boldsymbol{B}(\boldsymbol{r},t)$$

Energiefluss in Materie, Poynting-Vektor Gleichung (6.4.6)

$$\boldsymbol{S}(\boldsymbol{r},t) = \boldsymbol{E}(\boldsymbol{r},t) \times \boldsymbol{H}(\boldsymbol{r},t)$$

Elektrisches Strahlungsfeld eines Atoms Gleichung (6.5.17)

$$E(r,\Theta,t) = \frac{e}{4\pi\epsilon_0 c^2} \cdot \frac{1}{r} \cdot |a(t')|\sin\Theta = \frac{ez_0\omega^2}{4\pi\epsilon_0 c^2} \cdot \frac{1}{r} \cdot \sin\left[\omega\left(t - \frac{r}{c}\right)\right]\sin\Theta$$

Magnetisches Strahlungsfeld eines Atoms Gleichung (6.5.18)

$$B\left(r,\Theta,t\right) = \frac{1}{c}e\left(r,\Theta,t\right)$$

Energiefluss des Strahlungsfeldes eines Atoms Gleichung (6.5.19)

$$S(r,\Theta,t) = \sqrt{\frac{\epsilon_0}{\mu_0}} E^2(r,\Theta,t)$$

Intensität des Strahlungsfeldes eines Atoms Gleichung (6.5.20)

$$I(r,\Theta) = \left\langle S(r,\Theta,t) \right\rangle_t = \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{e^2 z_0^2 \omega^4}{\left(4\pi\epsilon_0 c^2\right)^2} \frac{\sin^2 \Theta}{2r^2}$$

Ebene Welle Gleichung (6.5.21)

$$\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_0 \cos\left(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t\right) \text{ oder } \boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_0 e^{i(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t)} \text{ mit } \boldsymbol{E}_0 \cdot \boldsymbol{k} = 0$$

Kugelwelle Gleichung (6.5.23)

$$\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}(r, \phi, \theta) = \frac{\hat{\boldsymbol{E}}_{\mathbf{0}}(\phi, \theta)}{r} \cos(kr - \omega t) \text{ oder}$$
$$\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}(r, \phi, \theta) = \frac{\hat{\boldsymbol{E}}_{\mathbf{0}}(\phi, \theta)}{r} e^{i(kr - \omega t)} \text{ mit } \boldsymbol{r} \cdot \boldsymbol{E}_{0}(\phi, \theta) = 0$$

Lichtgeschwindigkeit im Medium Gleichung (6.6.1)

$$c_m = \frac{1}{\sqrt{\mu\mu_0\varepsilon\varepsilon_0}} = \frac{c}{n}$$

©2005-2020 Ulm University, Othmar Marti, COBY-SA

Intensität, Poynting-Vektor und Richtung Gleichung (6.6.2)

$$\begin{split} I_{\boldsymbol{a}}(\boldsymbol{r}) &= \langle |\boldsymbol{S}(\boldsymbol{r})| \rangle_{t} = \frac{1}{2} \boldsymbol{S}_{0}(\boldsymbol{r}) \cdot \frac{\boldsymbol{a}}{|\boldsymbol{a}|} \\ &= \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_{0}}{\mu \mu_{0}}} \left| \boldsymbol{E} \right|^{2} \cos(\angle \boldsymbol{S}_{0}, \boldsymbol{a}) = \frac{n \varepsilon_{0} c}{2 \mu} E^{2} \cos(\angle \boldsymbol{S}_{0}, \boldsymbol{a}) \end{split}$$

 \boldsymbol{S}_0 : Richtung des Energieflusses, \boldsymbol{a} : Beobachtungsrichtung

Polarisation Gleichung (6.7.1)

 $\boldsymbol{E}_0 \cdot \boldsymbol{k} = 0$

Tangentialvektor zu einer Ebene Gleichung (6.8.2)

 $\boldsymbol{E}_{e,\text{tangential}} = \boldsymbol{e}_n \times \boldsymbol{E}_e \times \boldsymbol{e}_n$ ormaleneinheitsvektor der Ebene

Reflexionsgesetz Gleichung (6.8.11)

 $\alpha = \beta$ (Einfallswinkel=Ausfallswinkel)

Brechungsgesetz nach Snellius Gleichung (6.8.18)

$$n_1 \sin(\alpha) = n_2 \sin(\gamma)$$

Fresnelsche Gleichungen für die s-Polarisation Gleichung (6.8.27)

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha - \sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\gamma}{\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha + \sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\gamma} \qquad \mathfrak{E}_t = \mathfrak{E}_e \frac{2\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha}{\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha + \sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\gamma}$$

Gleichung (6.8.28) (mit $n_1 = \sqrt{\mu_1 \varepsilon_1}$ und $n_2 = \sqrt{\mu_2 \varepsilon_2}$)

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\frac{n_1}{\mu_1} \cos \alpha - \frac{n_2}{\mu_2} \cos \gamma}{\frac{n_1}{\mu_1} \cos \alpha + \frac{n_2}{\mu_2} \cos \gamma} \qquad \mathfrak{E}_t = \mathfrak{E}_e \frac{2\frac{n_1}{\mu_1} \cos \alpha}{\frac{n_1}{\mu_1} \cos \alpha + \frac{n_2}{\mu_2} \cos \gamma}$$

Fresnelsche Gleichungen für s-Polarisation: Amplitude Gleichung(6.8.31)

$$\mathfrak{E}_r = -\mathfrak{E}_e \frac{\sin(\alpha - \gamma(\alpha))}{\sin(\alpha + \gamma(\alpha))} \qquad \qquad \mathfrak{E}_t = \mathfrak{E}_e \frac{2\sin\gamma(\alpha)\cos\alpha}{\sin(\alpha + \gamma(\alpha))}$$

 $\mathrm{mit}\sqrt{\varepsilon_1}\sin\alpha=\sqrt{\varepsilon_2}\sin\gamma$ und nichtmagnetischen Materialien

Fresnelsche Gleichungen für s-Polarisation: Intensität Gleichung (6.8.32)

$$I_r = I_e \frac{\sin^2(\alpha - \gamma(\alpha))}{\sin^2(\alpha + \gamma(\alpha))} \qquad \qquad I_t = \frac{n_2}{n_1} I_e \frac{4\sin^2\gamma(\alpha)\cos^2\alpha}{\sin^2(\alpha + \gamma(\alpha))}$$

 $\mathrm{mit}\sqrt{\varepsilon_1}\sin\alpha=\sqrt{\varepsilon_2}\sin\gamma$ und nichtmagnetischen Materialien

Fresnelsche Gleichungen für die p-Polarisation Gleichung (6.8.39)

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\alpha - \sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\gamma}{\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\gamma + \sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\alpha} \qquad \mathfrak{E}_t = \mathfrak{E}_e \frac{2\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\alpha}{\sqrt{\frac{\varepsilon_2}{\mu_2}}\cos\alpha + \sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\gamma}$$

Gleichung (6.8.40) (mit $n_1 = \sqrt{\mu_1 \varepsilon_1}$ und $n_2 = \sqrt{\mu_2 \varepsilon_2}$)

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\frac{n_2}{\mu_2} \cos \alpha - \frac{n_1}{\mu_1} \cos \gamma}{\frac{n_1}{\mu_1} \cos \gamma + \frac{n_2}{\mu_2} \cos \alpha} \qquad \qquad \mathfrak{E}_t = \mathfrak{E}_e \frac{2\frac{n_1}{\mu_1} \cos \alpha}{\frac{n_2}{\mu_2} \cos \alpha + \frac{n_1}{\mu_1} \cos \gamma}$$

Fresnelsche Gleichungen für p-Polarisation: Amplitude Gleichung (6.8.44)

$$\mathfrak{E}_r = \mathfrak{E}_e \frac{\tan[\alpha - \gamma(\alpha)]}{\tan[\alpha + \gamma(\alpha)]} \qquad \mathfrak{E}_t = \mathfrak{E}_e \frac{2\sin\gamma(\alpha)\cos\alpha}{\sin[\alpha + \gamma(\alpha)]\cos[\alpha - \gamma(\alpha)]}$$

 $\mathrm{mit}\sqrt{\varepsilon_1}\sin\alpha=\sqrt{\varepsilon_2}\sin\gamma$ und nichtmagnetischen Materialien

Fresnelsche Gleichungen für p-Polarisation: Intensität Gleichung (6.8.45)

$$I_r = I_e \frac{\tan^2[\alpha - \gamma(\alpha)]}{\tan^2[\alpha + \gamma(\alpha)]} \qquad I_t = \frac{n_2}{n_1} I_e \frac{4\sin^2\gamma(\alpha)\cos^2\alpha}{\sin^2[\alpha + \gamma(\alpha)]\cos^2[\alpha - \gamma(\alpha)]}$$

 $\operatorname{mit}\sqrt{\varepsilon_1}\sin\alpha = \sqrt{\varepsilon_2}\sin\gamma$ und nichtmagnetischen Materialien

Reflexion bei senkrechtem Einfall (polarisationsunabhängig) Gleichung (6.8.48a)

$$\mathfrak{E}_r = -\mathfrak{E}_e \frac{n_2 - n_1}{n_2 + n_1}$$

Transmission bei senkrechtem Einfall (polarisationsunabhängig) Gleichung (6.8.48b)

$$\mathfrak{E}_t = \mathfrak{E}_e \frac{2n_1}{n_2 + n_1}$$

Brewster-Winkel Gleichungen (6.8.52) und (6.8.53)

$$\alpha_{Brewster} + \gamma \left(\alpha_{Brewster} \right) = \pi/2 \iff \alpha_{Brewster} = \arctan\left(\frac{n_2}{n_1}\right)$$

Evaneszente Welle im Medium mit dem kleineren n. Gleichung (6.8.70)

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{\mathfrak{E}}_{t} e^{i \left(\boldsymbol{k}_{t,tangential} \cdot \boldsymbol{r} - \omega t\right)} e^{-\kappa_{t} z}$$

Evaneszente Welle im Medium mit dem kleineren n. Gleichung (6.8.71)

$$I(x,z) = I_0 e^{-2\kappa_t z}$$

©2005-2020 Ulm University, Othmar Marti, C) BY-SA

Abfalllänge der evaneszenten Welle Gleichung (6.8.72)

$$\ell_{0} = \frac{1}{2\kappa_{t}} = \frac{\lambda_{vac}}{4\pi} \frac{1}{\sqrt{n_{1}^{2}\sin^{2}(\alpha) - n_{2}^{2}}}$$

A. Literaturhinweise

Den Stoff der Vorlesung finden Sie in ähnlicher Form in den Werken von Giancoli "Physik"[Gia06], Gerthsen/Meschede "Physik"[Mes06], Tipler "Physik"[TM04], Leisi "Klassische Physik"[Lei98], Alonso-Finn "Physik"[AF00] und, als leichtere Einführung im Buch von Halliday "Physik"[HRW03].

Eine gut strukturierte (und leicht tragbare Übersicht bieten Lindström/Langkau "Physik kompakt: Elektrodynamik"[LL96] und Langkau/Lindström/Scobel "Physik kompakt: Elektromagnetische Wellen"[LLS96]

Zusätzliche Übungsaufgaben finden Sie in "Tutorien zur Physik"[MS09] oder im "Prüfungstrainer Physik"[Tur07]. Zum Aufarbeiten des gelernten Stoffes (nicht als Einsteigerliteratur) kann auch Kneubühls[Kne78] "Repetitorium der Physik" empfohlen werden. Mathematische Probleme und Formeln sind sehr schön im Bronstein[Bro+08] zusammengefasst. Arfken/Weber "Mathematical methods for Physicists"[AW95] und sowie Weltner "Mathematik für Physiker"[Wel94] können beim Bewältigen von mathematischen Problemen helfen.

Dieses Skript gibt es auch als PDF-Datei und als Web-Site.

Unter Applets von Walter Fendt können Sie einige Gesetze der Elektrizitätslehre selber ausprobieren.

Eine wunderbare Website zum Aufarbeiten Ihres Wissens ist Hyperphysics von R. Nave. Ergänzend gibt es vom gleichen Autor auch Hypermath.

Historische wissenschaftliche Arbeiten bieten oftmals einen guten Einblick in die Gedanken hinter den physikalischen Gesetzen. Dazu gehören die Arbeiten von Michael Faraday [**Faraday01011856**; Far32a; Far32b; Far33b; Far33a; Far33c; Far34a; Far34b; Far34c; Far35a; Far35b; Far38b; Far38a; Far38

B. Begriffe

Symbol	Name	Einheit	Bemerkungen
$\langle f \rangle$	Mittelung über f	—	
α	atomare Polarisierbar- keit	$\frac{\frac{C^2 m}{N} = \frac{C m^2}{V} =}{F m^2 = \frac{A s m^2}{V}}$	
α	Winkel (z.B. zwischen Geschwindigkeit und der Oberflächennormalen der Referenzfläche	1	
a	Abstand einer Ladung zur Oberfläche, Radius	m	
a	Dicke eines Dielektri- kums	m	
a	Länge einer Leiter- schlaufe in einem Motor	m	
da	Oberflächenelement in Integralen	m^2	
a	Beschleunigung	$\frac{m}{s^2} = \frac{N}{kg}$	
A	Fläche	m^2	
A	Fläche des Plattenkon- densators	m^2	
\boldsymbol{A}	Vektorpotential	$T_{M} = \frac{N}{A} = \frac{M}{A}$	
eta	reduzierte Geschwindig- keit	A s ² m 1	da $\beta = \frac{v}{c}$
b	Breite eines Dielektri- kums	m	
b	Breite einer Leiter- schlaufe in einem Motor	m	
h	Breite des Leiters in ei- ner Hall-Anordnung	m	
В	magnetische Induktion	$T = \frac{N}{A m} = \frac{V s}{V s}$	
С	Lichtgeschwindigkeit im Vakuum	$\frac{A}{m} \frac{s^2}{s} = m^2$	Wert (Definition): $c = 200,702,458$ \underline{m}
C	Kapazität	$\begin{array}{l} F = \frac{C}{V} = \frac{A \ s}{V} = \\ \frac{J}{V^2} = \frac{C^2}{J} \end{array}$	200102100 s

Symbol	Name	Einheit	Bemerkungen
С	Curie-Konstante	$\frac{\frac{A}{T}}{\frac{K}{m}}_{\frac{K}{m}} = \frac{\frac{A^2}{N}}{\frac{K}{N}} =$	
c_{ij}	Kapazität zwischen den	F V s	
$\delta(t)$	Delta-Funktion für die	$\frac{1}{s}$	
$\delta(x)$	Zeit Delta-Funktion für den	$\frac{1}{m}$	
δx	Ort Längenelement	m	andere Schreibweise zu
Δ	Laplace-Operator	$\frac{1}{m^2}$	dx $\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{\partial^2 f}{\partial r^2} + \frac{\partial^2 f}{\partial r^2}$
- - - -	Flächenelement	m ²	$\partial x^2 = \partial y^2 = \partial z^2$
$a\mathbf{A}$	Flachenelement	III-	
d	Abstand	m	
d	Abstand der Platten im Plattenkondensator	m	
div	Divergenz-Operator	$\frac{1}{m}$	div $\mathbf{f} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \cdot \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \frac{\partial f_x}{\partial x} + \partial f_z$
D	Dielektrische Verschie-	$rac{C}{m_N^2}$ = $rac{V}{N\ m}$ =	$\frac{\partial Jy}{\partial y} + \frac{\partial Jz}{\partial z}$
e	Elementarladung	C T	Wert (Definition): $e = 1.602176.624 + 10^{-19} \text{ C}$
e	Basis des natürlichen	1	e = 2.7182818284590
ε	relative Permittivität	1	Im Allgemeinen ist ε ein TENSOR. (heisst auch relative Dielektrizitäts-
$arepsilon_0$	Permittivität des Vaku-	$rac{\mathrm{C}^2}{\mathrm{N}\ \mathrm{m}^2} = rac{\mathrm{C}}{\mathrm{V}\ \mathrm{m}} =$	$\epsilon_0 = 8.8541878128(13)\cdot$
$oldsymbol{E}(oldsymbol{r})$	ums elektrisches Feld	$\frac{\frac{J}{V^2 m}}{\frac{N}{C} = \frac{V}{m}}$	$10^{-12} \frac{C^2}{N m^2}$
$oldsymbol{E}_{lokal}$	lokales elektrisches Feld	$\frac{N}{C} = \frac{V}{m}$	
E_0	elektrisches Feld ohne Dielektrikum	$\frac{N}{C} = \frac{V}{m}$	Verwendet bei Berech- nungen mit dielektri- schen Meterialien
E_{pot}	potentielle Energie	J = N m	schen materianen
E_t	spezifische Haftenergie	$\frac{\mathrm{J}}{\mathrm{m}^2}$	

Symbol Name		Einheit	Bemerkungen
ϕ	eine der Koordinaten bei Kugelkoordinaten	1 Winkel gemesse der <i>x</i> -Achse in d Ebene (Längengra	
arphi	elektrostatisches Poten- tial	$\frac{J}{C} = V$	Loone (Langengrad)
φ	Phase	1	
Φ	Fluss eines Vektorfeldes F	$\rm N~m^2$	Einheit hängt von der Einheit des VEKTOR- FELDES ab
Φ_B	magnetischer Fluss	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
f(x)	Funktion	_	\boldsymbol{x} ist ein Platzhalter
F	Kraft	Ν	
$oldsymbol{F}_L$	Lorentzkraft	Ν	
F_M	magnetische Kraft	Ν	
$oldsymbol{F}_V$	Kraftdichte	$\frac{N}{m^3}$	$oldsymbol{F}_V = \lim_{\Delta V o 0} rac{\Delta oldsymbol{F}_V}{\Delta V}$
γ	relativistischer Korrek-	1	$\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$
grad	turfaktor Gradienten-Operator	$\frac{1}{m}$	$\begin{array}{l} \mathbf{grad} \ f = \\ \left(\begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} \end{array} \right) f = \left(\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial f} \end{array} \right) \end{array}$
G Leitwert S		$S = \frac{A}{V} = \frac{1}{\Omega}$	$\left(\frac{\partial}{\partial z} \right) \left(\frac{\partial}{\partial z} \right)$
G	Gravitationskonstante	$\frac{m^3}{kg~s^2}$	Wert: $G = 6.67430(15) \cdot 10^{-11} \frac{\text{m}^3}{\text{lm}^2}$
h	Höhe der Mantelfläche	m	Kg 5-
h	Höhe des Leiters in einer Hall-Anordnung	m	
h	Plancksches Wirkungs-	Js	$h = 6.63 \cdot 10^{-34} ~{\rm J~s}$
\hbar	reduziertes Plancksches	Js	$h\approx 10^{-34} Js$
Н	Wirkungsquantum Magnetfeld	$\frac{A}{m}$	
i	Stromdichte	$\frac{A}{m^2}$	
Ι	Strom	А	
I_{eff}	effektiver Strom	А	

Symbol	Name	Einheit	Bemerkungen
I _{rms}	RMS-Strom	А	Leistungsgewichteter Strom, «Root Mean
j	lineare Stromdichte	$\frac{A}{m}$	Square »-Strom $j = \lim_{\Delta y \to 0} \frac{I(\Delta y)}{\Delta y}$
k	Federkonstante	$\frac{N}{m}$	
k	beliebige, auch komplexe Zahl	1	
k_B	Boltzmann-Konstante	$\frac{J}{K}$	
K	Vorfaktor	1	
λ	mittlere freie Weglänge	m	
λ	Linienladungsdichte	$\frac{C}{m}$	
l	Abstand von $-q$ zu $+q$ im Dipol	m	
l	Drehimpuls	$\frac{m^2kg}{s}$	
L	Länge	m	
L	Selbstinduktion oder Selbstinduktivität einer Spule	$H = \frac{Wb}{A} =$ $\frac{Tm^2}{A} = \frac{Nm}{A^2} =$ $\frac{kgm^2}{A^2s^2} = \frac{Vs}{A} = \Omega s$	
μ_0	Induktionskonstante	$\frac{\overset{?}{N}s^{2}}{C^{2}} = \frac{\overset{?}{N}}{A^{2}} = \frac{H}{m}$	$\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$
m	Masse	kg	
m	magnetisches Moment	Am^2	
m_z	magnetisches Moment in z-Richtung	Am^2	
M	Gesamtmasse aller Ionen	kg	
M_{12}	Gegeninduktivität zwi- schen zwei Spulen	$H = \frac{Wb}{A} =$ $\frac{Tm^2}{A} = \frac{Nm}{A^2} =$ $\frac{kgm^2}{A} = \frac{Vs}{A} = \Omega s$	
M_{Mol}	Molmasse	$\frac{A^2s^2}{\frac{kg}{Mol}}A$	
M	makroskopische Magne- tisierung	$\frac{A}{m}$	
ν	Frequenz	$Hz = \frac{1}{s}$	
n	Ladungsträgerdichte	$\frac{1}{m^2}$	
n	spezifische Windungs- zahl einer Spule	$\frac{1}{m}$	$n = \frac{N}{\ell}$

Symbol	Name	Einheit	Bemerkungen
n	Normalenvektor auf ein	1	
N	Flachenelement Dichte der induzierten	$\frac{1}{m^3}$	
N	Windungszahl einer	1	
N_A	Avogadrozahl	$\frac{1}{Mol}$	$N_A = 6.02 \times 10^{23} \frac{1}{Mol}$
p	Dipolmoment	Cm	
p	Impuls (mechanisch)	$\frac{kgm}{s} = Ns$	
$oldsymbol{p}_{ind}$	induziertes Dipolmo- ment	Cm = Asm = $\frac{Nm^2}{V}$	
P	Leistung	$\frac{V}{W} = \frac{J}{s} = \frac{Nm}{s} = \frac{m^2 kg}{s}$	z.B. Verlustleistung am WIDERSTAND
P	Polarisation	$\frac{\overset{\circ}{C}}{m^2} = \frac{As}{m^2} = \frac{N}{Vm}$	
P_M	Leistung des Motors	$\frac{W}{\underline{m}^2 k \underline{g}} = \frac{N m}{s} =$	
q	Ladung	$\overset{s^3}{C} = As = \frac{Nm}{V}$	
Q	Ladung	$C = As = \frac{Nm}{V}$	andere Schreibweise für a
ρ	Massedichte	$rac{kg}{m^3}$	2
$ ho_{el}$	elektrische Ladungs- dichte	$\frac{C}{m^3} = \frac{Pa}{V}$	Siehe auch Gleichung $(2.2.4)$
ρ	SPEZIFISCHER WIDER- STAND	$\Omega m = \frac{Vm}{A} = \frac{m}{S}$	
ho	Abstand	m	
r	Abstand, Ortsvektor	m	
r_0	Referenzradius	m	
rot	Rotations-Operator	$\frac{1}{m}$	$\begin{array}{l} \mathbf{rot} \ \boldsymbol{f} = \\ \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \\ \begin{pmatrix} \frac{\partial f_y}{\partial z} - \frac{\partial f_z}{\partial y} \\ \frac{\partial f_z}{\partial x} - \frac{\partial f_x}{\partial z} \end{pmatrix}$
R	Widerstand	$\Omega = \frac{V}{L}$	$\left(\frac{\partial J_x}{\partial y} - \frac{\partial J_y}{\partial x} \right)$
 R*	Wellenwiderstand	A = O - V	
	Dedina	<i>ч —</i> А́	
K	nadius	111	

Symbol	Name	Einheit	Bemerkungen
σ	Oberflächenladungsdichte	$\frac{C}{m^2}$	
σ	Influenzladungsdichte	$\frac{C}{m^2}$	
σ	(spezifische) Leitfähig- keit	$\frac{S}{m} = \frac{A}{V m} = \frac{1}{\Omega m}$	Im Allgemeinen ist die Leitfähigkeit ein TEN- SOB
$\sigma_{Maxwell}$	Maxwellspannung (me- chanische Spannung)	$\frac{N}{m^2}$	$\sigma_{Maxwell} = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$
s	Schlaufe, ein Weg	m	
s	Spin	Js	
$dm{s}$	Längenelement	m	
S	Bezugssystem für relati- vistische Bechnung	_	
S'	Bezugssystem für relati- vistische Rechnung	_	
S^+	Bezugssystem für relati- vistische Bechnung	_	
S^{-}	Bezugssystem für relati- vistische Bechnung	_	
$oldsymbol{S}$	Poynting-Vektor	$rac{J}{m^2}=rac{N}{m\ s}$	
Θ	eine der Koordinaten bei Kugelkoordinaten	1	Winkel gemessen von der z-Achse (Breiten- grad, von Norden gemes- sen)
au	Mittlere Zeit zwischen zwei Stössen, Relaxati-	S)
au	Abklingzeitkonstante ei-	S	
au	Zeit unter Integralen	S	
t	Zeit	S	
Δt	kleine Zeitdifferenz	S	
T	Drehmoment	N m	
T	Periodendauer einer pe- riodischen Grösse	S	
T	Temperatur	К	
U	SPANNUNG, auch elek- trostatisches Potential	$\frac{J}{C} = V$	
U_{grav}	Gravitationspotential	$rac{J}{kg} = rac{m^2}{s^2}$	

Symbol Name		Einheit Bemerkungen		
U_C	Spannung am Kondensa-	$V = \frac{N m s}{A}$		
U_{eff}	effektive Spannung	V		
U_{rms}	RMS-Spannung	V	Leistungsgewichtete Spannung, «Root Mean Square»-Spannung	
U_{EMK}	elektromotorische Kraft	$V = \frac{N m s}{A}$		
U_{Hall}	Hallspannung	$V = \frac{N m s}{A}$		
U_R	Spannung am Wider- Stand	$V = \frac{Nm}{As}$		
$oldsymbol{v}_j$	Geschwindigkeit des <i>j</i> - ten Ladungsträgers	$\frac{\mathrm{m}}{\mathrm{s}}$		
v_s	Abziehgeschwindigkeit Klebestreifen	$\frac{\mathrm{m}}{\mathrm{s}}$		
V	Hilfsvektorpotential	$\begin{array}{rcl}T&m&=\newton/A&=\\&m & kg\end{array}$		
dV	Volumenelement	$\frac{\overline{A s^2}}{m^3}$		
ω	Kreisfrequenz	$\frac{1}{s}$	$\omega = 2\pi\nu$	
Ω	Larmorwinkelgeschwindig	keit		
w_{el}	elektrische Energiedich- te	$rac{J}{m^3}=rac{N}{m^2}$		
w_B	Energiedichte des Ma- gnetfeldes	$rac{J}{m^3}=rac{N}{m^2}$		
W	Arbeit	$\mathbf{J}=\mathbf{N}~\mathbf{m}$		
W_{el}	elektrische Arbeit	$\mathbf{J}=\mathbf{N}~\mathbf{m}$		
W_{mech}	mechanische Arbeit	$\mathbf{J}=\mathbf{N}~\mathbf{m}$		
W_{Batt}	Arbeit der Batterie	$\mathbf{J}=\mathbf{N}~\mathbf{m}$		
ξ	Ersatz für x in Integra- len	m		
χ	magnetische Suszeptibi- lität	1	Im Allgemeinen ist χ ein TENSOR	
χ_e	dielektrische Suszeptibi- lität	1	Im Allgemeinen ist χ_e ein TENSOR	
x	Ortsvektor	m		
x	Koordinate im karte- sischen Koordinatensys- tem	m		

Symbol Name		Einheit	Bemerkungen
X_C	Impedanz der Kapazität	Ω	
	oder kapazitiver Wi-		
	DERSTAND		
X_L	Impedanz der Spu-	Ω	
	le oder INDUKTIVER		
	WIDERSTAND		
y	Koordinate im karte-	m	
	sischen Koordinatensys-		
	tem		
z	Koordinate im karte-	m	
	sischen Koordinatensys-		
	tem		
Z	Kernladungszahl	1	

C. Mathematische Sätze

C.1. Ableitung

Abb. C.1.: Berechnung der Ableitung

d.h. die Steigung einer Kurve oder die Änderung finden

$$\frac{df(x)}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
(C.1.1)

Gesetze beim Ableiten:

$$\frac{d}{dx}\left(f\left(x\right)\cdot g\left(x\right)\right) = \left(\frac{d}{dx}f\left(x\right)\right)\cdot g\left(x\right) + f\left(x\right)\left(\frac{d}{du}g\left(x\right)\right)$$
(C.1.2)

$$\frac{d}{dx}f\left(g\left(x\right)\right) = \left(\frac{d}{du}f\left(u\right)\right)\frac{dg\left(x\right)}{dx} \text{ mit } u = g\left(x\right)$$
(C.1.3)

 \mathbf{S}

```
\begin{array}{rcl}
f(x) & f'(x) \\
\overline{\sin(x)} & \cos(x) \\
\cos(x) & -\sin(x) \\
\ln(x) & \frac{1}{x} \\
e^x & e^x
\end{array}
```

Tab.	C.1.:	Beispiele	für	Ableitungen
------	-------	-----------	-----	-------------

C.2. Differentiationsregeln

Einige Differentiationsregeln sind

Definition der Ableitung	u = f(t)	$u' = \frac{du}{dt} = f'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$
Partielle Ableitung	$u = f(x, y, z, \dots, t)$	$\frac{\frac{\partial u}{\partial x}}{\lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z, \dots, t) - f(x, y, z, \dots, t)}{\Delta x}}$
Andere Schreibweise	u = f(t)	$\frac{du}{dt} = \frac{d}{dt}u = \frac{d}{dt}f(t)$
Konstanter Faktor	$u = f(x), \ c = const$	$\frac{dcu}{dx} = c\frac{du}{dx}$
Summenregel	$u = f(t), \ v = g(t)$	$rac{d(u+v)}{dt} = rac{du}{dt} + rac{dv}{dt}$
Produktregel	$u = f(t), \ v = g(t)$	$rac{duv}{dt} = urac{dv}{dt} + vrac{du}{dt}$
Bruch	u = f(t), v = g(t)	$\frac{d}{dt}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dt} - u\frac{dv}{dt}}{v^2}$
Kettenregel	u = f(v), v = g(t)	$\frac{df(g(t))}{dt} = \frac{df(v)}{dv}\frac{dv}{dt} = \frac{df(v)}{dv}\frac{dg(t)}{dt}$
logarithmische Ableitung	u = f(x)	$rac{d\ln u}{dx} = rac{rac{dy}{dx}}{y}$

Tab. C.2.: Differentiationsregeln

C.3. Differentiation einfacher Funktionen

Funktion	n-te Ableitung
x^m	$m(m-1)(m-2)\dots(m-n+1)x^{m-n}$
	bei ganzzahligem m und n und
	m > n ist die n-te Ableitung null
$\ln x$	$(-1)^{n-1}(n-1)! x^{-n}$
$\log_a(x)$	$(-1)^{n-1} \frac{(n-1)!}{\ln a} x^{-n}$
e^{kx}	$k^n e^{kx}$
a^{kx}	$(k\ln a)^n a^{kx}$
$\sin(kx)$	$k^n \sin\left(kx + \frac{n\pi}{2}\right)$
$\cos(kx)$	$k^n \cos\left(kx + \frac{n\pi}{2}\right)$

Tab. C.3.: Ableitung einiger Funktionen

Beispiel:

$$y = (5x^2 - 3x + 2)^{6x}$$

soll differenziert werden. Wir verwenden die logarithmische Ableitung.

$$\ln(y) = 6x \ln(5x^2 - 3x + 2) \quad |\frac{d}{dx}$$
$$\frac{d}{dx} (\ln(y)) = \frac{d}{dx} \left(6x \ln(5x^2 - 3x + 2) \right) \quad |\text{ableiten, Produktregel rechts}$$
$$\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{d \ln(5x^2 - 3x + 2)}{dx} \quad |\text{Kettenregel ganz rechts}$$
$$\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{1}{5x^2 - 3x + 2} \frac{d(5x^2 - 3x + 2)}{dx}$$
$$\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{1}{5x^2 - 3x + 2} (10x - 3) \quad |*y|$$
$$\frac{dy}{dx} = y' = 6y \ln(5x^2 - 3x + 2) + 6yx \frac{10x - 3}{5x^2 - 3x + 2} \quad |\text{y einsetzen}|$$

$$y' = 6(5x^2 - 3x + 2)^{6x} \ln(5x^2 - 3x + 2) + 6(5x^2 - 3x + 2)^{6x} x \frac{10x - 3}{5x^2 - 3x + 2}$$
$$y' = 6(5x^2 - 3x + 2)^{6x} \left[\ln(5x^2 - 3x + 2) + \frac{10x - 3}{5x^2 - 3x + 2} \right]$$

C.4. Taylorreihe und Reihen

Definition

$$f(x) = f(a) + \frac{x-a}{1!}f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + \dots$$

andere Schreibweise

$$f(x + \Delta x) = f(x) + \frac{\Delta x}{1!}f'(x) + \frac{(\Delta x)^2}{2!}f''(x) + \dots + \frac{(\Delta x)^n}{n!}f^{(n)}(x) + \dots$$

Beispiel

$$f(x + \Delta x) = \sin(x + \Delta x)$$

= $\sin(x) + \frac{\Delta x}{1!} \cos(x) + \frac{(\Delta x)^2}{2!} f''(x) + \dots$
+ $(-1)^n \frac{(\Delta x)^{2n}}{(2n)!} \sin(x) + \dots + (-1)^n \frac{(\Delta x)^{2n+1}}{(2n+1)!} \cos(x) + \dots$

Spezialfall: x = 0

$$\sin(\Delta x) = \Delta x - \frac{1}{3!} (\Delta x)^5 + \frac{1}{3!} (\Delta x)^5 + \dots + (-1)^n \frac{(\Delta x)^{2n+1}}{(2n+1)!} + \dots$$

C.5. Einige Reihen

Funktion	Potenzreihe	Konvergenz
$(1\pm x)^m$	$1 \pm mx + \frac{m(m-1)}{2!}x^2 \pm \frac{m(m-1)(m-2)}{3!} + \dots + (\pm 1)^n \frac{m(m-1)\dots(m-n+1)}{n!}x^n + \dots$	$ x \leq 1$
$\sin(x + \Delta x)$	$\sin(x) + \frac{\Delta x}{1!} \cos(x) + \frac{(\Delta x)^2}{2!} f''(x) + \dots + \frac{(\Delta x)^n}{(n)!} \sin(x + \frac{\pi n}{2}) + \dots$	$ \Delta x < \infty$
$\cos(x + \Delta x)$	$\cos(x) - \Delta x \sin(x) - \frac{\Delta x^2 \cos(x)}{2!} + \frac{\Delta x^3 \sin(x)}{3!} + \frac{\Delta x^4 \cos(x)}{4!} - \dots + \frac{\Delta x^n \cos\left(x + \frac{n\pi}{2}\right)}{n!} \pm \dots$	$ \Delta x < \infty$
$\tan x$	$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \frac{62}{2835}x^9 \dots$	$ x < \frac{\pi}{2}$
$\cot x$	$\frac{1}{x} - \left[\frac{x}{3} + \frac{x^3}{45} + \frac{2x^5}{945} + \frac{x^7}{4725} \dots\right]$	$0 < x < \pi$
e^x	$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$	$ x < \infty$
$a^x = e^{x \ln a}$	$1 + \frac{x \ln a}{1!} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \frac{(x \ln a)^4}{4!} + \dots$	$ x < \infty$
$\ln x$	$2\left[\frac{x-1}{x+1} + \frac{(x-1)^3}{3(x+1)^3} + \frac{(x-1)^5}{5(x+1)^5} + \dots + \frac{(x-1)^{2n+1}}{(2n+1)(x+1)^{2n+1}} + \dots\right]$	x > 0
$\ln x$	$ (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \dots + (-1)^{n+1} \frac{(x-1)^n}{n} + \dots $	$0 < x \le 2$
$\ln x$	$\frac{\frac{x-1}{x} + \frac{1}{2}\left(\frac{x-1}{x}\right)^2 + \frac{1}{3}\left(\frac{x-1}{x}\right)^3 + \dots + \frac{1}{n}\left(\frac{x-1}{x}\right)^n + \dots$	$x > \frac{1}{2}$
$\ln(1+x)$	$ \begin{array}{c} x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \\ + (-1)^{n+1} \frac{x^n}{n} + \dots \end{array} $	$-1 < x \le 1$
$\arcsin x$	$x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3 x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 x^5}{2 \cdot 4 \cdot 6 \cdot 7} + \dots$	x < 1
$\arccos x$	$\frac{\pi}{2} - \left[x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^5}{2 \cdot 4 \cdot 6 \cdot 7} + \dots \right]$	x < 1
$\arctan x$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + \ldots$	x < 1

Tab.	C.4.:	Reihenentwicklungen
------	-------	---------------------

C.6. Ableitungen zur näherungsweisen Berechnung von Funktionswerten

Eine allgemeine Funktion f(x), die genügend oft stetig differenzierbar ist, soll in der Nähe des Wertes x_0 angenähert werden (Siehe auch die Ausführungen über Taylorreihen in C.4).

Abb. C.2.: Approximationen der Funktion f(x) = cos(x) mit dem Grad 1, 2 und 3.

Abbildung C.2 zeigt, wie die Funktion $\cos(x)$ an der Stelle $x_0 = -\pi/4$ angenähert wird. Die Funktion und die ersten drei Ableitungen sind

$$f(x) = \cos(x) \qquad \qquad \frac{d}{dx}f(x) = -\sin(x) \qquad (C.6.1)$$
$$\frac{d^2}{dx^2}f(x) = -\cos(x) \qquad \qquad \frac{d^3}{dx^3}f(x) = \sin(x)$$

In nullter Näherung würde man sagen, dass $\cos(x) = 1/\sqrt{2} + O(1)$ ist in der Umgebung von $x_0 = -\pi/4$. Das Symbol O(1) bedeutet, dass Terme von x mit dem Exponenten grösser oder gleich 1 vernachlässigt wurden.

In erster oder linearer Näherung hätten wir $\cos(x) = 1/\sqrt{2} - 1/\sqrt{2}(x - (-\pi/4)) + O(2) = 1/\sqrt{2}(1 - (x + \pi/4)) + O(2)$. Hier sind Terme mit dem Exponenten 2 oder mehr vernachlässigt worden.

Die nächste Näherung, die 2., nimmt auch die quadratischen oder paraboloiden Anteile mit. Hier wäre $\cos(x) = 1/\sqrt{2} - 1/\sqrt{2}(x - (-\pi/4)) - 1/\sqrt{2}(x - (-\pi/4))^2 + O(3) = 1/\sqrt{2}(1 - (x + \pi/4) - (x + \pi/4))^2 + O(3).$

Allgemein sind die verschiedenen Approximationen

$$\begin{aligned} f(x_{0} + \Delta x) &\approx f_{0}(\Delta x) = f(x_{0}) + O(1) \end{aligned} \tag{C.6.2} \\ f(x_{0} + \Delta x) &\approx f_{1}(\Delta x) = f(x_{0}) + \left. \frac{df(x)}{dx} \right|_{x=x_{0}} \Delta x + O(2) \\ f(x_{0} + \Delta x) &\approx f_{2}(\Delta x) = f(x_{0}) + \left. \frac{df(x)}{dx} \right|_{x=x_{0}} \Delta x + \left. \frac{d^{2}f(x)}{dx^{2}} \right|_{x=x_{0}} \Delta x^{2} + O(3) \\ f(x_{0} + \Delta x) &\approx f_{3}(\Delta x) = f(x_{0}) + \left. \frac{df(x)}{dx} \right|_{x=x_{0}} \Delta x + \left. \frac{d^{2}f(x)}{dx^{2}} \right|_{x=x_{0}} \Delta x^{2} + \left. \frac{d^{3}f(x)}{dx^{3}} \right|_{x=x_{0}} \Delta x^{3} + O(4) \end{aligned}$$

Mit $x = x_0 + \Delta x$ lauten die Gleichungen

$$\begin{aligned} f(x) &\approx f_0(x) = f(x_0) + O(1) \\ f(x) &\approx f_1(x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} (x - x_0) + O(2) \\ f(x) &\approx f_2(x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} (x - x_0) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=x_0} (x - x_0)^2 + O(3) \\ f(x) &\approx f_3(x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} (x - x_0) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=x_0} (x - x_0)^2 + \left. \frac{d^3 f(x)}{dx^3} \right|_{x=x_0} (x - x_0)^3 + O(4) \end{aligned}$$

oder allgemein

$$f(x) = \sum_{j=0}^{\infty} \frac{1}{j!} \left. \frac{d^j f(x)}{dx^j} \right|_{x=x_0} (x-x_0)^j$$
(C.6.4)

Dabei ist $j! = 1 \cdot 2 \cdot \ldots \cdot j$ die FAKULTÄT von j, Per Definition ist 0! = 1. Die nullte-Ableitung ist einfach die Funktion selber.

Als Beispiel betrachten wir $\cos(x)$ an der Stelle $x_0 = -\pi/4$. Wir haben

$$f(-\pi/4) = \frac{1}{\sqrt{2}} \qquad \qquad \frac{df(x)}{dx}\Big|_{x=-\pi/4} = -\frac{1}{\sqrt{2}} \qquad (C.6.5)$$
$$\frac{d^2f(x)}{dx^2}\Big|_{x=-\pi/4} = -\frac{1}{\sqrt{2}} \qquad \qquad \frac{d^3f(x)}{dx^3}\Big|_{x=-\pi/4} = \frac{1}{\sqrt{2}}$$

und

$$f(x) \approx f_0(x) = \frac{1}{\sqrt{2}} + O(1)$$
(C.6.6)

$$f(x) \approx f_1(x) = f(-\pi/4) + \left. \frac{df(x)}{dx} \right|_{x=-\pi/4} (x + \pi/4) + O(2)$$

$$f(x) \approx f_2(x) = f(-\pi/4) + \left. \frac{df(x)}{dx} \right|_{x=-\pi/4} (x + \pi/4) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=-\pi/4} (x + \pi/4)^2 + O(3)$$

$$f(x) \approx f_3(x) = f(-\pi/4) + \left. \frac{df(x)}{dx} \right|_{x=-\pi/4} (x + \pi/4) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=-\pi/4} (x + \pi/4)^2 + \left. \frac{d^3 f(x)}{dx^3} \right|_{x=-\pi/4} (x + \pi/4)^3 + O(4)$$

Diese Kurven werden in Abbildung C.2 gezeigt.

©2005-2020 Ulm University, Othmar Marti, C) BY-SA

Abb. C.3.: Approximationen der Funktion f(x) = cos(x) mit dem Grad 1, 2 und 3.

Abbildung C.3 zeigt die Approximation für $x_0 = -\pi/2$. Hier ist der Funktionswert wie auch die zweite Ableitung null, so dass eine lineare Approximation resultiert. Erst die dritte Ableitung ist wieder ungleich null.

Abb. C.4.: Approximationen der Funktion f(x) = cos(x) mit dem Grad 1, 2 und 3.

Abbildung C.4 zeigt die Approximationen bei $x_0 = 0$. Hier ist die erste und die dritte Ableitung null, so dass nur die zweite übrig bleibt.

C.7. Vektoren

beschreiben Orte oder gerichtete Grössen

Abb. C.5.: Definition von Vektoren. r ist ein Ortsvektor, v der Geschwindigkeitsvektor.

$$\overrightarrow{r} = oldsymbol{r} = oldsymbol{\left(egin{array}{c} x \ y \end{array}
ight)} \ \overrightarrow{v} = oldsymbol{v} = oldsymbol{\left(egin{array}{c} v_x \ v_y \end{array}
ight)} = oldsymbol{\left(egin{array}{c} \dot{x} \ \dot{y} \end{array}
ight) \end{cases}$$

Die Ableitung nach der Zeit wird auch als

$$\dot{\boldsymbol{x}} = \frac{d\boldsymbol{x}}{dt}$$

geschrieben. Addition:

$$\boldsymbol{a} + \boldsymbol{b} = \begin{pmatrix} a_x \\ a_y \\ b_z \end{pmatrix} + \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_x + b_x \\ a_y + b_y \\ d_z + b_z \end{pmatrix}$$
(C.7.1)

Versuch 99: Versuch zur Vorlesung: Kraft-Polygon (Versuchskarte M-28, Video)

Versuch 100: Versuch zur Vorlesung:

Kraft-Polygon (Versuchskarte M-28, Video (VPN oder intern))

Länge eines Vektors

$$|\mathbf{a}| = \sqrt{a_y^2 + b_y^2 + a_z^2} \tag{C.7.2}$$

Skalarprodukt

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_x b_x + a_y b_z + a_z b_z = |\boldsymbol{a}| |\boldsymbol{b}| \cdot \cos(\angle \boldsymbol{a}, \boldsymbol{b})$$
 (C.7.3)

der Einheitsvektor \boldsymbol{e}_x ist ein Vektor der Länge 1, der in die x-Richtung zeigt. Vektorprodukt

$$\boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} a_x \\ a_y \\ b_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$
(C.7.4)

C.7.1. Gesetze

Vertauschung der Reihenfolge (Kommutationsgesetze)

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{a} \tag{C.7.5}$$

$$\boldsymbol{a} \times \boldsymbol{b} = -\boldsymbol{b} \times \boldsymbol{a} \tag{C.7.6}$$

Zwei Vektoren sind orthogonal, wenn

$$\boldsymbol{a} \cdot \boldsymbol{b} = 0 \tag{C.7.7}$$

Sie sind kollinear, wenn

$$\boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{0} \tag{C.7.8}$$

Für die Orientierung der Vektoren gilt:

$$\boldsymbol{a} \times \boldsymbol{b} \perp \boldsymbol{a}$$
 (C.7.9)

$$\boldsymbol{a} \times \boldsymbol{b} \perp \boldsymbol{b}$$
 (C.7.10)

$$|\boldsymbol{a} \times \boldsymbol{b}| = |\boldsymbol{a}| |\boldsymbol{b}| \cdot \sin(\angle a, b)$$
(C.7.11)

C.7.1.1. Orthogonalität zweier Vektoren testen

Gegeben seien zwei Vektoren a und b. Die Projektion von a auf b, das heisst, die Komponente von a in die Richtung von b ist

$$a_b = a_{\text{in Richtung } \boldsymbol{b}} = \boldsymbol{a} \cdot \boldsymbol{e}_b = \boldsymbol{a} \cdot \frac{\boldsymbol{b}}{|\boldsymbol{b}|} = \boldsymbol{a} \cdot \frac{\boldsymbol{b}}{b}$$
 (C.7.12)

In kartesischen Koordinaten heisst dies

$$a_b = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{b_x^2 + b_y^2 + b_z^2}}$$
(C.7.13)

Beispiel:

Sei $\boldsymbol{a} = (3, 2, -2)$ und $\boldsymbol{b} = (-2, 0, 1)$. Dann ist

$$a_b = \frac{3 \cdot (-2) + 2 \cdot 0 + (-2) \cdot 2}{\sqrt{(-2)^2 + 0^2 + 2^2}} = \frac{-6 - 4}{\sqrt{8}} = -\frac{10}{2\sqrt{2}} = -\frac{5}{\sqrt{2}}$$

Beispiel:

Sei a = (3, 2, -2) und b = (0, 0, 1). Dann ist

$$a_b = \frac{3 \cdot 0 + 2 \cdot 0 + (-2) \cdot 2}{\sqrt{0^2 + 0^2 + 1^2}} = \frac{-2}{\sqrt{1}} = -2$$

Dies ist die z-Komponente von \boldsymbol{a} .

C.7.2. Eigenschaften von Kurven im Raum

Die Ausführungen folgen [Bro+08, Seite 214]. Eine Kurve sei durch einen Parameter t gegeben

$$\boldsymbol{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}.$$
 (C.7.14)

An einem Punkt $\boldsymbol{r}(t)$ können die folgenden Richtungen und Grössen definiert werden:

Tangente Die Geradengleichung der TANGENTE mit dem Parameter λ ist

$$\boldsymbol{R}_{T,t_0}(\lambda) = \boldsymbol{r}(t_0) + \lambda \left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0}$$
(C.7.15)

Normalenebene Die Ebene, die durch den Punkt $\mathbf{r}(t)$ und den Tangentenvektor $\mathbf{R}_{T,t_0}(\lambda)$ gegeben ist, heisst NORMALENEBENE und ist durch die Ebenengleichung

$$\left(\boldsymbol{R}_{NE,t_0} - \boldsymbol{r}(t_0)\right) \cdot \left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0} = 0 \tag{C.7.16}$$

gegeben.

Schmiegungsebene Die SCHMIEGUNGSEBENE geht durch drei Punkte $\boldsymbol{r}(t_0)$ (Punkt M), $\boldsymbol{r}(t_1)$ (Punkt N) und $\boldsymbol{r}(t_2)$ (Punkt P). Die Lage der Ebene wird durch die zwei gleichzeitigen Grenzprozesse $\lim_{t_1 \to t_0} \boldsymbol{r}(t_1)$ und $\lim_{t_2 \to t_0} \boldsymbol{r}(t_2)$ definiert. Die Schmiegungsebene \boldsymbol{R}_{SE,t_0} am Punkt $\boldsymbol{r}(t_0)$ enthält den Tangentenvektor $\boldsymbol{R}_{T,t_0}(\lambda)$.

$$\left(\boldsymbol{R}_{SE,t_0} - \boldsymbol{r}(t_0)\right) \times \left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0} \cdot \left. \frac{d^2 \boldsymbol{r}(t)}{dt^2} \right|_{t=t_0} = 0 \tag{C.7.17}$$

Hauptnormale Die HAUPTNORMALE \mathbf{R}_{HN,t_0} ist die Schnittgerade zwischen Normalenebene und Schmiegungsebene. Sie steht senkrecht auf dem Tangente $\mathbf{R}_{T,t_0}(\lambda)$.

$$\boldsymbol{R}_{HN,t_0}(\lambda) = \boldsymbol{r}(t_0) + \lambda \left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0} \times \left(\left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0} \times \left. \frac{d^2 \boldsymbol{r}(t)}{dt^2} \right|_{t=t_0} \right) \quad (C.7.18)$$

Binormale Die BINORMALE \mathbf{R}_{BN,t_0} ist die Senkrechte auf die Schmiegungsebene \mathbf{R}_{SE,t_0} . Sie ist sowohl senkrecht zur Tangente $\mathbf{R}_{T,t_0}(\lambda)$ und zur Hauptnormalen $\mathbf{R}_{HN,t_0}(\lambda)$.

$$\boldsymbol{R}_{BN,t_0}(\lambda) = \boldsymbol{r}(t_0) + \lambda \left(\left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0} \times \left. \frac{d^2 \boldsymbol{r}(t)}{dt^2} \right|_{t=t_0} \right)$$
(C.7.19)

rektifizierende Ebene Die REKTIFIZIERENDE EBENE \mathbf{R}_{RE,t_0} wird durch die Tangente $\mathbf{R}_{T,t_0}(\lambda)$ und die Binormale $\mathbf{R}_{BN,t_0}(\lambda)$ aufgespannt.

$$\left(\boldsymbol{R}_{RE,t_0} - \boldsymbol{r}(t_0)\right) \times \left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0} \cdot \left(\left. \frac{d\boldsymbol{r}(t)}{dt} \right|_{t=t_0} \times \left. \frac{d^2 \boldsymbol{r}(t)}{dt^2} \right|_{t=t_0} \right) = 0 \quad (C.7.20)$$

C.8. Vektoridentitäten

(Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 190])

Im Folgenden sind $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ und \boldsymbol{f} Vektoren oder vektorielle Funktionen, a, b, c und f ihre Längen, k eine Zahl und $\varphi(\boldsymbol{r})$ eine skalare Funktion. Die Komponenten der Vektoren in kartesischen Koordinaten sind

$$\boldsymbol{a} = \left(egin{array}{c} a_x \\ a_y \\ a_z \end{array}
ight)$$

Für die anderen Vektoren werden die Komponenten analog geschrieben.

C.8.1. Produkte mit Vektoren

Doppeltes Vektorprodukt

$$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = (\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b} - (\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$$
 (C.8.1)

Das Spatprodukt oder gemischte Produkt berechnet das VOLUMEN des durch a, b, c aufgespannten Spates. Das Vorzeichen ist + bei gerader Permutation von a, b, c und – bei ungerader Permutation.

$$0 = \frac{da^2}{dt} = \frac{d}{dt} \left(\boldsymbol{a} \cdot \boldsymbol{a} \right) = \frac{d\boldsymbol{a}}{dt} \cdot \boldsymbol{a} + \boldsymbol{a} \cdot \frac{d\boldsymbol{a}}{dt} = \frac{d\boldsymbol{a}}{dt} \cdot \boldsymbol{a} \qquad \Rightarrow \qquad \frac{d\boldsymbol{a}}{dt} \perp \boldsymbol{a}$$

$$(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = (\boldsymbol{b} \times \boldsymbol{c}) \cdot \boldsymbol{a}$$

= $(\boldsymbol{c} \times \boldsymbol{a}) \cdot \boldsymbol{b}$
= $-(\boldsymbol{b} \times \boldsymbol{a}) \cdot \boldsymbol{c}$
= $-(\boldsymbol{c} \times \boldsymbol{b}) \cdot \boldsymbol{a}$
= $-(\boldsymbol{a} \times \boldsymbol{c}) \cdot \boldsymbol{b}$
= $a_x b_y c_z + a_y b_z c_x + a_z b_x c_y - (a_z b_y c_x + a_x b_z c_y + a_y b_x c_z)$ (C.8.2)

Drei Vektoren sind komplanar, wenn

$$(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = 0 \tag{C.8.3}$$

Jacobi-Identität

$$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) + \boldsymbol{b} \times (\boldsymbol{c} \times \boldsymbol{a}) + \boldsymbol{c} \times (\boldsymbol{a} \times \boldsymbol{b}) = 0$$
 (C.8.4)

Lagrangesche Identität

$$(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{c} \times \boldsymbol{f}) = (\boldsymbol{a} \cdot \boldsymbol{c}) (\boldsymbol{b} \cdot \boldsymbol{f}) - (\boldsymbol{a} \cdot \boldsymbol{f}) (\boldsymbol{b} \cdot \boldsymbol{c})$$
 (C.8.5)

Vierfaches Vektorprodukt

$$(\boldsymbol{a} \times \boldsymbol{b}) \times (\boldsymbol{c} \times \boldsymbol{f}) = ((\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{f}) \boldsymbol{c} - ((\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}) \boldsymbol{f}$$
 (C.8.6)

C.8.2. Ableiten von Vektoren

Ableiten eines Vektors

$$\frac{d}{dt}\boldsymbol{a} = \frac{d}{dt} \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} \frac{da_x}{dt} \\ \frac{da_y}{dt} \\ \frac{da_z}{dt} \end{pmatrix} = \begin{pmatrix} \dot{a_x} \\ \dot{a_y} \\ \dot{a_z} \end{pmatrix}$$
(C.8.7)

Ableitung eines Produktes

$$\frac{d}{dt}\left(\varphi(t)\boldsymbol{a}(t)\right) = \frac{d\varphi}{dt}\boldsymbol{a} + \varphi\frac{d}{dt}\boldsymbol{a} \qquad (C.8.8)$$

Ableitung des Skalarproduktes

$$\frac{d}{dt}\left(\boldsymbol{a}\cdot\boldsymbol{b}\right) = \frac{d\boldsymbol{a}}{dt}\cdot\boldsymbol{b} + \boldsymbol{a}\cdot\frac{d\boldsymbol{b}}{dt}$$
(C.8.9)

Ableitung des Vektorproduktes

$$\frac{d}{dt} \left(\boldsymbol{a} \times \boldsymbol{b} \right) = \frac{d\boldsymbol{a}}{dt} \times \boldsymbol{b} + \boldsymbol{a} \times \frac{d\boldsymbol{b}}{dt}$$
(C.8.10)

Ableitung eines Vektors mit konstantem Betrag. Hier ist $\boldsymbol{a} \cdot \boldsymbol{a} = a^2 = const$. Aus Gleichung (C.8.9) folgt

(C.8.11)

Taylorentwicklung einer Vektorfunktion

$$\boldsymbol{a}(t+\tau) = \boldsymbol{a}(t) + \tau \left. \frac{d\boldsymbol{a}}{dt} \right|_{t} + \frac{\tau^2}{2} \left. \frac{d^2 \boldsymbol{a}}{dt^2} \right|_{t} + \ldots + \frac{\tau^n}{n!} \left. \frac{d^n \boldsymbol{a}}{dt^n} \right|_{t} + \ldots$$
(C.8.12)

C.8.3. Vektorableitungen bei Skalarfeldern

(Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 668]) Ableitung eines skalaren Feldes nach einer Richtung

$$\frac{\partial \varphi(\boldsymbol{r})}{\partial \boldsymbol{c}} = \lim_{\varepsilon \to 0} \frac{\varphi(\boldsymbol{r} + \varepsilon \boldsymbol{c}) - \varphi(\boldsymbol{r})}{\varepsilon}$$
(C.8.13)

Ableitung $\frac{\partial \varphi(r)}{\partial e_c}$ in Richtung des Einheitsvektors e_c in Richtung von c

$$\frac{\partial \varphi(\boldsymbol{r})}{\partial \boldsymbol{c}} = |\boldsymbol{c}| \frac{\partial \varphi(\boldsymbol{r})}{\partial \boldsymbol{e}_{\boldsymbol{c}}}$$
(C.8.14)

Richtungsableitung einer skalaren Funktion im Vergleich zur Richtung mit dem stärksten Abfall (Einheitsvektor n)

$$\frac{\partial \varphi(\boldsymbol{r})}{\partial \boldsymbol{e_c}} = \frac{\partial \varphi(\boldsymbol{r})}{\partial \boldsymbol{n}} \cos\left(\angle \boldsymbol{e_c}, \boldsymbol{n}\right) \tag{C.8.15}$$

C.8.4. Vektorableitungen bei Vektorfeldern

Ableitung eines Vektorfeldes \boldsymbol{a} nach einer Richtung \boldsymbol{c}

$$\frac{\partial \boldsymbol{a}(\boldsymbol{r})}{\partial \boldsymbol{c}} = \lim_{\varepsilon \to 0} \frac{\boldsymbol{a}(\boldsymbol{r} + \varepsilon \boldsymbol{c}) - \boldsymbol{a}(\boldsymbol{r})}{\varepsilon}$$
(C.8.16)

Ableitung $\frac{\partial a(r)}{\partial e_c}$ in Richtung des Einheitsvektors e_c in Richtung von c

$$\frac{\partial \boldsymbol{a}(\boldsymbol{r})}{\partial \boldsymbol{c}} = |\boldsymbol{c}| \frac{\partial \boldsymbol{a}(\boldsymbol{r})}{\partial \boldsymbol{e}_{\boldsymbol{c}}} \tag{C.8.17}$$

Richtungsableitung einer Vektorfunktion

$$\frac{\partial \boldsymbol{a}(\boldsymbol{r})}{\partial \boldsymbol{c}} = (\boldsymbol{c} \cdot \operatorname{\mathbf{grad}}) \boldsymbol{a}$$

$$= \frac{1}{2} (\operatorname{\mathbf{rot}} (\boldsymbol{a} \times \boldsymbol{c}) + \operatorname{\mathbf{grad}} (\boldsymbol{c} \cdot \boldsymbol{a}) + \boldsymbol{c} \cdot \operatorname{div} \boldsymbol{a} - \boldsymbol{a} \cdot \operatorname{div} \boldsymbol{c}$$

$$-\boldsymbol{c} \times \operatorname{\mathbf{rot}} \boldsymbol{a} - \boldsymbol{a} \times \operatorname{\mathbf{rot}} \boldsymbol{c})$$
(C.8.18)

Gradient eines Produktes

grad
$$(\varphi_1 \varphi_2) = \varphi_1 \operatorname{grad} \varphi_2 + \varphi_2 \operatorname{grad} \varphi_1$$
 (C.8.19)

Kettenregel beim Gradienten

grad
$$\varphi_1(\varphi_2) = \frac{d\varphi_1}{d\varphi_2}$$
 grad φ_2 (C.8.20)

Gradient eines Skalarproduktes
grad $(\boldsymbol{a} \cdot \boldsymbol{b}) = (\boldsymbol{a} \cdot \text{grad}) \boldsymbol{b} + (\boldsymbol{b} \cdot \text{grad}) \boldsymbol{a} + \boldsymbol{a} \times \text{rot} \boldsymbol{b} + \boldsymbol{b} \times \text{rot} \boldsymbol{a}$ (C.8.21)

Gradient eines Skalar
produktes eines konstanten Vektors ${\pmb k}$ mit einem Ortsvekto
r ${\pmb r}$

$$\mathbf{grad} \ (\boldsymbol{r} \cdot \boldsymbol{k}) = \boldsymbol{k} \tag{C.8.22}$$

Gradient eines Vektors $\boldsymbol{v} = \left(v_x, v_y, v_z\right)^T$

grad
$$\boldsymbol{v} = \begin{pmatrix} \frac{\partial v_x(x,y,z)}{\partial x} & \frac{\partial v_x(x,y,z)}{\partial y} & \frac{\partial v_x(x,y,z)}{\partial z} \\ \frac{\partial v_y(x,y,z)}{\partial x} & \frac{\partial v_y(x,y,z)}{\partial y} & \frac{\partial v_y(x,y,z)}{\partial z} \\ \frac{\partial v_z(x,y,z)}{\partial x} & \frac{\partial v_z(x,y,z)}{\partial y} & \frac{\partial v_z(x,y,z)}{\partial z} \end{pmatrix}$$
 (C.8.23)

Divergenz eines Produktes

div
$$(\varphi \boldsymbol{a}) = \varphi \operatorname{div} \boldsymbol{a} + \boldsymbol{a} \operatorname{\mathbf{grad}} \varphi$$
 (C.8.24)

Divergenz eines Skalarproduktes eines konstanten Vektors ${\pmb k}$ mit einem Ortsvektor ${\pmb r}$

div
$$(\boldsymbol{r} \cdot \boldsymbol{k}) = \frac{\boldsymbol{r} \cdot \boldsymbol{k}}{|\boldsymbol{r}|}$$
 (C.8.25)

Divergenz eines Vektorproduktes

div
$$(\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{b} \cdot \operatorname{rot} \boldsymbol{a} - \boldsymbol{a} \cdot \operatorname{rot} \boldsymbol{b}$$
 (C.8.26)

Rotation eines Produktes

$$\mathbf{rot} \ (\varphi \mathbf{a}) = \varphi \, \mathbf{rot} \ \mathbf{a} + \, \mathbf{grad} \ \varphi \times \mathbf{a} \tag{C.8.27}$$

Rotation eines Vektorproduktes

rot
$$(\boldsymbol{a} \times \boldsymbol{b}) = (\boldsymbol{b} \cdot \operatorname{\mathbf{grad}}) \boldsymbol{a} - (\boldsymbol{a} \cdot \operatorname{\mathbf{grad}}) \boldsymbol{b} + \boldsymbol{a} \operatorname{div} \boldsymbol{b} - \boldsymbol{b} \operatorname{div} \boldsymbol{a}$$
 (C.8.28)

Rotation eines Potentialfeldes

rot
$$(\operatorname{grad} \varphi) = \mathbf{0} \quad \forall \varphi \quad (C.8.29)$$

Divergenz einer Rotation

div
$$(\mathbf{rot} \ \boldsymbol{a}) = 0 \qquad \forall \boldsymbol{a}$$
 (C.8.30)

Rotation einer Rotation

$$\mathbf{rot} \ (\mathbf{rot} \ \mathbf{a}) = \mathbf{grad} \ (\operatorname{div} \ \mathbf{a}) - \operatorname{div} \ (\mathbf{grad} \ \mathbf{a}) \tag{C.8.31}$$

Laplace-Operator in kartesischen Koordinaten

$$\Delta f = (\operatorname{div} \operatorname{\mathbf{grad}})f = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \quad (C.8.32)$$

©2005-2020 Ulm University, Othmar Marti, CC) BY-SA

und für Vektorfunktionen

$$\Delta \boldsymbol{a} = (\text{div } \mathbf{grad}) \boldsymbol{a} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \boldsymbol{a} = \frac{\partial^2 \boldsymbol{a}}{\partial x^2} + \frac{\partial^2 \boldsymbol{a}}{\partial y^2} + \frac{\partial^2 \boldsymbol{a}}{\partial z^2} \quad (C.8.33)$$

C.8.5. Graphische Darstellung der Ableitungen in drei Dimensionen

C.8.5.1. Gradient in kartesischen Koordinaten

Wenn wir eine Funktion y = f(x) als Höhenprofil in einer zweidimensionalen Landschaft auffassen, dann ist

$$\frac{df(x)}{dx}$$

die Steigung dieses Profiles an der Stelle x. f(x) ist die Höhenangabe über einer eindimensionalen Grundfläche.

Wir können eine Funktion f(x, y) als Höhenangabe über einer zweidimensionalen Grundfläche betrachten.

Abb. C.6.: Gradient als Richtung der stärksten Steigung

Die Funktion **Gradient** berechnet das stärkste Gefälle einer Höhenlandschaft über einer zweidimensionalen Ebene. Sie ist definiert:

grad
$$f = \begin{pmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{pmatrix}$$

Eine skalare Funktion f(x, y, z) definiert eine "Höhenlandschaft" über einer dreidimensionalen Grundfläche. Sie kann nicht mit einfachen Mitteln visualisiert werden. Hier ist die Definition

Gradient einer skalaren Funktion f(x, y, z) von drei Variablen

$$\mathbf{grad} \ f = \begin{pmatrix} \frac{\partial f(x,y,z)}{\partial x} \\ \frac{\partial f(x,y,z)}{\partial y} \\ \frac{\partial f(x,y,z)}{\partial z} \end{pmatrix}$$

C.8.5.2. Divergenz in kartesischen Koordinaten

Wir betrachten eine Vektorfunktion

$$\boldsymbol{f}(x,y) = \left(\begin{array}{c} f_x(x,y) \\ f_y(x,y) \end{array}\right)$$

Abb. C.7.: VEKTORFELD mit Umrandung

Wenn wir die Umrandung betrachten, dann sehen wir, dass netto etwas aus ihr herausfliesst. Die "Fläche" ist dx. In die x-Richtung heisst das, dass

$$F_x \cdot dx = f_x(x + dx, y) - f_x(x, y) \Longrightarrow F_x = \frac{f_x(x + dx, y) - f_x(x, y)}{dx}$$

fliesst.

In die y-Richtung müssen wir die schräg liegenden Vektoren aufteilen. Die x-Komponente, $f_x(x, y)$ und $f_x(x, y + dy)$ ist parallel zur oberen und unteren Umrandung. Sie trägt nichts zum Fluss bei. Also gilt auch für die y-Richtung

$$F_y \cdot dy = f_y(x, y + dy) - f_y(x, y) \Longrightarrow F_y = \frac{f_y(x, y + dy) - f_y(x, y)}{dy}$$

Die Grösse $F = F_x + F_y$ nennen wir Divergenz oder Quellstärke. Mit

$$\lim_{dx\to 0} F_x = \lim_{dx\to 0} \frac{f_x(x+dx,y) - f_x(x,y)}{dx} = \frac{\partial f_x(x,y)}{\partial x}$$

und

$$\lim_{dy\to 0} F_y = \lim_{dy\to 0} \frac{f_y(x, y + dy) - f_y(x, y)}{dy} = \frac{\partial f_y(x, y)}{\partial y}$$

erhalten wir für die

Divergenz oder Quellstärke in 2 Dimensionen $\operatorname{div} \boldsymbol{f}(x,y) = \frac{\partial f_x(x,y)}{\partial x} + \frac{\partial f_y(x,y)}{\partial y}$

Eine analoge Überlegung kann man sich in drei Dimensionen machen. Die Vektorfunktion ist dann

$$\boldsymbol{f}(x,y,z) = \left(\begin{array}{c} f_x(x,y,z) \\ f_y(x,y,z) \\ f_z(x,y,z) \end{array}\right)$$

Wir definieren

Divergenz einer Vektorfunktion f(x, y, z) in drei Dimensionen

div
$$\mathbf{f}(x, y, z) = \frac{\partial f_x(x, y, z)}{\partial x} + \frac{\partial f_y(x, y, z)}{\partial y} + \frac{\partial f_z(x, y, z)}{\partial z}$$

C.8.5.3. Rotation in kartesischen Koordinaten

Wir betrachten wieder eine zweidimensionale Vektorfunktion

$$\boldsymbol{f}(x,y) = \left(\begin{array}{c} f_x(x,y) \\ f_y(x,y) \end{array}\right)$$

Abb. C.8.: Drehung eines schwimmenden Klotzes, Rotation

Wir nehmen nun an, dass die durch f(x, y) definierten Strömungen den rechteckigen schwimmenden Klotz beeinflussen. So wie die Vektoren gezeichnet sind, wird er sich drehen. Seine Drehachse zeigt aus der Zeichenebene heraus, also die z-Richtung. Die Drehung hat etwas zu tun mit den Grössen

$$R_y dx = f_y(x + dx, y) - f_y(x, y) \longrightarrow R_x = \frac{f_y(x + dx, y) - f_y(x, y)}{dx}$$

und

$$R_x dy = -\left(f_x(x, y + dy) - f_x(x, y)\right) \Longrightarrow R_x = -\frac{f_x(x, y + dy) - f_x(x, y)}{dy}$$

Um bei gleicher Drehrichtung (positiv ist im Gegenuhrzeigersinn) eine positive Grösse zu haben, wird bei R_x ein "-" eingefügt. Mit

$$\lim_{dx\to 0} R_y = \lim_{dx\to 0} \frac{f_y(x+dx,y) - f_y(x,y)}{dx} = \frac{\partial f_y(x,y)}{\partial x}$$

und

$$\lim_{dy\to 0} R_x = -\lim_{dx\to 0} \frac{f_x(x,y+dy) - f_x(x,y)}{dx} = -\frac{\partial f_x(x,y)}{\partial y}$$

ist die Stärke der Drehung oder die

Rotation in zwei Dimensionen
$$R = \frac{\partial f_y(x,y)}{\partial x} - \frac{\partial f_x(x,y)}{\partial y}$$

Diese R zeigt in die +z-Richtung, wenn wir den zweidimensionalen Raum im dreidimensionalen eingebettet betrachten. Für eine dreidimensionale Vektorfunktion

$$\boldsymbol{f}(x,y,z) = \begin{pmatrix} f_x(x,y,z) \\ f_y(x,y,z) \\ f_z(x,y,z) \end{pmatrix}$$

kann man sich überlegen, dass die gleichen Überlegungen wie für die xy-Ebene (Rotation um z) auch für die xz-Ebene (Rotation um y) und die yz-Ebene (Rotation um x) gelten. Wir definieren also

Rotation in drei Dimensionen
rot
$$\boldsymbol{f}(x, y, z) = \begin{pmatrix} \frac{\partial f_z(x, y, z)}{\partial y} - \frac{\partial f_y(x, y, z)}{\partial z} \\ \frac{\partial f_x(x, y, z)}{\partial z} - \frac{\partial f_z(x, y, z)}{\partial x} \\ \frac{\partial f_y(x, y, z)}{\partial x} - \frac{\partial f_x(x, y, z)}{\partial y} \end{pmatrix}$$

Man kann sich die Berechnung gut merken mit

Gedankenstütze für Rotation

$$\mathbf{rot} \ \mathbf{f}(x, y, z) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix}$$

C.8.6. Totale Ableitung bei mitgeführten Koordinatensystemen

Wenn $\boldsymbol{v} = \frac{d}{dt}\boldsymbol{r}$ ein konstanter Geschwindigkeitsvektor ist und diese Grösse an einem mit der Geschwindigkeit \boldsymbol{v} bewegten Ort beobachtet wird, dann gilt (Siehe Jackson[Jac75, p212]):

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} = \frac{\partial}{\partial t} + \boldsymbol{v} \cdot \mathbf{grad}$$
(C.8.34)

wobei $\frac{d}{dt}$ die totale Ableitung im raumfesten Koordinatensystem und $\frac{\partial}{\partial t}$ die lokale, mitgeführte Ableitung ist. Diese Gleichung stammt von der Kettenregel:

$$\frac{d}{dt}f(x(t),t) = \frac{\partial}{\partial x}f(x,t) \cdot \frac{d}{dt}x(t) + \frac{\partial}{\partial t}f(x(t),t)$$
$$= v(t)\frac{\partial}{\partial x}f(x(t),t) + \frac{\partial}{\partial t}f(x(t),t)$$
(C.8.35)

In drei Dimensionen muss mit dem Gradienten gerechnet werden:

$$\frac{d}{dt}f(\mathbf{r}(t),t) = \frac{d}{dt}f(x(t),y(t),z(t),t)$$

$$= [\mathbf{grad} \ f(x,y,z,t)] \cdot \frac{d}{dt}\mathbf{r}(t) + \frac{\partial}{\partial t}f(\mathbf{r}(t),t)$$

$$= [\mathbf{grad} \ f(\mathbf{r}(t),t)] \cdot \mathbf{v}(t) + \frac{\partial}{\partial t}f(\mathbf{r}(t),t)$$

$$= \frac{\partial}{\partial t}f(\mathbf{r}(t),t) + \mathbf{v}(t) \cdot \mathbf{grad} \ f(\mathbf{r}(t),t)$$
(C.8.36)

Dabei bedeutet die partielle Ableitung $\partial/\partial t$ dass man nur nach der Zeitvariable ableitet, nicht aber nach der impliziten Zeitableitung in r. Mit Gleichung (C.8.28) kann man schreiben

rot
$$(\boldsymbol{B} \times \boldsymbol{v}) = (\boldsymbol{v} \cdot \operatorname{grad}) \boldsymbol{B} - (\boldsymbol{B} \cdot \operatorname{grad}) \boldsymbol{v} + \boldsymbol{B} \operatorname{div} \boldsymbol{v} - \boldsymbol{v} \operatorname{div} \boldsymbol{B}$$

 $\boldsymbol{\nabla} \times (\boldsymbol{B} \times \boldsymbol{v}) = (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{B} - (\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{v} + \boldsymbol{B} \boldsymbol{\nabla} \cdot \boldsymbol{v} - \boldsymbol{v} \boldsymbol{\nabla} \cdot \boldsymbol{B}$ (C.8.37)

 oder

$$(\boldsymbol{v} \cdot \mathbf{grad}) \boldsymbol{B} = \mathbf{rot} \ (\boldsymbol{B} \times \boldsymbol{v}) + (\boldsymbol{B} \cdot \mathbf{grad}) \boldsymbol{v} - \boldsymbol{B} \operatorname{div} \boldsymbol{v} + \boldsymbol{v} \operatorname{div} \boldsymbol{B}$$
$$(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{B} = \boldsymbol{\nabla} \times (\boldsymbol{B} \times \boldsymbol{v}) + (\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{v} - \boldsymbol{B} \boldsymbol{\nabla} \cdot \boldsymbol{v} + \boldsymbol{v} \boldsymbol{\nabla} \cdot \boldsymbol{B} \qquad (C.8.38)$$

Nun ist div $\boldsymbol{B} = 0$. Weiter ist div $\left(\frac{d}{dt}\boldsymbol{v}\right) = \frac{d}{dt}$ div $\boldsymbol{v} = \frac{d}{dt}(3) = 0$ und grad $\boldsymbol{v} = \frac{d}{dt}$ grad $\boldsymbol{r} = \frac{d}{dt}E = 0$, wobei E die 3 mal 3 Einheits-Diagonalmatrix ist. Damit haben wir ohne Einschränkung der Allgemeinheit

$$(\boldsymbol{v} \cdot \mathbf{grad}) \boldsymbol{B} = \mathbf{rot} \ (\boldsymbol{B} \times \boldsymbol{v}) (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{B} = \boldsymbol{\nabla} \times (\boldsymbol{B} \times \boldsymbol{v})$$
 (C.8.39)

und

$$\frac{d}{dt}\boldsymbol{B} = \frac{\partial}{\partial t}\boldsymbol{B} + \boldsymbol{v} \cdot \boldsymbol{\nabla}\boldsymbol{B} = \frac{\partial}{\partial t}\boldsymbol{B} + \boldsymbol{\nabla} \times (\boldsymbol{B} \times \boldsymbol{v})$$
(C.8.40)

C.9. Satz von Gauss

Der SATZ VON K. F. GAUSS (1777-1855) verknüpft ein Volumenintegral mit einem Oberflächenintegral.

Gegeben seien

- eine vektorielle Ortsfunktion $\boldsymbol{v}(\boldsymbol{r})$
- eine geschlossene Fläche a, die das Volumen V(S) umschliesst.

$$\int_{V(a)} \operatorname{div} \boldsymbol{v} dV = \int_{a} \boldsymbol{v} \cdot d\boldsymbol{a} = \int_{a} \boldsymbol{v} \cdot \boldsymbol{n} da \qquad (C.9.1)$$

Man kann auch schreiben div $\boldsymbol{v} = \boldsymbol{\nabla} \cdot \boldsymbol{v}$, wobei $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$ der NABLA-OPERATOR ist.

C.10. Satz von Green

Der SATZ VON G. GREEN (1793-1841) verknüpft ein Volumenintegral mit einem Oberflächenintegral.

Gegeben seien

- eine skalare Ortsfunktion $\Psi({\pmb r})$
- eine geschlossene Fläche a, die das Volumen V(S) umschliesst.

$$\int_{V(a)} \Delta \Psi dV = \int_{a} \mathbf{grad} \ \Psi \cdot d\mathbf{a} = \int_{a} \mathbf{grad} \ \Psi \cdot \mathbf{n} da \qquad (C.10.1)$$

Man kann auch schreiben **grad** $\Psi = \nabla \Psi$, wobei $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$ der NABLA-OPERATOR ist.

C.11. Satz von Stokes

Der SATZ VON G. G. STOKES (1819-1903) verknüpft ein Oberflächenintegral mit einem Linienintegral. Gegeben seien

- eine vektorielle Ortsfunktion $\boldsymbol{v}(\boldsymbol{r})$
- eine geschlossener Weg s, der die Oberfläche a(s) umrandet.

$$\int_{a(s)} \operatorname{rot} \boldsymbol{v} \cdot d\boldsymbol{a} = \int_{a(s)} \operatorname{rot} \boldsymbol{v} \cdot \boldsymbol{n} da = \oint_{s} \boldsymbol{v} \cdot d\boldsymbol{s}$$
(C.11.1)

Man kann auch schreiben **rot** $\boldsymbol{v} = \boldsymbol{\nabla} \times \boldsymbol{v}$, wobei $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$ der NABLA-OPERATOR ist.

Dabei wird jedes Flächenelement so umlaufen, dass die entsprechende Normale \boldsymbol{n} der Bewegung einer Rechtsschraube entspricht.

296

D. Rechnen mit Integralen

D.1. Integration

Abb. D.1.: Integration einer Funktion

Integrieren, d.h. Fläche unter der Kurve oder den "zurückgelegten"Weg bestimmen

$$\int_{u_1}^{u_2} f(u) \, du = \lim_{n = \infty} \sum_{j=0}^n f\left(u_1 + j\frac{u_2 - u_1}{n}\right) \cdot \left(\frac{u_2 - u_1}{n}\right) \tag{D.1.1}$$

Die verwendeten Symbole sind nebensächlich. Man kann mathematische Operationen mit allen Symbolen durchführen, z.B. die Integration mit u.

$$\begin{array}{ccc} f(t) & \int f(\tau) d\tau \\ \hline t^n & \frac{1}{n+1} t^{n+1} & \text{wobei } n \neq -1 \\ \sin(t) & -\cos(t) \\ \cos(t) & \sin(t) \\ e^t & e^t \\ \frac{1}{t} & \ln(t) \end{array}$$

Gesetze der Integration

$$\int \left(g\left(x\right) + h\left(x\right)\right) dx = \int g\left(x\right) dx + \int h\left(x\right) dx \tag{D.1.2}$$

$$\int (g(x) \cdot h'(x)) \, dx = g(x) \, h(x) - \int g'(x) \, h(x) \, dx \tag{D.1.3}$$

(Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 447]) Konstanter Faktor

$$\int af(x)dx = a \int f(x)dx$$

Integral einer Summe oder Differenz

$$\int \left[u(x) + v(x) - w(x)\right] dx = \int u(x) dx + \int v(x) dx - \int w(x) dx$$

 ${\it Substitutionsmethode}$

Sei $y = \phi(x)$

$$\int f(y)dy = \int f[\phi(x)]\phi'(x)dx$$

Partielle Integration der Kettenregel der Differentiation

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx$$
$$\int \frac{f'(x)}{f(x)}dx = \int \frac{df(x)}{f(x)} = \ln[f(x)] + C$$

298

D.2. Unbestimmte Integrale

(Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 445])

Funktion	Integral		Funktion	Integral
x^n	$\int x^n dx = \frac{x^{n+1}}{n+1}$	$n \neq -1$	$\frac{1}{x}$	$\int \frac{dx}{x} = \ln x $
$\sin(x)$	$\int \sin(x) dx = -\cos(x)$		$\cos(x)$	$\int \cos(x) dx = \sin(x)$
$\tan(x)$	$\int \tan(x) dx = -\ln \cos(x) $		$\cot(x)$	$\int \cot(x) dx = \ln \sin(x) $
$\frac{1}{\cos^2(x)}$	$\int \frac{dx}{\cos^2(x)} = \tan(x)$		$\frac{1}{\sin^2(x)}$	$\int \frac{dx}{\sin^2(x)} = -\cot(x)$
$\frac{1}{a^2+x^2}$	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}$		e^x	$\int e^x dx = e^x$
a^x	$\int a^x dx = \frac{a^x}{\ln a}$		$\ln x$	$\int \ln x dx = x \ln x - x$
$\sinh x$	$\int \sinh x dx = \cosh x$		$\cosh x$	$\int \cosh x dx = \sinh x$
$\tanh x$	$\int \tanh x dx = \ln \cosh x $		$\coth x$	$\int \coth x dx = \ln \sinh x $
$\frac{1}{\cosh^2 x}$	$\int \frac{dx}{\cosh^2 x} = \tanh x$		$\frac{1}{\sinh^2 x}$	$\int \frac{dx}{\sinh^2 x} = -\coth x$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}$			

Tab. D.2.: Unbestimmte Integrale

D.2.1. Bestimmte Integrale und Integrale mit variabler oberer Grenze

Wenn für eine Funktion f(x) die Stammfunktion

$$\tilde{F}(x) = \int f(x)dx + C \tag{D.2.1}$$

ist, haben bestimmte Integrale der Funktion f(x) die Form

$$F_{a,b} = \int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$
(D.2.2)

Der Name der Variablen im bestimmten Integral sind irrelevant

©2005-2020 Ulm University, Othmar Marti, CC) BY-SA

$$F_{a,b} = \int_{a}^{b} f(x)dx = \int_{a}^{b} f(\zeta)d\zeta = \int_{a}^{b} f(\Xi)d\Xi = F(\Xi)|_{a}^{b} = F(b) - F(a)$$
(D.2.3)

Wir können nun die obere Grenze variabel machen. Wichtig ist, dass die Variable im Integral eine andere Variable ist wie in der Grenze

$$\int_{a}^{x} f(\zeta) d\zeta = F(\zeta)|_{a}^{x} = F(x) - F(a)$$
 (D.2.4)

Wenn F(x) nach x abgeleitet wird, erhält man wieder f(x).

$$\frac{d}{dx}\int_{a}^{x}f(\zeta)d\zeta = \frac{d}{dx}\left(F(x) - F(a)\right) = \frac{dF(x)}{dx} = f(x) \tag{D.2.5}$$

Wenn die Variable x die untere Grenze ist und die obere Grenze fest ist, b, dann gilt

$$\int_{x}^{b} f(\xi) d\xi = F(\xi) |_{x}^{b} = F(b) - F(x)$$
(D.2.6)

und

$$\frac{d}{dx} \int_{x}^{b} f(\zeta) d\zeta = \frac{d}{dx} \left(F(b) - F(x) \right) = -\frac{dF(x)}{dx} = -f(x)$$
(D.2.7)

Ist die obere Grenze eine Funktion g(x), gilt

$$\frac{d}{dx} \int_{a}^{g} (x) f(\zeta) d\zeta = \frac{d}{dx} \left(F(g(x)) - F(a) \right) = -\frac{dF(g(x))}{dx} = f(g(x)) \frac{dg(x)}{dx} \quad (D.2.8)$$

Dies ist nichts anderes als die Kettenregel der Differentiation (Siehe Tabelle C.2).

D.3. Berechnung von Linienintegralen

Die folgenden Ausführungen lehnen sich an [Bro+08, Seite 214] an. Gegeben sei ein Vektorfeld F(r). Zu berechnen sei das Linienintegral

$$\int_{r_{1,b}}^{r_{2}} \boldsymbol{F}(\boldsymbol{r}) \cdot d\boldsymbol{r}$$

zwischen den Punkten r_1 und r_2 entlang der Bahn *b*. Wir nehmen an, dass die Bahn *b* mit der Bahnlänge *s* parametrisiert sei, also durch r(s) gegeben sei. Dann ist F(r) = F(r(s)) und der Tangenteneinheitsvektor ist

$$oldsymbol{ au} = rac{doldsymbol{r}}{ds}$$

Mit $\boldsymbol{r}(s_1) = \boldsymbol{r}_1$ und $\boldsymbol{r}(s_2) = \boldsymbol{r}_2$ ist das Linienintegral

$$\int_{\boldsymbol{r}_{1},b}^{\boldsymbol{r}_{2}} \boldsymbol{F}(\boldsymbol{r}) \cdot d\boldsymbol{r} = \int_{s_{1}}^{s_{2}} \boldsymbol{F}(\boldsymbol{r}(s)) \cdot \boldsymbol{\tau}(s) ds \qquad (D.3.1)$$

Das Linienelement ds wird aus der Kurvenlänge s(t) (t ein beliebiger Parameter) in kartesischen Koordinaten so berechnet:

$$s(t) = \int_{t_0}^t \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt \quad \text{und} \quad \frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}$$
(D.3.2)
Ausgeschrieben ist dann das Linienintegral mit s₁ = s(t₁) und s(t) = s(t₂) und

Ausgeschrieben ist dann das Linienintegral mit $s_1 = s(t_1)$ und $s(t) = s(t_2)$ und $\boldsymbol{r}(s(t))) = (x(s(t)), y(s(t)), z(s(t)))^T$

$$\int_{\mathbf{r}_{1,b}}^{\mathbf{r}_{2}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{s(t_{1})}^{s(t_{2})} \mathbf{F}(\mathbf{r}(s)) \cdot \mathbf{\tau}(s) \frac{ds(t)}{dt} dt$$
$$= \int_{s(t_{1})}^{s(t_{2})} \mathbf{F}(\mathbf{r}(s)) \cdot \mathbf{\tau}(s) \sqrt{\left(\frac{dx(t)}{dt}\right)^{2} + \left(\frac{dy(t)}{dt}\right)^{2} + \left(\frac{dz(t)}{dt}\right)^{2}} dt \quad (D.3.3)$$

Wenn $\mathbf{r}(t)$ gegeben ist, wobei t irgend ein stetiger Parameter ist, nicht notwendigerweise die Kurvenlänge, dann kann man mit

$$\tilde{\boldsymbol{\tau}}(t) = \frac{d\boldsymbol{r}(t)}{dt} \tag{D.3.4}$$

und damit

$$\int_{r_1(t_1),b}^{r_2(t_2)} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot d\boldsymbol{r} = \int_{s(t_1)}^{s(t_2)} \boldsymbol{F}(\boldsymbol{r}(s(t))) \boldsymbol{\tau}(s) ds$$
$$= \int_{s(t_1)}^{s(t_2)} \boldsymbol{F}(\boldsymbol{r}(s(t))) \frac{d\boldsymbol{r}(s)}{ds} ds = \int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{r}(s(t))) \frac{d\boldsymbol{r}(s)}{ds} \frac{ds}{dt} dt$$
$$= \int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \frac{d\boldsymbol{r}(t)}{dt} dt = \int_{t_1}^{t_2} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \tilde{\boldsymbol{\tau}}(t) dt \quad (D.3.5)$$

D.4. Die Diracsche Deltafunktion

Die Diracsche Deltafunktion ist ein nützliches Instrument, um diskrete Ladungsverteilungen, Kräfte, Punktmassen als kontinuierliche Verteilung oder Kraftfelder zu beschreiben.

Wir beginnen, indem wir die Funktion

$$f(x) = \begin{cases} \frac{1}{a}, & \text{für } |x| \le \frac{a}{2}; \\ 0, & \text{sonst.} \end{cases}$$
(D.4.1)

Abb. D.2.: Darstellung von f(x), wobei *a* variiert wird.

In der Abbildung D.2 sieht man, dass mit kleiner werdendem a die Amplitude von f(x) immer grösser wird. Die Fläche unter der Kurve

$$A_f = \int_{-\infty}^{\infty} f(x)dx = \int_{-a/2}^{a/2} \frac{1}{a}dx = \frac{x}{a}\Big|_{-a/2}^{a/2} = \frac{1}{a}\left(\frac{a}{2} - \left(-\frac{a}{2}\right)\right) = 1$$
(D.4.2)

ist konstant und unabhängig von a. Wir definieren nun die Dirac
sche Delta-Funktion

$$\delta(x) := \lim_{a \to 0} f(x) \tag{D.4.3}$$

Damit ist auch

$$\int_{-\infty}^{\infty} \delta(x) dx = \int_{-\infty}^{\infty} \left(\lim_{a \to 0} f(x) \right) dx = \lim_{a \to 0} \int_{-a/2}^{a/2} \frac{1}{a} dx = \lim_{a \to 0} 1 = 1$$
(D.4.4)

Als Anwendung betrachten wir das Integral des Produktes

$$\int_{-\infty}^{\infty} g(x)\delta(x)dx$$

wobei g(x) genügend oft (Fragen Sie einen Mathematiker oder lesen die Packungsbeilage oder ein Mathematikbuch) stetig differenzierbar sein soll. Die Taylorreihe von g(x) ist dann

$$g(x) = g(0) + x \left(\frac{\partial}{\partial x} g(x) \Big|_{x=0} \right) + \dots + \frac{x^n}{n!} \left(\frac{\partial^n}{\partial x^n} g(x) \Big|_{x=0} \right) + \dots$$
(D.4.5)

Dann ergibt das Integral

$$\int_{-\infty}^{\infty} g(x)\delta(x)dx = \lim_{a \to 0} \int_{-\infty}^{\infty} g(x)f(x)dx \qquad (D.4.6)$$

$$= \lim_{a \to 0} \int_{-\infty}^{\infty} \left[g(0) + x \left(\frac{\partial}{\partial x}g(x) \Big|_{x=0} \right) + \dots \right] f(x)dx$$

$$= \lim_{a \to 0} \int_{-a/2}^{a/2} \left[g(0) + x \left(\frac{\partial}{\partial x}g(x) \Big|_{x=0} \right) + \dots \right] \frac{1}{a}dx$$

$$= \lim_{a \to 0} \left[\frac{g(0)}{a} \int_{-a/2}^{a/2} dx + \frac{\left(\frac{\partial}{\partial x}g(x) \Big|_{x=0} \right)}{a} \int_{-a/2}^{a/2} xdx + \dots \right]$$

$$= g(0) + \lim_{a \to 0} \left[\frac{\left(\frac{\partial}{\partial x}g(x) \Big|_{x=0} \right)}{a} \frac{x^2}{2} \Big|_{-a/2}^{a/2} + \dots \right]$$

$$= g(0) + \lim_{a \to 0} \left[\left(\frac{\partial}{\partial x}g(x) \Big|_{x=0} \right) \frac{a^2}{4a} + \dots \right] = g(0)$$

Damit ist klar, dass die nützliche Gleichung

$$\int_{-\infty}^{\infty} g(x)\delta(x-x_0)dx = g(x_0)$$
(D.4.7)

gilt. Man kann sie anwenden, zum Beispiel im Gaussschen Gesetz, wenn man das elektrische Feld einer Ebene berechnen will. Wir setzen für die Ladungsdichte

$$\rho_{el}(x, y, z) = \sigma_{el}(x, y)\delta(z)$$

Für die Einheiten haben wir

$$[\rho_{el}] = \mathrm{Cm}^{-3} \qquad [\sigma_{el}] = \mathrm{Cm}^{-2}$$

Der Unterschied in den Dimensionen rührt daher, dass die Delta-Funktion $\delta(z)$ implizit die Dimension $[\delta(z)] = m^{-1}$ hat, sonst wären die Definition in Gleichung (D.4.3) und Gleichung (D.4.1) dimensionsmässig nicht korrekt. Das Gausssche Gesetz sagt dann

$$\iint_{A(V)} \mathbf{D} d\mathbf{a} = \iiint_{V} \rho_{el} dV \qquad \qquad = \iiint_{V} \rho_{el}(x, y, z) dx dy dz$$
$$= \iiint_{V} \sigma_{el}(x, y) \delta(z) dx dy dz \qquad \qquad = \iint_{Ebene} \sigma_{el}(x, y) dx dy$$

E. Umrechnungen zwischen kartesischen, sphärischen und zylindrischen Koordinatensystemen

(Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 218]) (Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 667]) Definitionen

Kartesisches System

 $\boldsymbol{V}_c = V_x \boldsymbol{e}_x + V_y \boldsymbol{e}_y + V_z \boldsymbol{e}_z$

Sphärisches System

$$\boldsymbol{V}_s = V_r \boldsymbol{e}_r + V_{\phi} \boldsymbol{e}_{\phi} + V_{\theta} \boldsymbol{e}_{\theta}$$

Zylindrisches System

$$\boldsymbol{V}_z = V_r \boldsymbol{e}_r + V_\phi \boldsymbol{e}_\phi + V_z \boldsymbol{e}_z$$

Die Transformation zwischen den Koordinatensystemen läuft auf eine allgemeine Drehung der Koordinaten im Raum hinaus.

Abb. E.1.: Definition der Koordinatensysteme. Links: kartesisches System. Mitte: Zylinderkoordinaten. Rechts: Kugelkoordinaten

E.1. Vom kartesischen ins sphärische System

$$V_r = V_x \sin \theta \cos \phi + V_y \sin \theta \sin \phi + V_z \cos \theta \tag{E.1.1}$$

$$V_{\theta} = V_x \cos \theta \cos \phi + V_y \cos \theta \sin \phi - V_z \sin \theta$$
(E.1.2)

$$V_{\phi} = -V_x \sin \phi + V_y \cos \phi \tag{E.1.3}$$

E.2. Vom sphärischen ins kartesische System

$$V_x = V_r \sin \theta \cos \phi + V_\theta \cos \theta \cos \phi - V_\phi \sin \phi$$
(E.2.1)

$$V_y = V_r \sin \theta \sin \phi + V_\theta \cos \theta \sin \phi + V_\phi \cos \phi \qquad (E.2.2)$$

$$V_z = V_r \cos \theta - V_\theta \sin \theta \tag{E.2.3}$$

E.3. Vom kartesischen ins zylindrische System

$$V_{\rho} = V_x \cos \phi + V_y \sin \phi \tag{E.3.1}$$

$$V_{\phi} = -V_x \sin \phi + V_y \cos \phi \tag{E.3.2}$$

- $V_z = V_z \tag{E.3.3}$
 - (E.3.4)

E.4. Vom zylindrischen ins kartesische System

Abb. E.2.: Umrechnung der Koordinaten

$V_x = V_\rho \cos \phi - V_\phi \sin \phi$	(E.4.1)
$V_y = V_\rho \sin \phi + V_\phi \cos \phi$	(E.4.2)
$V_z = V_z$	(E.4.3)
	(E.4.4)

E.5. Vom sphärischen ins zylindrische System

$V_{\rho} = V_r \sin \theta + V_{\theta} \cos \theta \tag{E.5}$.1	.))
---	----	----	---

- $V_{\phi} = V_{\phi} \tag{E.5.2}$
- $V_z = V_r \cos \theta V_\theta \sin \theta \tag{E.5.3}$
 - (E.5.4)

E.6. Vom zylindrischen ins sphärische System

$V_r =$	$V_{\theta}\sin\theta + V_z\cos\theta$	(E.6.1)
• 1	· p ==== • • · 2 = = = •	()

- $V_{\theta} = V_{\rho} \cos \theta V_z \sin \theta \tag{E.6.2}$
- $V_{\phi} = V_{\phi} \tag{E.6.3}$

(E.6.4)

F. Geschwindigkeiten und Beschleunigungen in Kugelkoordinaten

Wir betrachten die Definition der Kugelkoordinaten

Abb. F.1.: Mitgeführtes orthogonales Koordinatensystem und kartesisches Koordinatensystem

Gegeben sind einerseits die kartesischen Koordinaten x, y und z, andererseits die Kugelkoordinaten r, ϕ , und θ . Am Punkt P definieren wir ein mitgeführtes kartesisches Koordinatensystem. Seine Orientierung hängt also von der Zeit ab! Beide Koordinatensysteme sind jeweils durch ein Tripel von Einheitsvektoren gegeben, die jeweils gegenseitig orthogonal sind. Die Einheitsvektoren sind im kartesischen System e_x, e_y und e_z und im mitgeführten kartesischen System e_r, e_{ϕ} und e_{θ} .

Abb. F.2.: Betrachtung in der xy-Ebene für e_{ϕ}

Wir betrachten zuerst die xy-Ebene. Die Projektion des Ortsvektors **r** auf diese Ebene nennen wir ρ . Wir erhalten also die Beziehungen (Einheitsvektoren!)

$$\boldsymbol{e}_{\phi} = -\sin(\phi)\boldsymbol{e}_x + \cos(\phi)\boldsymbol{e}_y \tag{F.0.1}$$

$$\boldsymbol{\rho} = \cos(\phi)\boldsymbol{e}_x + \sin(\phi)\boldsymbol{e}_y \tag{F.0.2}$$

Abb. F.3.: Betrachtung in der ρz -Ebene zur Bestimmung von e_r und e_{θ}

Wir betrachten nun die Ebene gebildet aus den Vektoren ρ und e_z . In dieser Darstellung ist e_r radial und e_{θ} zeigt in die Richtung der positiven θ -Koordinate. Dadurch ist auch e_r , e_{θ} und e_{ϕ} in dieser Reihenfolge ein ortogonales Rechtssystem. Aus der Abbildung liest man

$$e_{r} = \cos(\theta)e_{z} + \sin(\theta)\rho$$
(F.0.3)
$$= \cos(\theta)e_{z} + \sin(\theta)(\cos(\phi)e_{x} + \sin(\phi)e_{y})$$

$$= \sin(\theta)\cos(\phi)e_{x} + \sin(\theta)\sin(\phi)e_{y} + \cos(\theta)e_{z}$$

$$e_{\theta} = -\sin(\theta)e_{z} + \cos(\theta)\rho$$
(F.0.4)
$$= -\sin(\theta)e_{z} + \cos(\theta)(\cos(\phi)e_{x} + \sin(\phi)e_{y})$$

$$= \cos(\theta)\cos(\phi)e_{x} + \cos(\theta)\sin(\phi)e_{y} - \sin(\theta)e_{z}$$

Dabei merken wir uns, dass θ und ϕ Funktionen der Zeit sind. Zusammenfassend erhalten wir

$$\boldsymbol{e}_r = \sin(\theta)\cos(\phi)\boldsymbol{e}_x + \sin(\theta)\sin(\phi)\boldsymbol{e}_y + \cos(\theta)\boldsymbol{e}_z \tag{F.0.5}$$

$$\boldsymbol{e}_{\theta} = \cos(\theta)\cos(\phi)\boldsymbol{e}_{x} + \cos(\theta)\sin(\phi)\boldsymbol{e}_{y} - \sin(\theta)\boldsymbol{e}_{z}$$
(F.0.6)

$$\boldsymbol{e}_{\phi} = -\sin(\phi)\boldsymbol{e}_x + \cos(\phi)\boldsymbol{e}_y \tag{F.0.7}$$

Wir wissen, dass e_x , e_y und e_z ein orthogonales Koordinatensystem ist. Also ist insbesondere $1 = e_x \cdot e_x = e_y \cdot e_y = e_z \cdot e_z$ und $0 = e_x \cdot e_y = e_y \cdot e_{zx} = e_z \cdot e_x$. Wenn wir mit diesem Wissen $e_r \cdot e_r$, $e_\theta \cdot e_\theta$ und $e_\phi \cdot e_{r\phi}$ sowie $e_r \cdot e_\theta$, $e_\theta \cdot e_\phi$ und $e_\phi \cdot e_r$ berechnen, können wir zeigen, dass auch das Koordinatensystem e_r , e_θ und e_ϕ ein orthogonales Koordinatensystem ist.

Wenn wir dieses Gleichungssystem nach e_x , e_y und e_z auflösen, erhalten wir die Umkehrrelationen

$$\boldsymbol{e}_x = \sin(\theta)\cos(\phi)\boldsymbol{e}_r + \cos(\theta)\cos(\phi)\boldsymbol{e}_\theta - \sin(\phi)\boldsymbol{e}_\phi \qquad (F.0.8)$$

$$\boldsymbol{e}_{y} = \sin(\theta)\sin(\phi)\boldsymbol{e}_{r} + \cos(\theta)\sin(\phi)\boldsymbol{e}_{\theta} + \cos(\phi)\boldsymbol{e}_{\phi}$$
(F.0.9)

$$\boldsymbol{e}_{z} = \cos(\theta)\boldsymbol{e}_{r} - \sin(\theta)\boldsymbol{e}_{\theta} \tag{F.0.10}$$

Durch Rückeinsetzen kann man sich überzeugen, dass dies konsistente Formulierungen sind.

F.1. Geschwindigkeiten

Wir wissen, dass in kartesischen Koordinaten

$$\boldsymbol{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x\boldsymbol{e}_x + y\boldsymbol{e}_y + z\boldsymbol{e}_z \tag{F.1.1}$$

der Ortsvektor ist. Die Geschwindigkeit ist dann

$$\boldsymbol{v} = \frac{d\boldsymbol{r}}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \dot{x}\boldsymbol{e}_x + \dot{y}\boldsymbol{e}_y + \dot{z}\boldsymbol{e}_z$$
(F.1.2)

Wir verwenden die Beziehungen

$$x = r\sin(\theta)\cos(\phi) \tag{F.1.3}$$

$$y = r\sin(\theta)\sin(\phi) \tag{F.1.4}$$

 $z = r\cos(\theta) \tag{F.1.5}$

und leiten sie ab. Wir erhalten

- $\dot{x} = \dot{r}\sin(\theta)\cos(\phi) + r\cos(\theta)\cos(\phi)\dot{\theta} r\sin(\theta)\sin(\phi)\dot{\phi}$ (F.1.6)
- $\dot{y} = \dot{r}\sin(\theta)\sin(\phi) + r\cos(\theta)\sin(\phi)\dot{\theta} + r\sin(\theta)\cos(\phi)\dot{\phi}$ (F.1.7)
- $\dot{z} = \dot{r}\cos(\theta) r\sin(\theta)\dot{\theta} \tag{F.1.8}$

Wir setzen in die Gleichung F.1.2 die Gleichungen F.0.8, F.0.9, F.0.10, F.1.6, F.1.7 und F.1.8 ein und ordnen nach e_r , e_{θ} und e_{ϕ} .

$$\begin{aligned} \boldsymbol{v} &= \dot{x}\boldsymbol{e}_{x} + \dot{y}\boldsymbol{e}_{y} + \dot{z}\boldsymbol{e}_{z} \end{aligned} \tag{F.1.9} \\ &= \dot{x}\left[\sin(\theta)\cos(\phi)\boldsymbol{e}_{r} + \cos(\theta)\cos(\phi)\boldsymbol{e}_{\theta} - \sin(\phi)\boldsymbol{e}_{\phi}\right] \\ &+ \dot{y}\left[\sin(\theta)\sin(\phi)\boldsymbol{e}_{r} + \cos(\theta)\sin(\phi)\boldsymbol{e}_{\theta} + \cos(\phi)\boldsymbol{e}_{\phi}\right] \\ &+ \dot{z}\left[\cos(\theta)\boldsymbol{e}_{r} - \sin(\theta)\boldsymbol{e}_{\theta}\right] \\ &= \left[\dot{x}\sin(\theta)\cos(\phi) + \dot{y}\sin(\theta)\sin(\phi) + \dot{z}\cos(\theta)\right]\boldsymbol{e}_{r} \\ &+ \left[\dot{x}\cos(\theta)\cos(\phi) + \dot{y}\cos(\theta)\sin(\phi) - \dot{z}\sin(\theta)\right]\boldsymbol{e}_{\theta} \\ &+ \left[-\dot{x}\sin(\phi) + \dot{y}\cos(\phi)\right]\boldsymbol{e}_{\phi} \end{aligned}$$

Der Übersichtlichkeit halber berechnen wir nun die drei Komponenten e_r , e_{θ} und e_{ϕ} getrennt. Wir beginnen mit e_r .

schliessen mit
$$e_{\phi}$$
.

 $= \left[\dot{r}\sin(\theta)\cos(\phi) + r\cos(\theta)\cos(\phi)\dot{\theta} - r\sin(\theta)\sin(\phi)\dot{\phi} \right]\cos(\theta)\cos(\phi)$

+ $\left[\dot{r}\sin(\theta)\sin(\phi) + r\cos(\theta)\sin(\phi)\dot{\theta} + r\sin(\theta)\cos(\phi)\dot{\phi}\right]\cos(\theta)\sin(\phi)$

 $=\dot{r}\left[\sin(\theta)\cos(\phi)\cos(\theta)\cos(\phi)+\sin(\theta)\sin(\phi)\cos(\theta)\sin(\phi)-\cos(\theta)\sin(\theta)\right]$

 $+ r\dot{\phi} \left[-r\sin(\theta)\sin(\phi)\cos(\theta)\cos(\phi) + \sin(\theta)\cos(\phi)\cos(\theta)\sin(\phi) \right]$

 $+ r\dot{\phi} \left[-r\sin(\theta)\sin(\phi)\cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi)\cos(\theta)\cos(\phi) \right]$

 $=\dot{r}\left[\sin(\theta)\cos(\theta)\cos^{2}(\phi) + \sin(\theta)\cos(\theta)\sin^{2}(\phi) - \cos(\theta)\sin(\theta)\right]$

 $+ r\dot{\theta} \left[\cos^2(\theta) \cos^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\theta) \right]$

 $+ r\dot{\theta} \left[\cos(\theta)\cos(\phi)\cos(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)\cos(\theta)\sin(\phi) + \sin(\theta)\sin(\theta)\right]$

Wir fahren mit e_{θ} weiter.

 $v_{\theta} = \dot{x}\cos(\theta)\cos(\phi) + \dot{y}\cos(\theta)\sin(\phi) - \dot{z}\sin(\theta)$

 $-\left[\dot{r}\cos(\theta) - r\sin(\theta)\dot{\theta}\right]\sin(\theta)$

 $= \dot{r} \left[\sin(\theta) \cos(\theta) - \cos(\theta) \sin(\theta) \right]$

 $+ r\dot{\theta} \left[\cos^2(\theta) + \sin^2(\theta) \right]$

 $=r\dot{\theta}$

Wir

©2005-2020 Ulm University, Othmar Marti, C) BY-SA

(F.1.11)

$$\begin{aligned} v_{\phi} &= -\dot{x}\sin(\phi) + \dot{y}\cos(\phi) & (F.1.12) \\ &= -\left[\dot{r}\sin(\theta)\cos(\phi) + r\cos(\theta)\cos(\phi)\dot{\theta} - r\sin(\theta)\sin(\phi)\dot{\phi}\right]\sin(\phi) \\ &+ \left[\dot{r}\sin(\theta)\sin(\phi) + r\cos(\theta)\sin(\phi)\dot{\theta} + r\sin(\theta)\cos(\phi)\dot{\phi}\right]\cos(\phi) \\ &= \dot{r}\left[-\sin(\theta)\cos(\phi)\sin(\phi) + \sin(\theta)\sin(\phi)\cos(\phi)\right] \\ &+ r\dot{\theta}\left[-\cos(\theta)\cos(\phi)\sin(\phi) + \cos(\theta)\sin(\phi)\cos(\phi)\right] \\ &+ r\dot{\phi}\left[\sin(\theta)\sin(\phi)\sin(\phi) + \sin(\theta)\cos(\phi)\cos(\phi)\right] \\ &= r\dot{\phi}\left[\sin(\theta)\sin^{2}(\phi) + \sin(\theta)\cos^{2}(\phi)\right] \\ &= r\sin(\theta)\dot{\phi} \end{aligned}$$

Zusammenfassend haben wir

$$\boldsymbol{v} = v_r \boldsymbol{e}_r + v_\theta \boldsymbol{e}_\theta + v_\phi \boldsymbol{e}_\phi$$

$$= \dot{r} \boldsymbol{e}_r + r \dot{\theta} \boldsymbol{e}_\theta + r \sin(\theta) \dot{\phi} \boldsymbol{e}_\phi$$
(F.1.13)

F.2. Beschleunigung

Die Beschleunigung ist in kartesischen Koordinaten

$$\boldsymbol{a} = \frac{d^2 \boldsymbol{r}}{dt^2} = \begin{pmatrix} \frac{d^2 x}{dt^2} \\ \frac{d^2 y}{dt^2} \\ \frac{d^2 z}{dt^2} \end{pmatrix} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \ddot{x} \boldsymbol{e}_x + \ddot{y} \boldsymbol{e}_y + \ddot{z} \boldsymbol{e}_z$$
(F.2.1)

Wir verwenden die Beziehungen

$$x = r\sin(\theta)\cos(\phi) \tag{F.2.2}$$

$$y = r\sin(\theta)\sin(\phi) \tag{F.2.3}$$

$$z = r\cos(\theta) \tag{F.2.4}$$

und leiten sie zweimal ab. Wir erhalten aus

$$\dot{x} = \dot{r}\sin(\theta)\cos(\phi) + r\cos(\theta)\cos(\phi)\dot{\theta} - r\sin(\theta)\sin(\phi)\dot{\phi}$$
$$\dot{y} = \dot{r}\sin(\theta)\sin(\phi) + r\cos(\theta)\sin(\phi)\dot{\theta} + r\sin(\theta)\cos(\phi)\dot{\phi}$$
$$\dot{z} = \dot{r}\cos(\theta) - r\sin(\theta)\dot{\theta}$$

die Gleichungen

314

$$\begin{split} \ddot{x} &= \ddot{r}\sin(\theta)\cos(\phi) + \dot{r}\cos(\theta)\cos(\phi)\dot{\theta} - \dot{r}\sin(\theta)\sin(\phi)\dot{\phi} & (F.2.5) \\ &+ \dot{r}\cos(\theta)\cos(\phi)\dot{\theta} - r\sin(\theta)\cos(\phi)\dot{\theta}^2 - r\cos(\theta)\sin(\phi)\dot{\phi}\dot{\theta} + r\cos(\theta)\cos(\phi)\ddot{\theta} \\ &- \dot{r}\sin(\theta)\sin(\phi)\dot{\phi} - r\cos(\theta)\sin(\phi)\dot{\phi}\dot{\theta} - r\sin(\theta)\cos(\phi)\dot{\phi}^2 - r\sin(\theta)\sin(\phi)\ddot{\phi} \\ &= \ddot{r}\sin(\theta)\cos(\phi) \\ &+ \dot{r}\dot{\theta}\left[\cos(\theta)\cos(\phi) + \cos(\theta)\cos(\phi)\right] \\ &+ \dot{r}\dot{\phi}\left[-\sin(\theta)\sin(\phi) - \sin(\theta)\sin(\phi)\right] \\ &+ r\dot{\theta}^2\left[-\sin(\theta)\cos(\phi)\right] \\ &+ r\ddot{\theta}\left[\cos(\theta)\cos(\phi)\right] \\ &+ r\ddot{\theta}\left[\cos(\theta)\cos(\phi)\right] \\ &+ r\ddot{\theta}\left[\cos(\theta)\cos(\phi)\right] \\ &+ r\ddot{\phi}\left[-\sin(\theta)\sin(\phi)\right] \\ &= \ddot{r}\sin(\theta)\cos(\phi) + 2\dot{r}\dot{\theta}\cos(\theta)\cos(\phi) - 2\dot{r}\dot{\phi}\sin(\theta)\sin(\phi) - r\dot{\theta}^2\sin(\theta)\cos(\phi) \\ &- 2r\dot{\phi}\dot{\theta}\cos(\theta)\sin(\phi) + r\ddot{\theta}\cos(\theta)\cos(\phi) - r\dot{\phi}^2\sin(\theta)\cos(\phi) - r\ddot{\phi}\sin(\theta)\sin(\phi) \end{split}$$

und

$$\begin{split} \ddot{y} &= \ddot{r}\sin(\theta)\sin(\phi) + \dot{r}\cos(\theta)\sin(\phi)\dot{\theta} + \dot{r}\sin(\theta)\cos(\phi)\dot{\phi} & (F.2.6) \\ &+ \dot{r}\cos(\theta)\sin(\phi)\dot{\theta} - r\sin(\theta)\sin(\phi)\dot{\theta}^2 + r\cos(\theta)\cos(\phi)\dot{\theta}\dot{\phi} + r\cos(\theta)\sin(\phi)\ddot{\theta} \\ &+ \dot{r}\sin(\theta)\cos(\phi)\dot{\phi} + r\cos(\theta)\cos(\phi)\dot{\theta}\dot{\phi} - r\sin(\theta)\sin(\phi)\dot{\phi}^2 + r\sin(\theta)\cos(\phi)\ddot{\phi} \\ &= \ddot{r}\sin(\theta)\sin(\phi) \\ &+ \dot{r}\dot{\theta}\left[\cos(\theta)\sin(\phi) + \cos(\theta)\sin(\phi)\right] \\ &+ \dot{r}\dot{\phi}\left[\sin(\theta)\cos(\phi) + \sin(\theta)\cos(\phi)\right] \\ &- r\dot{\theta}^2\sin(\theta)\sin(\phi) \\ &+ r\cos(\theta)\sin(\phi)\ddot{\theta} \\ &- r\dot{\phi}^2\sin(\theta)\sin(\phi) \\ &+ r\sin(\theta)\cos(\phi)\ddot{\phi} \\ &= \ddot{r}\sin(\theta)\sin(\phi) + 2\dot{r}\dot{\theta}\cos(\theta)\sin(\phi) + 2\dot{r}\dot{\phi}\sin(\theta)\cos(\phi) - r\dot{\theta}^2\sin(\theta)\sin(\phi) \\ &+ 2r\dot{\theta}\dot{\phi}\cos(\theta)\cos(\phi) + r\ddot{\theta}\cos(\theta)\sin(\phi) - r\dot{\phi}^2\sin(\theta)\sin(\phi) + r\ddot{\phi}\sin(\theta)\cos(\phi) \end{split}$$

sowie

$$\ddot{z} = \ddot{r}\cos(\theta) - \dot{r}\sin(\theta)\dot{\theta}$$

$$- \dot{r}\sin(\theta)\dot{\theta} - r\cos(\theta)\dot{\theta}^{2} - r\sin(\theta)\ddot{\theta}$$

$$= \ddot{r}\cos(\theta) - 2\dot{r}\sin(\theta)\dot{\theta} - r\cos(\theta)\dot{\theta} - r\sin(\theta)\ddot{\theta}$$
(F.2.7)

Wir setzen in die GleichungF.2.1 die Gleichungen $F.0.8,\,F.0.9,\,F.0.10,\,F.2.5,\,F.2.6$

und F.2.7 ein und ordnen nach e_r , e_{θ} und e_{ϕ} .

$$\boldsymbol{a} = \ddot{x}\boldsymbol{e}_{x} + \ddot{y}\boldsymbol{e}_{y} + \ddot{z}\boldsymbol{e}_{z}$$
(F.2.8)
$$= \ddot{x} [\sin(\theta)\cos(\phi)\boldsymbol{e}_{r} + \cos(\theta)\cos(\phi)\boldsymbol{e}_{\theta} - \sin(\phi)\boldsymbol{e}_{\phi}]$$
$$+ \ddot{y} [\sin(\theta)\sin(\phi)\boldsymbol{e}_{r} + \cos(\theta)\sin(\phi)\boldsymbol{e}_{\theta} + \cos(\phi)\boldsymbol{e}_{\phi}]$$
$$+ \ddot{z} [\cos(\theta)\boldsymbol{e}_{r} - \sin(\theta)\boldsymbol{e}_{\theta}]$$
$$= [\ddot{x}\sin(\theta)\cos(\phi) + \ddot{y}\sin(\theta)\sin(\phi) + \ddot{z}\cos(\theta)]\boldsymbol{e}_{r}$$
$$+ [\ddot{x}\cos(\theta)\cos(\phi) + \ddot{y}\cos(\theta)\sin(\phi) - \ddot{z}\sin(\theta)]\boldsymbol{e}_{\theta}$$
$$+ [-\ddot{x}\sin(\phi) + \ddot{y}\cos(\phi)]\boldsymbol{e}_{\phi}$$

Der Übersichtlichkeit halber berechnen wir nun die drei Komponenten e_r , e_{θ} und e_{ϕ} getrennt. Wir beginnen mit e_r .

$$\begin{split} a_r &= \ddot{x} \sin(\theta) \cos(\phi) + \ddot{y} \sin(\theta) \sin(\phi) + \ddot{z} \cos(\theta) & (F.2.9) \\ &= \begin{bmatrix} \dot{r} \sin(\theta) \cos(\phi) + 2\dot{r}\dot{\theta} \cos(\theta) \cos(\phi) - 2\dot{r}\dot{\phi} \sin(\theta) \sin(\phi) - r\dot{\theta}^2 \sin(\theta) \cos(\phi) \\ &- 2r\dot{\phi}\dot{\theta} \cos(\theta) \sin(\phi) + r\ddot{\theta} \cos(\theta) \cos(\phi) & (F.2.10) \\ &- r\dot{\phi}^2 \sin(\theta) \cos(\phi) - r\ddot{\phi} \sin(\theta) \sin(\phi) \end{bmatrix} \sin(\theta) \cos(\phi) \\ &+ \begin{bmatrix} \ddot{r} \sin(\theta) \sin(\phi) + 2r\dot{\theta} \cos(\theta) \sin(\phi) + 2\dot{r}\dot{\phi} \sin(\theta) \cos(\phi) \\ &- r\dot{\theta}^2 \sin(\theta) \sin(\phi) + 2r\dot{\theta} \dot{\phi} \cos(\theta) \cos(\phi) \\ &+ r\cos(\theta) \sin(\phi) \dot{\theta} - r\dot{\phi}^2 \cos(\theta) - r\ddot{\theta} \sin(\theta) \end{bmatrix} \cos(\phi) \\ &+ \begin{bmatrix} \ddot{r} \cos(\theta) - 2\dot{r}\dot{\theta} \sin(\theta) - r\dot{\theta}^2 \cos(\theta) - r\ddot{\theta} \sin(\theta) \end{bmatrix} \cos(\phi) \\ &= \ddot{r} [\sin(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \sin(\phi) \sin(\phi) + \cos(\theta) \cos(\theta)] \\ &+ 2\dot{r}\dot{\theta} [\cos(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \sin(\phi) \sin(\phi) - \sin(\theta) \cos(\theta)] \\ &+ 2\dot{r}\dot{\theta} [\cos(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \sin(\phi)] \\ &+ r\dot{\theta}^2 [-\sin(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \sin(\theta) \sin(\phi)] \\ &+ r\dot{\theta} [\cos(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \sin(\theta) \sin(\phi)] \\ &+ r\ddot{\theta} [\cos(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \sin(\phi)] \\ &+ r\ddot{\theta} [-\sin(\theta) \sin(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \sin(\phi)] \\ &+ r\ddot{\theta} [-\sin(\theta) \sin(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \sin(\phi)] \\ &+ r\ddot{\theta} [-\sin^2(\theta) \cos^2(\phi) + \cos^2(\theta)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos^2(\phi) + \cos^2(\theta)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos^2(\phi) + \cos^2(\theta) \sin(\theta) \sin^2(\phi) - \sin(\theta) \cos(\theta)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos^2(\phi) + \cos^2(\theta) \sin(\theta) \sin^2(\phi) - \sin(\theta) \cos(\theta)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos^2(\phi) + \cos^2(\theta) \sin(\theta) \sin^2(\phi) - \sin(\theta) \cos(\theta)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos^2(\phi) + \sin^2(\theta) \cos(\phi) \sin(\phi)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos^2(\phi) + \sin^2(\theta) \cos(\phi) \sin(\phi)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos^2(\phi) + \sin^2(\theta) \cos(\phi) \sin(\phi)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos(\phi) + \sin^2(\theta) \cos(\phi) \sin(\phi)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) \cos(\phi) + \sin^2(\theta) \cos(\phi) \sin(\phi)] \\ &+ r\dot{\theta} [\cos(\theta) \sin(\theta) - \sin(\theta) \cos(\theta)] \\ &+ r\dot{\theta}$$

und

$$\begin{split} a_{\theta} &= \ddot{x} \cos(\theta) \cos(\phi) + \ddot{y} \cos(\theta) \sin(\phi) - \ddot{z} \sin(\theta) \qquad (F.2.11) \\ &= \left[\ddot{r} \sin(\theta) \cos(\phi) + 2\dot{r}\dot{\theta} \cos(\theta) \cos(\phi) - 2\dot{r}\dot{\phi} \sin(\theta) \sin(\phi) - r\dot{\theta}^2 \sin(\theta) \cos(\phi) \\ &- 2r\dot{\phi}\dot{\theta} \cos(\theta) \sin(\phi) + 2\dot{r}\dot{\theta} \cos(\theta) \cos(\phi) - r\dot{\phi}^2 \sin(\theta) \cos(\phi) - r\ddot{\phi}^2 \sin(\theta) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\ &+ \left[\ddot{r} \sin(\theta) \sin(\phi) + 2\dot{r}\dot{\theta} \cos(\theta) \sin(\phi) + 2\dot{r}\dot{\phi} \sin(\theta) \cos(\phi) - r\dot{\theta}^2 \sin(\theta) \sin(\phi) \\ &+ 2r\dot{\theta}\dot{\phi} \cos(\theta) \cos(\phi) + r\ddot{\theta} \cos(\theta) \sin(\phi) - r\dot{\phi}^2 \sin(\theta) \sin(\phi) + r\ddot{\phi} \sin(\theta) \cos(\phi) \right] \cos(\theta) \sin(\phi) \\ &- \left[\ddot{r} \cos(\theta) - 2\dot{r}\dot{\theta} \sin(\theta) - r\dot{\theta} \cos(\theta) - r\ddot{\theta} \sin(\theta) \right] \sin(\theta) \\ &= \ddot{r} \left[\sin(\theta) \cos(\phi) \cos(\phi) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \sin(\phi) - \cos(\theta) \sin(\theta) \right] \\ &+ 2\dot{r}\dot{\theta} \left[\cos(\theta) \cos(\phi) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\theta) \sin(\phi) + \sin(\theta) \sin(\theta) \right] \\ &+ 2\dot{r}\dot{\phi} \left[- \sin(\theta) \sin(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \cos(\phi) \cos(\theta) \sin(\phi) \right] \\ &+ r\dot{\theta}^2 \left[- \sin(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\theta) \sin(\phi) \right] \\ &+ r\dot{\theta} \left[\cos(\theta) \cos(\phi) \cos(\phi) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\theta) \sin(\phi) \right] \\ &+ r\dot{\theta} \left[\cos(\theta) \cos(\phi) \cos(\phi) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \sin(\phi) \right] \\ &+ r\dot{\theta} \left[- \sin(\theta) \sin(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \sin(\phi) \right] \\ &+ r\dot{\theta} \left[- \sin(\theta) \sin(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \sin(\phi) \right] \\ &+ r\dot{\theta} \left[- \sin(\theta) \cos(\theta) \cos^2(\phi) + \sin(\theta) \cos(\theta) \sin^2(\phi) - \cos(\theta) \sin(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) \cos^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) \cos^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\phi) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) - \cos(\theta) \sin(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) + \cos^2(\theta) \sin(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) + \sin^2(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) + \cos(\theta) \sin(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) + \cos(\theta) \sin(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) + \cos(\theta) \sin(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) + \sin^2(\theta) \right] \\ &- r\dot{\phi}^2 \left[\sin(\theta) \cos(\theta) + \cos(\theta) \sin(\theta) \right] \\ &+ r\dot{\theta} \left[\cos^2(\theta) + \sin^2(\theta) \right] \\ &= 2\dot{r}\dot{\theta} + r\ddot{\theta} - r \sin(\theta) \cos(\theta) \dot{\phi}^2 \end{aligned}$$

und schliesslich

$$\begin{split} a_{\phi} &= -\ddot{x}\sin(\phi) + \ddot{y}\cos(\phi) & (F.2.12) \\ &= - \left[\ddot{r}\sin(\theta)\cos(\phi) + 2\dot{r}\dot{\theta}\cos(\theta)\cos(\phi) - 2\dot{r}\dot{\phi}\sin(\theta)\sin(\phi) - r\dot{\theta}^{2}\sin(\theta)\cos(\phi) \\ &- 2r\dot{\phi}\dot{\theta}\cos(\theta)\sin(\phi) + r\ddot{\theta}\cos(\theta)\cos(\phi) - r\dot{\phi}^{2}\sin(\theta)\cos(\phi) - r\ddot{\phi}^{3}\sin(\theta)\sin(\phi) \right] \sin(\phi) \\ &+ \left[\ddot{r}\sin(\theta)\sin(\phi) + 2\dot{r}\dot{\theta}\cos(\theta)\sin(\phi) + 2\dot{r}\dot{\phi}\sin(\theta)\cos(\phi) - r\dot{\theta}^{2}\sin(\theta)\sin(\phi) \\ &+ 2r\dot{\theta}\dot{\phi}\cos(\theta)\cos(\phi) + r\ddot{\theta}\cos(\theta)\sin(\phi) - r\dot{\phi}^{2}\sin(\theta)\sin(\phi) + r\ddot{\phi}\sin(\theta)\cos(\phi) \right] \\ &= \ddot{r} \left[-\sin(\theta)\cos(\phi)\sin(\phi) + \sin(\theta)\sin(\phi)\cos(\phi) \right] \\ &+ 2\dot{r}\dot{\theta} \left[-\cos(\theta)\cos(\phi)\sin(\phi) + \cos(\theta)\sin(\phi)\cos(\phi) \right] \\ &+ 2\dot{r}\dot{\phi} \left[\sin(\theta)\sin(\phi)\sin(\phi) + \sin(\theta)\cos(\phi)\cos(\phi) \right] \\ &+ r\dot{\theta}^{2} \left[\sin(\theta)\cos(\phi)\sin(\phi) - \sin(\theta)\sin(\phi)\cos(\phi) \right] \\ &+ r\ddot{\theta} \left[-\cos(\theta)\cos(\phi)\sin(\phi) + \cos(\theta)\cos(\phi)\cos(\phi) \right] \\ &+ r\ddot{\theta} \left[-\cos(\theta)\cos(\phi)\sin(\phi) + \cos(\theta)\sin(\phi)\cos(\phi) \right] \\ &+ r\ddot{\theta} \left[\cos(\theta)\sin(\phi)\sin(\phi) + \sin(\theta)\cos(\phi)\cos(\phi) \right] \\ &+ r\ddot{\phi} \left[\sin(\theta)\cos(\phi)\sin(\phi) - \sin(\theta)\sin(\phi)\cos(\phi) \right] \\ &+ r\ddot{\phi} \left[\sin(\theta)\sin(\phi)\sin(\phi) + \sin(\theta)\cos^{2}(\phi) \right] \\ &+ 2r\dot{\phi}\dot{\theta} \left[\cos(\theta)\sin^{2}(\phi) + \sin(\theta)\cos^{2}(\phi) \right] \\ &+ r\ddot{\phi} \left[\sin(\theta)\sin^{2}(\phi) + \sin(\theta)\cos^{2}(\phi) \right] \\ &+ r\ddot{\phi} \left[\sin(\theta)\sin^{2}(\phi) + \sin(\theta)\cos^{2}(\phi) \right] \\ &+ r\ddot{\phi} \left[\sin(\theta)\sin^{2}(\phi) + \sin(\theta)\cos^{2}(\phi) \right] \\ &= \left[r\ddot{\phi} + 2\dot{r}\dot{\phi} \right] \sin(\theta) + 2r\dot{\phi}\dot{\phi}\cos(\theta) \end{aligned}$$

Zusammenfassend haben wir

$$\boldsymbol{a} = a_r \boldsymbol{e}_r + a_\theta \boldsymbol{e}_\theta + a_\phi \boldsymbol{e}_\phi \qquad (F.2.13)$$

$$= \left[\ddot{r} - r\dot{\theta}^2 - r\sin^2(\theta)\dot{\phi}^2 \right] \boldsymbol{e}_r + \left[2\dot{r}\dot{\theta} + r\ddot{\theta} - r\sin(\theta)\cos(\theta)\dot{\phi}^2 \right] \boldsymbol{e}_\theta + \left[\left(r\ddot{\phi} + 2\dot{r}\dot{\phi} \right)\sin(\theta) + 2r\dot{\phi}\dot{\theta}\cos(\theta) \right] \boldsymbol{e}_\phi$$

F.2.1. Interpretation

Wir teilen die Beschleunigung in drei Komponenten auf

$$\boldsymbol{a} = \boldsymbol{a}_p + \boldsymbol{a}_z + \boldsymbol{a}_c \tag{F.2.14}$$

Dies ist in der angegebenen Reihenfolge die Parallelbeschleunigung, die den Betrag der Geschwindigkeit erhöht, die Zentripetalbeschleunigung und die Coriolis-Beschleunigung. Im Einzelnen haben wir

$$\boldsymbol{a}_{p} = \ddot{r}\boldsymbol{e}_{r} + r\ddot{\theta}\boldsymbol{e}_{\theta} + r\sin(\theta)\ddot{\phi}\boldsymbol{e}_{\phi}$$
(F.2.15)

$$\boldsymbol{a}_{z} = -r \left[\dot{\theta}^{2} + \sin^{2}(\theta) \dot{\phi}^{2} \right] \boldsymbol{e}_{r} - r \sin(\theta) \cos(\theta) \dot{\phi}^{2} \boldsymbol{e}_{\theta}$$
(F.2.16)

$$\boldsymbol{a}_{c} = 2\dot{r}\dot{\theta}\boldsymbol{e}_{\theta} + 2\left[\dot{r}\sin(\theta) + r\dot{\theta}\cos(\theta)\right]\dot{\phi}\boldsymbol{e}_{\phi}$$
(F.2.17)

G. Berechnungen in ebenen schiefwinkligen Dreiecken

(Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 146])

Abb. G.1.: DREIECK

halber Dreiecksumfang $s = \frac{a+b+c}{2}$ Radius des Umkreises $R = \frac{a}{2\sin\alpha} = \frac{b}{2\sin\beta} = \frac{c}{2\sin\gamma}$ Radius des Inkreises $r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = s\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2} = 4R\sin\frac{\alpha}{2}\frac{\beta}{2}\frac{\gamma}{2}$ Flächeninhalt $S = \frac{1}{2}ab\sin\gamma = 2R^2\sin\alpha\sin\beta\sin\gamma = rs = \sqrt{s(s-a)(s-b)(s-c)}$ Sinussatz $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$ R ist der Umkreisradius

Projektionssatz $c = a \cos \beta + b \cos \alpha$

Kosinussatz oder Satz des Pythagoras im schiefwinkligen Dreieck $c^2=a^2+b^2-2ab\cos\gamma$

Mollweidsche Gleichungen $(a+b)\sin\frac{\gamma}{2} = c\cos\left(\frac{\alpha-\beta}{2}\right)$ $(a-b)\cos\frac{\gamma}{2} = c\sin\left(\frac{\alpha-\beta}{2}\right)$

Tangenssatz $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

Halbwinkelsatz $\tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

Tangensformeln $\tan \alpha = \frac{a \sin \beta}{c - a \cos \beta} = \frac{a \sin \gamma}{b - a \cos \gamma}$

Beziehungen für halbe Winkel $\sin \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$ $\cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}$

(Siehe Bronstein, Taschenbuch der Mathematik [Bro+08, pp. 148])

	gegeben	Formeln				
1.	1 Seite und 2 Winkel (a, α, β)	$\gamma = \pi - \alpha - \beta, \ b = \frac{a \sin \beta}{\sin \alpha}, \ c = \frac{a \sin \gamma}{\sin \alpha}, \ S = \frac{1}{2}ab \sin \gamma$				
2.	2 Seiten und der ein- geschlossene Winkel (a, b, γ)	$\tan \frac{\alpha - \beta}{2} = \frac{a - b}{a + b} \cot \frac{\gamma}{2} \frac{\alpha + \beta}{2} = \frac{\pi}{2} - \frac{\gamma}{2} \alpha \text{ und } \beta \text{ werden}$ aus $\alpha + \beta$ und $\alpha - \beta$ berechnet. $c = \frac{a \sin \gamma}{\sin \alpha}, S = \frac{1}{2}ab \sin \gamma$				
3.	2 Seiten und der einer von ihnen gegenüberlie- gende Winkel (a, b, α)	$ \sin \beta = \frac{b \sin \alpha}{a} \text{ Für } a \ge b \text{ ist } \beta < \frac{\pi}{2} \text{ und eindeutig bestimmt. Für } a < b \text{ sind die folgenden Fälle möglich:} \\ 1. \beta \text{ hat für } b \sin \alpha < a \text{ zwei Werte } \beta_2 = \pi - \beta_1 \\ 2. \beta \text{ hat genau einen Wert } (\frac{\pi}{2}) \text{ für } b \sin \alpha = a \\ 3. Für b \sin \alpha > a \text{ ist es unmöglich, ein DREIECK zu konstruieren.} \\ \gamma = \pi - \alpha - \beta \ c = \frac{a \sin \gamma}{cin\alpha} S = \frac{1}{2} ab \sin \gamma $				
4.	3 Seiten (a, b, c)	$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}, \ \tan\frac{\alpha}{2} = \frac{r}{s-a}, \ \tan\frac{\beta}{2} = \frac{r}{s-b}, \\ \tan\frac{\gamma}{2} = \frac{r}{s-c}, \ S = rs = \sqrt{s(s-a)(s-b)(s-c)}$				

Tab. G.1.: Formeln für schiefwinklige ebene Dreiecke

H. Berechnung der Ableitung in rotierenden Bezugssystemen

Hier werden Ableitungen in rotierenden Bezugssystemen betrachtet. Der Maple Quelltext ist:

```
> with(LinearAlgebra):
> with(VectorCalculus):
> with(tensor):
> SetCoordinates( 'cartesian'[x,y,z] ):
>
>
> AA := Matrix(3,3,[[cos(omegaz*t), sin(omegaz*t),0],
                   [-sin(omegaz*t),cos(omegaz*t),0],
>
>
                   [0,0,1]]);
>
> AAinv := MatrixInverse(AA);
> omega := <0,0,omegaz>;
> s := <R*cos(3*omegaz*t),R*sin(3*omegaz*t),rz>;
> sp := convert(MatrixVectorMultiply(AA,s),arctrig);
> res1 :=diff(s,t);
> CrossProduct(omega,s);
> tr1 :=diff(sp,t);
> tr2 := simplify(MatrixVectorMultiply(AAinv,tr1));
> res2 := tr2+CrossProduct(omega,s);
> rr :=simplify(res2-res1);
>
```

Der Mathematica-Quelltext ist

$$AA = \begin{pmatrix} \cos(t\omega z) & \sin(t\omega z) & 0\\ -\sin(t\omega z) & \cos(t\omega z) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$AAinv = Simplify[MatrixPower[AA, -1]]$$

$$Simplify[AAinv.AA]$$

$$\omega = \{0, 0, \omega z\}$$

$$s = \{fx(t), fy(t), fz(t)\}$$

$$sp = AA.s$$

$$res1 = \frac{\partial s}{\partial t}$$

$$cp = \omega \times s$$

$$tr1 = Simplify \left[\frac{\partial sp}{\partial t}\right]$$

$$tr2 = Simplify[AAinv.tr1]$$

$$res2 = cp + tr2$$

$$rr = res2 - res1$$

$$res3falsch = Simplify[cp + tr1]$$

Hier ist angenommen worden, dass der Rotationsvektor $\boldsymbol{\omega}$ entlang der z-Richtung des Koordinatensystems angeordnet ist. Dann transformiert die Matrix AA einen Vektor aus dem Laborsystem in das rotierende Bezugssystem. AAinv transformiert zurück. s ist der zeitabhängige Ortsvektor. sp ist der Ortsvektor transformiert in das rotierende Bezugssystem. tr1 ist die Ableitung von sp im rotierenden Bezugssystem tr2 ist tr1 zurücktransformiert in das Laborsystem.

Abb. H.1.: Beziehung zwischen den Ableitungen

Gleichung

324
$$d\boldsymbol{r} = \partial \boldsymbol{r} + d\bar{\boldsymbol{r}} = \partial \boldsymbol{r} + \boldsymbol{\omega} \times \boldsymbol{r} dt \tag{H.0.1}$$

gilt dann, wenn die Ableitung im rotierenden Bezugssystem zurück nach dem Laborsystem transformiert ist.

$$AA = \begin{pmatrix} \cos(\omega_z t) & \sin(\omega_z t) & 0\\ -\sin(\omega_z t) & \cos(\omega_z t) & 0\\ 0 & 0 & 1 \end{pmatrix} = A$$
$$AAInv = \begin{pmatrix} \cos(\omega_z t) & -\sin(\omega_z t) & 0\\ \sin(\omega_z t) & \cos(\omega_z t) & 0\\ 0 & 0 & 1 \end{pmatrix} = A^{-1}$$
$$= \begin{pmatrix} R\cos(3\omega_z t)\\ R\sin(3\omega_z t)\\ r_z \end{pmatrix} \quad \text{allgemein:} \quad \mathbf{s} = \begin{pmatrix} f_x(t)\\ f_y(t)\\ f_z(t) \end{pmatrix}$$

Nach der Transformation ins rotierende Bezugssystem erhält man

$$\boldsymbol{sp} = \begin{pmatrix} R\cos(2\omega_z t) \\ R\sin(2\omega_z t) \\ r_z \end{pmatrix} \quad \text{allgemein:} \quad \boldsymbol{s'} = \begin{pmatrix} \cos(\omega_z t)f_x(t) + \sin(\omega_z t)f_y(t) \\ \cos(\omega_z t)f_y(t) - \sin(\omega_z t)f_x(t) \\ f_z(t) \end{pmatrix}.$$

Die Ableitungen im Laborsystem sind

 \boldsymbol{s}

$$\frac{d\boldsymbol{s}}{dt} = 3\omega_z R \begin{pmatrix} -\sin(3\omega_z t) \\ \cos(3\omega_z t) \\ 0 \end{pmatrix} \quad \text{allgemein:} \quad \frac{d\boldsymbol{s}}{dt} = \begin{pmatrix} \frac{d}{dt} f_x(t) \\ \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix}$$

und im rotierenden Bezugssystem (gestrichenes Bezugssystem)

$$\frac{d\boldsymbol{s}\boldsymbol{p}}{dt} = 2\omega_z R \begin{pmatrix} -\sin(2\omega_z t) \\ \cos(2\omega_z t) \\ 0 \end{pmatrix}$$

allgemein:

$$\frac{d\mathbf{s}'}{dt} = \begin{pmatrix} \cos(\omega_z t)\frac{d}{dt}f_x(t) + \sin(\omega_z t)\frac{d}{dt}f_y(t) - \omega_z\sin(\omega_z)f_x(t) + \omega_z\cos(\omega_z t)f_y(t) \\ -\sin(\omega_z t)\frac{d}{dt}f_x(t) + \cos(\omega_z t)\frac{d}{dt}f_y(t) - \omega_z\cos(\omega_z)f_x(t) - \omega_z\sin(\omega_z t)f_y(t) \\ \frac{d}{dt}f_z(t) \end{pmatrix}$$

Zurücktransformiert ins Labor
system mit $A^{-1}\frac{ds'}{dt}$ erhält man

$$\frac{\partial \boldsymbol{s}}{\partial t} = 2\omega_z R \begin{pmatrix} -\sin(3\omega_z t) \\ \cos(3\omega_z t) \\ 0 \end{pmatrix} \quad \text{allgemein:} \quad \frac{\partial \boldsymbol{s}}{\partial t} = \begin{pmatrix} \omega_z f_y(t) + \frac{d}{dt} f_x(t) \\ -\omega_z f_x(t) + \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix}$$

Das Kreuzprodukt ist

$$\boldsymbol{\omega} \times \boldsymbol{s} = \omega_z R \begin{pmatrix} -\sin(3\omega_z t) \\ \cos(3\omega_z t) \\ 0 \end{pmatrix} \quad \text{allgemein:} \quad \boldsymbol{\omega} \times \boldsymbol{s} = \begin{pmatrix} -\omega_z f_y(t) \\ \omega_z f_x(t) \\ 0 \end{pmatrix}$$

und

$$\begin{aligned} \frac{\partial \boldsymbol{s}}{\partial t} + \boldsymbol{\omega} \times \boldsymbol{s} \\ &= 2\omega_z R \begin{pmatrix} -\sin(3\omega_z t) \\ \cos(3\omega_z t) \\ 0 \end{pmatrix} + \omega_z R \begin{pmatrix} -\sin(3\omega_z t) \\ \cos(3\omega_z t) \\ 0 \end{pmatrix} = 3\omega_z R \begin{pmatrix} -\sin(3\omega_z t) \\ \cos(3\omega_z t) \\ 0 \end{pmatrix} = \frac{d\boldsymbol{s}}{dt} \\ &\text{allgemein:} \end{aligned}$$

$$\frac{\partial \boldsymbol{s}}{\partial t} + \boldsymbol{\omega} \times \boldsymbol{s} = \begin{pmatrix} \omega_z f_y(t) + \frac{d}{dt} f_x(t) \\ -\omega_z f_x(t) + \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix} + \begin{pmatrix} -\omega_z f_y(t) \\ \omega_z f_x(t) \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{d}{dt} f_x(t) \\ \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix} = \frac{d\boldsymbol{s}}{dt}$$

so dass sowohl im Spezialfall wie auch allgemein gilt

$$\frac{d\boldsymbol{s}}{dt} = \frac{\partial \boldsymbol{s}}{\partial t} + \boldsymbol{\omega} \times \boldsymbol{s}$$

gilt. Wäre $\frac{ds'}{dt}$ nicht ins Laborsystem zurücktransformiert worden, hätte man

$$\frac{\partial s}{\partial t} + \boldsymbol{\omega} \times s$$

$$= \begin{pmatrix} \frac{d}{dt} f_x(t) \cos(t\omega_z) - \omega_z f_x(t) \sin(t\omega_z) + \frac{d}{dt} f_y(t) \sin(t\omega_z) + \omega_z f_y(t) (\cos(t\omega_z) - 1) \\ - \frac{d}{dt} f_x(t) \sin(t\omega_z) + f_x(t) \omega_z (1 - \cos(t\omega_z)) + \frac{d}{dt} f_y(t) \cos(t\omega_z) - \omega_z f_y(t) \sin(t\omega_z) \\ \frac{d}{dt} f_z(t) \qquad (\text{H.0.2})$$

erhalten, was nicht das Resultat im Laborsystem ist.

Wenn mit Vektoren in der Darstellung eines Koordinatensystems gerechnet wird, müssen alle Vektoren im gleichen Koordinatensystem dargestellt werden!

I. Drehungen

I.1. Drehmatrizen

Eine Drehung um die *x*-Achse beschrieben durch den Vektor $\boldsymbol{e}_x = (1,0,0)^T$ um den Winkel α wird durch die Matrix

$$\mathsf{R}_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
(I.1.1)

die Transformation ausgeführt. Für eine Drehung um die *y*-Achse beschrieben durch den Vektor $\boldsymbol{e}_y = (0, 1, 0)^T$ um den Winkel β wird durch die Matrix

$$\mathsf{R}_{y}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix}$$
(I.1.2)

die Transformation ausgeführt. Schliesslich wird eine Drehung um die *y*-Achse beschrieben durch den Vektor $\boldsymbol{e}_{z} = (0, 0, 1)^{T}$ um den Winkel γ wird durch die Matrix

$$\mathsf{R}_{z}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0\\ \sin(\gamma) & \cos(\gamma) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(I.1.3)

ausgeführt.

Der Vektor $\boldsymbol{r} = (x, y, z)^T$ soll um den Winkel α um die x-Achse gedreht werden. Dies wird mit der Operation

$$\boldsymbol{r}' = \mathsf{R}_x(\alpha)\boldsymbol{r} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x\\ y\cos(\alpha) - z\sin(\alpha)\\ y\sin(\alpha) + z\cos(\alpha) \end{pmatrix}$$
(I.1.4)

bewerkstelligt. Im Allgemeinen wird eine Drehung durch die Multiplikation des Vektors von links mit einer Matrix beschrieben.

Die Drehung zurück wird (antisymmetrische reelle Matrix mit der Determinante 1) wird durch die inverse Matrix oder die transponierte Matrix beschrieben Alternativ kann man auch α durch $-\alpha$ ersetzen.

$$\mathsf{R}_x(-\alpha) = \mathsf{R}_x^T(\alpha) = \mathsf{R}_x^{-1}(\alpha) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & \sin(\alpha)\\ 0 & -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
(I.1.5)

Eine Drehung um einen beliebigen Vektor $\boldsymbol{r}_{\alpha} = (x_{\alpha}, y_{\alpha}, z_{\alpha})^{T}$ mit $x_{\alpha}^{2} + y_{\alpha}^{2} + z_{\alpha}^{2} = 1$ wird durch

$R_{(x_\alpha,y_\alpha,z_\alpha)^T}(\alpha) =$		
$ \begin{pmatrix} x_{\alpha}^{2} + \cos(\alpha) \left(y_{\alpha}^{2} + z_{\alpha}^{2} \right) \end{pmatrix} $	$-x_{\alpha}y_{\alpha}\cos(\alpha) + x_{\alpha}y_{\alpha} - z_{\alpha}\sin(\alpha)$	$-x_{\alpha}z_{\alpha}\cos(\alpha) + x_{\alpha}z_{\alpha} + y_{\alpha}\sin(\alpha)$
$-x_{\alpha}y_{\alpha}\cos(\alpha) + x_{\alpha}y_{\alpha} + z_{\alpha}\sin(\alpha)$	$\cos(lpha)\left(x_{lpha}^2+z_{lpha}^2 ight)+y_{lpha}^2$	$-x_{\alpha}\sin(\alpha) - y_{\alpha}z_{\alpha}\cos(\alpha) + y_{\alpha}z_{\alpha}$
$\left(-x_{\alpha}z_{\alpha}\cos(\alpha)+x_{\alpha}z_{\alpha}-y_{\alpha}\sin(\alpha)\right)$	$x_{\alpha}\sin(\alpha) - y_{\alpha}z_{\alpha}\cos(\alpha) + y_{\alpha}z_{\alpha}$	$\cos(\alpha)\left(x_{\alpha}^{2}+y_{\alpha}^{2} ight)+z_{\alpha}^{2}$
		(I.1.6)

beschrieben[Wol14]. Die Drehung ist bei positivem α rechtshändig bezüglich der Richtung von \mathbf{r}_{α} (Der Daumen zeigt in die Richtung von \mathbf{r}_{α} , die Finger geben die Drehrichtung).

I.2. Drehung von Vektoren und Matrizen (oder Tensoren)

Sei $\mathsf{R}_{e_{\alpha}}(\alpha)$ die Drehmatrix. Dann ist der aus r hervorgegangene um die Achse e_{α} und den Winkel α gedrehte Vektor

$$\boldsymbol{r}' = \mathsf{R}_{\boldsymbol{e}_{\alpha}}(\alpha)\boldsymbol{r} \tag{I.2.1}$$

Ein Beispiel dafür ist in (I.1.4) gezeigt.

Die aus der Matrix

$$\mathsf{A} = \begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}$$

hervorgegangene um die Achse e_{α} und den Winkel α gedrehte Matrix ist

$$\mathsf{A}' = \mathsf{R}_{\boldsymbol{e}_{\alpha}}(\alpha) \mathsf{A} \mathsf{R}_{\boldsymbol{e}_{\alpha}}^{T}(\alpha). \tag{I.2.2}$$

Die Drehung zurück ist dann

$$\mathsf{R}_{\boldsymbol{e}_{\alpha}}(-\alpha)\mathsf{A}'\mathsf{R}_{\boldsymbol{e}_{\alpha}}^{T}(-\alpha) = \mathsf{R}_{\boldsymbol{e}_{\alpha}}^{T}(\alpha)\mathsf{A}'\mathsf{R}_{\boldsymbol{e}_{\alpha}}(\alpha) = \mathsf{R}_{\boldsymbol{e}_{\alpha}}^{T}(\alpha)\mathsf{R}_{\boldsymbol{e}_{\alpha}}(\alpha)\mathsf{A}\mathsf{R}_{\boldsymbol{e}_{\alpha}}^{T}(\alpha)\mathsf{R}_{\boldsymbol{e}_{\alpha}}(\alpha) = \mathsf{A}$$
(I.2.3)

Wenn wir als Beispiel die Matrix

$$\mathsf{A} = \begin{pmatrix} a & b & 0 \\ -b & c & 0 \\ 0 & 0 & d \end{pmatrix}$$

um $\boldsymbol{e}_{\alpha} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^T$ drehen, erhalten wir

$$\begin{aligned} \mathsf{A}' = \mathsf{R}_{(1/\sqrt{2},0,-1/\sqrt{2})} r(\alpha) \mathsf{A} \mathsf{R}_{(1/\sqrt{2},0,-1/\sqrt{2})}^{T}(\alpha) & (I.2.4) \\ = \mathsf{R}_{(1/\sqrt{2},0,-1/\sqrt{2})} r(\alpha) \mathsf{A} \mathsf{R}_{(1/\sqrt{2},0,-1/\sqrt{2})} r(-\alpha) \\ = \begin{pmatrix} \frac{1}{2}(\cos(\alpha)+1) & \frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}(\cos(\alpha)-1) \\ -\frac{\sin(\alpha)}{\sqrt{2}} & \cos(\alpha) & -\frac{\sin(\alpha)}{\sqrt{2}} \\ \frac{1}{2}(\cos(\alpha)-1) & \frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}(\cos(\alpha)+1) \end{pmatrix} \begin{pmatrix} a & b & 0 \\ -b & c & 0 \\ 0 & 0 & d \end{pmatrix} \\ \begin{pmatrix} \frac{1}{2}(\cos(\alpha)+1) & -\frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}(\cos(\alpha)-1) \\ \frac{\sin(\alpha)}{\sqrt{2}} & \cos(\alpha) & \frac{\sin(\alpha)}{\sqrt{2}} \\ \frac{1}{2}(\cos(\alpha)-1) & -\frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}(\cos(\alpha)+1) \end{pmatrix} \\ = \begin{pmatrix} \frac{1}{2}(\cos(\alpha)+1) & \frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}(\cos(\alpha)-1) \\ -\frac{\sin(\alpha)}{\sqrt{2}} & \cos(\alpha) & -\frac{\sin(\alpha)}{\sqrt{2}} \\ \frac{1}{2}(\cos(\alpha)+1) & \frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}(\cos(\alpha)+1) \end{pmatrix} \\ \begin{pmatrix} \frac{1}{2}a(\cos(\alpha)+1) & \frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}(\cos(\alpha)+1) \\ \frac{1}{2}(\cos(\alpha)-1) & -\frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}a(\cos(\alpha)-1) + \frac{b\sin(\alpha)}{\sqrt{2}} \\ \frac{c\sin(\alpha)}{\sqrt{2}} & -\frac{1}{2}b(\cos(\alpha)+1) & \frac{b\sin(\alpha)}{\sqrt{2}} + c\cos(\alpha) & \frac{c\sin(\alpha)}{\sqrt{2}} - \frac{1}{2}b(\cos(\alpha)-1) \\ \frac{1}{2}d(\cos(\alpha)-1) & -\frac{d\sin(\alpha)}{\sqrt{2}} & \frac{1}{2}d(\cos(\alpha)+1) \end{pmatrix} \\ = \begin{pmatrix} \frac{1}{4}\left((a+d)\cos^{2}(\alpha)+2(a-d)\cos(\alpha)+a+2c\sin^{2}(\alpha)+d) & 0 & 0 \\ 1 & (-\sqrt{2}\sin(\alpha)(\cos(\alpha)(a-2c+d)+a-d)-2b(\cos(\alpha)+1)) & 0 & 0 \\ -\frac{1}{4}\sin(\alpha) & (\sin(\alpha)(a-2c+d)-2\sqrt{2}b) & 0 & 0 \end{pmatrix} \\ + \begin{pmatrix} 0 & \frac{1}{4}\left(2b(\cos(\alpha)+1) - \sqrt{2}\sin(\alpha)(\cos(\alpha)(a-2c+d)+a-d) - 2b(\cos(\alpha)-1)\right) & 0 \\ 0 & \frac{1}{4}(-\sqrt{2}\sin(\alpha)(\cos(\alpha)(a-2c+d)-a+d)-2b(\cos(\alpha)-1)) & 0 \end{pmatrix} \\ + \begin{pmatrix} 0 & 0 & -\frac{1}{4}\sin(\alpha) & (\sin(\alpha)(a-2c+d)-a+d) - 2b(\cos(\alpha)-1) \end{pmatrix} & 0 \\ 0 & \frac{1}{4}(\cos(\alpha)(a-1) - \sqrt{2}\sin(\alpha)(\cos(\alpha)(a-2c+d)-a+d) - 2b(\cos(\alpha)-1)) & 0 \end{pmatrix} \\ + \begin{pmatrix} 0 & 0 & -\frac{1}{4}\sin(\alpha) & (\sin(\alpha)(a-2c+d)-a+d) - 2b(\cos(\alpha)-1) \end{pmatrix} & 0 \end{pmatrix} \\ + \begin{pmatrix} 0 & 0 & -\frac{1}{4}\sin(\alpha) & (\sin(\alpha)(a-2c+d)-a+d) - 2b(\cos(\alpha)-1) \end{pmatrix} & 0 \end{pmatrix} \\ + \begin{pmatrix} 0 & 0 & -\frac{1}{4}\sin(\alpha) & (\sin(\alpha)(a-2c+d)-a+d) - 2b(\cos(\alpha)-1) \end{pmatrix} & 0 \end{pmatrix} \\ + \begin{pmatrix} 0 & 0 & -\frac{1}{4}\sin(\alpha) & (\sin(\alpha)(a-2c+d)-a+d) - 2b(\cos(\alpha)-1) \end{pmatrix} & 0 \end{pmatrix} \\ + \begin{pmatrix} 0 & 0 & -\frac{1}{4}(\cos(\alpha)((a+d)\cos(\alpha)-2a+2d)+a+2c\sin^{2}(\alpha)+d) \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{aligned}$$

I.3. Allgemeine Drehung mit Eulerwinkeln

Das KOORDINATENSYSTEM e_x, e_y, e_z geht durch drei Drehungen aus dem KOOR-DINATENSYSTEM e_x^*, e_y^*, e_z^* hervor.

Abb. I.1.: Definition der Eulerschen Winkel

Die Eulerschen Winkel sind

- 1. Drehung um $\boldsymbol{e}_{z}^{*}: \alpha$
- 2. Drehung um $0A:\beta$
- 3. Drehung um $\boldsymbol{e}_{z}^{*}: \gamma$

Dabei $\overline{0A}$ steht senkrecht zur Ebene aufgespannt durch e_z und e_z^* . Die Reihenfolge der Drehungen ist

- 1. Drehung: Bringe e_x^* senkrecht zu e_z (In der Abbildung I.3 zeigen die Kreise die Ebenen senkrecht zu e_z^* und senkrecht zu e_z Die Schnittlinie der beiden Kreise ist $\overline{0A}$.
- 2. Drehung: Bringe z-Achse in richtige Lage
- 3. Drehung: Bringe x,y-Achsen in die richtige Lage.

J. Berechnung elektrischer Felder

J.1. In der Nähe eines Leiterstückes

Entlang der x-Achse von x = 0 bis $x = \ell$ sei die LADUNG Q homogen verteilt. Zu berechnen ist das elektrische Feld für einen Punkt $P = (\xi, 0, 0)$ auf der x-Achse!

Die Linienladungsdichte ist

$$\lambda = \frac{Q}{\ell}$$

Das elektrische Feld bei ${\cal P}$ ist

$$dE_x(x,\xi) = \frac{1}{4\pi\epsilon_0} \frac{\lambda(x-\xi) d\xi}{|x-\xi|^3}$$

Wir integrieren über die Länge des Drahtes

$$E_{x}(\xi) = \int_{0}^{\ell} dE_{x}(x,\xi) = \frac{\lambda}{4\pi\epsilon_{0}} \cdot \begin{cases} \int_{0}^{\ell} \frac{d\xi}{(x-\xi)^{2}} , & \text{für } x > \ell \text{ oder } x < 0; \\ \int_{0}^{x} \frac{d\xi}{(x-\xi)^{2}} - \int_{x}^{\ell} \frac{d\xi}{(x-\xi)^{2}} , & \text{für } 0 < x < \ell. \end{cases}$$

Die Lösung dieser Gleichung ist

$$E_x(x) = \frac{\lambda}{4\pi\varepsilon_0 x(x-\ell)} \begin{cases} \frac{\lambda\ell}{4\pi\varepsilon_0 x(x-\ell)} , & \text{für } x > \ell \text{ oder } x < 0; \\ \frac{\lambda(2x-\ell)}{4\pi\varepsilon_0 x(x-\ell)} , & \text{für } 0 < x < \ell. \end{cases}$$

Abb. J.1.: Elektrisches Feld entlang einer Linienladung.

Wir berechnen nun das elektrische Feld entlang der Mittelsenkrechten einer Linienladung der Länge ℓ . Zur Berechnung legen wir das Koordinationssystem so, dass die Ladungsverteilung von $-\frac{\ell}{2}$ bis $\frac{\ell}{2}$ reicht. Aus Symmetriegründen existiert auf der Mittelsenkrechten keine Komponente in *x*-Richtung. Wir betrachten also die Komponente entlang *y*. Am Punkt P = (0, y, 0) ist

$$dE_{y}(y) = \frac{1}{4\pi\varepsilon_{0}} \frac{\lambda dx}{\left(x^{2} + y^{2}\right)^{\frac{3}{2}}} y$$

Ebenso ist

$$E_{y}(y) = \int_{-\frac{\ell}{2}}^{\frac{\ell}{2}} \frac{\lambda}{4\pi\varepsilon_{0}} \frac{y}{(x^{2}+y^{2})^{\frac{3}{2}}} dx = \frac{\lambda y}{4\pi\varepsilon_{0}} \int_{-\frac{\ell}{2}}^{\frac{\ell}{2}} \frac{dx}{(x^{2}+y^{2})^{\frac{3}{2}}}$$

Nach Bronstein[Bro+08] ist

$$\int \frac{dx}{X^{\frac{3}{2}}} = \frac{x}{a^2 \sqrt{X}}$$

mit $X = x^2 + a^2$. Daraus folgt

$$E_y(y) = \frac{\lambda y}{4\pi\varepsilon_0} \left(\frac{x}{y^2\sqrt{x^2+y^2}}\right) \Big|_{-\frac{\ell}{2}}^{\frac{\ell}{2}}$$
$$= \frac{\lambda}{4\pi\varepsilon_0 y} \left(\frac{\ell}{2\sqrt{\frac{\ell^2}{4}+y^2}} + \frac{\ell}{2\sqrt{\frac{\ell^2}{4}+y}}\right)$$
$$= \frac{\lambda\ell}{4\pi\varepsilon_0 y} \frac{1}{\sqrt{y^2+\frac{\ell^2}{4}}}$$
$$= \frac{Q}{4\pi\varepsilon_0} \frac{1}{y\sqrt{y^2+\frac{\ell^2}{4}}}$$

Für $y \gg \ell$ bekommt man

$$E_y = \frac{1}{4\pi\varepsilon_0} \frac{\lambda\ell}{y^2} = \frac{Q}{4\pi\varepsilon_0 y^2}$$

Für $y \ll -\ell$ bekommt man

$$E_y = -\frac{1}{4\pi\varepsilon_0} \frac{\lambda\ell}{y^2} = -\frac{Q}{4\pi\varepsilon_0 y^2}$$

Wenn die Linienladung «unendlich » ausgedehnt ist, gilt

$$y \ll \ell$$

Dann ist

$$E_y \approx \frac{\lambda \ell}{4\pi\varepsilon_0 y} \frac{1}{\sqrt{\frac{\ell^2}{4}}} = \frac{\lambda}{2\pi\varepsilon_0 |y|} = \frac{Q}{2\pi\varepsilon_0 \ell |y|}$$

Abb. J.2.: Elektrisches Feld senkrecht zu einer Linienladung.

J.2. Auf der Symmetrieachse einer Kreisscheibe

Zur Berechnung setzen wir die Flächenladungsdichte auf

$$\sigma = \frac{g}{\pi r^2}$$

Das elektrische Feld auf der Symmetrie achse kann nur parallel zu dieser sein. Wir setzen also an

$$dE_x = \frac{1}{4\pi\varepsilon_0} \frac{\sigma \hat{r} d\hat{r} d\varphi}{\left(\hat{r}^2 + x^2\right)^{\frac{3}{2}}} x$$

Also ist

$$E_x = \int_{0}^{2\pi} \int_{0}^{r} \frac{1}{4\pi\varepsilon_0} \frac{\sigma\hat{r}x \, d\hat{r}d\varphi}{(\hat{r}^2 + x^2)^{\frac{3}{2}}} = \frac{\sigma x}{4\pi\varepsilon_0} \int_{0}^{2\pi} \int_{0}^{r} \frac{\hat{r} \, d\hat{r}d\varphi}{(\hat{r}^2 + x^2)^{\frac{3}{2}}} = \frac{\sigma x}{2\varepsilon_0} \int_{0}^{r} \frac{\hat{r} \, d\hat{r}d\hat{r}}{(\hat{r}^2 + x^2)^{\frac{3}{2}}}$$

Nach Bronstein ist

$$\int \frac{rdr}{\sqrt{(r^2 + x^2)^3}} = -\frac{1}{\sqrt{r^2 + x^2}}$$

Also ist

$$E_x = \frac{\sigma x}{2\varepsilon_0} \left(-\frac{1}{\sqrt{\hat{r}^2 + x^2}} \right) \Big|_0^r$$
$$= \frac{\sigma x}{2\varepsilon_0} \left(-\frac{1}{\sqrt{r^2 + x^2}} + \frac{1}{|x|} \right)$$
$$= -\frac{\sigma x}{2\varepsilon_0} \cdot \frac{|x| - \sqrt{r^2 + x^2}}{|x|\sqrt{r^2 + x^2}}$$
$$= \frac{\sigma}{2\varepsilon_0} \cdot \frac{x}{|x|} \cdot \frac{\sqrt{r^2 + x^2} - |x|}{\sqrt{r^2 + x^2}}$$

Für $|x| \gg r$ ist

$$\sqrt{r^2 + |x|^2} - |x| = |x| \left(\sqrt{1 + \frac{r^2}{x^2}}\right) - |x| = |x| \left(1 + \frac{r^2}{2x^2}\right) - |x| = \frac{r^2}{2x^2}$$

und damit

$$E_x = \frac{\sigma}{4\varepsilon_0} \frac{r^2}{x^2} = \frac{Q}{4\pi\varepsilon_0 x^2}$$

J.3. Innerhalb und ausserhalb einer geladenen Zylinderfläche

Der Zylindermantel habe den Radius R, die Flächenladungsdichte sei σ . Wir betrachten eine Zylinderfläche koaxial zur geladenen Fläche mit dem Radius r < R. Das **E**-Feld ist aus Symmetriegründen radial symmetrisch. Der Fluss durch die Fläche ist:

$$\phi = \iint_{\text{Fläche}} E_n da = E_r \iint_{\text{Fläche}} da = E_r \cdot 2\pi r\ell = \frac{Q}{\varepsilon_0}$$

Da keine LADUNG umschlossen wird, ist

$$E_r = 0, \ r < R$$

Für r > R gilt

$$E_r \cdot 2\pi r\ell = \frac{\sigma \cdot 2\pi R\ell}{\varepsilon_0}$$
$$E_r = \frac{\sigma R}{\varepsilon_0}$$

 $\varepsilon_0 r$

 oder

Abb. J.4.: LADUNG senkrecht zu einem Kreiszylinder.

J.4. In allen Bereichen zweier koaxialer zylinderförmiger Leiter

Nach Abschnitt J.3 ist $E_r = \frac{\sigma R}{\varepsilon_0}$ wenn die Ladungsdichte σ auf der Zylinderschale mit R < r aufgebracht ist. Wir betrachten zwei konzentrische Zylinder mit den Radien $R_1 < R_2$ und deren Oberflächenladungsdichten σ_1 und σ_2 . Für $r < R_1$ gilt

$$E_r = 0$$
 für $r < R_1$

Für $R_1 < r < R_2$ existi
ert allein das Feld des inneren Kreiszylinders. Also ist dort:

$$E_r = rac{\sigma_1 R_1}{arepsilon_0 r}$$
 für $R_1 < r < R_2$

Schliesslich ist für $r > R_2$:

$$E_r = \frac{\sigma_1 R_1}{\varepsilon_0 r} + \frac{\sigma_2 R_2}{\varepsilon_0 r} = \frac{\sigma_1 R_1 + \sigma_2 R_2}{\varepsilon_0 r} \text{ für } r > R_2$$

wobei hier die Additivität elektrischer Felder benutzt wurde. Wenn für $r > R_2$ $E_r = 0$ sein soll, muss gelten

 $\sigma_1 R_1 + \sigma_2 R_2 = 0$

 oder

$$\frac{\sigma_1}{\sigma_2} = -\frac{R_2}{R_1}$$

Abb. J.5.: Elektrische Felder bei einem Koaxialkabel, wobei einmal (dünne Linie) die Oberflächenladungsdichten σ_i vom Betrage nach gleich und einmal (dicke Linie) die Produkte $R_i \cdot \sigma_i$ dem Betrage nach gleich sind.

K. Lorentztransformationen

K.1. Lorentztransformationen für die magnetische Induktion

Bewegung entlang der x-Richtung

$$E'_{x} = E_{x}$$

$$E'_{y} = \gamma(v_{x}) (E_{y} - v_{x} \cdot B_{z})$$

$$E'_{z} = \gamma(v_{x}) (E_{z} + v_{x} \cdot B_{y})$$

$$B'_{x} = B_{x}$$

$$B'_{y} = \gamma(v_{x}) \left(B_{y} + \frac{v_{x}}{c^{2}}E_{z}\right)$$

$$B'_{z} = \gamma(v_{x}) \left(B_{z} - \frac{v_{x}}{c^{2}}E_{y}\right)$$

Bewegung entlang der y-Richtung

$$E'_{x} = \gamma(v_{y}) (E_{x} + v_{y} \cdot B_{z})$$

$$E'_{y} = E_{y}$$

$$E'_{z} = \gamma(v_{y}) (E_{z} - v_{y} \cdot B_{x})$$

$$B'_{x} = \gamma(v_{y}) \left(B_{x} - \frac{v_{y}}{c^{2}}E_{z}\right)$$

$$B'_{y} = B_{y}$$

$$B'_{z} = \gamma(v_{y}) \left(B_{z} + \frac{v_{y}}{c^{2}}E_{x}\right)$$

Bewegung entlang der z-Richtung

$$E'_{x} = \gamma(v_{z}) (E_{x} - v_{z} \cdot B_{y})$$

$$E'_{y} = \gamma(v_{z}) (E_{y} + v_{z} \cdot B_{x})$$

$$E'_{z} = E_{z}$$

$$B'_{x} = \gamma(v_{z}) \left(B_{x} + \frac{v_{z}}{c^{2}}E_{y}\right)$$

$$B'_{y} = \gamma(v_{z}) \left(B_{y} - \frac{v_{z}}{c^{2}}E_{x}\right)$$

$$B'_{z} = B_{z}$$

K.2. Lorentztransformation für das magnetische Feld

Bewegung entlang der x-Richtung

$$E'_{x} = E_{x}$$

$$E'_{y} = \gamma(v_{x}) \left(E_{y} - \frac{v_{x}}{c^{2}} \frac{1}{\varepsilon_{0}} H_{z} \right)$$

$$E'_{z} = \gamma(v_{x}) \left(E_{z} + \frac{v_{x}}{c^{2}} \frac{1}{\varepsilon_{0}} \cdot H_{y} \right)$$

$$H'_{x} = H_{x}$$

$$H'_{y} = \gamma(v_{x}) \left(H_{y} + v_{x} \varepsilon_{0} E_{z} \right)$$

$$H'_{z} = \gamma(v_{x}) \left(H_{z} - v_{x} \varepsilon_{0} E_{y} \right)$$

Bewegung entlang der y-Richtung

$$E'_{x} = \gamma(v_{y}) \left(E_{x} + \frac{v_{y}}{c^{2}} \frac{1}{\varepsilon_{0}} \cdot H_{z} \right)$$
$$E'_{y} = E_{y}$$
$$E'_{z} = \gamma(v_{y}) \left(E_{z} - \frac{v_{y}}{c^{2}} \frac{1}{\varepsilon_{0}} H_{x} \right)$$
$$H'_{x} = \gamma(v_{y}) \left(H_{x} - v_{y} \varepsilon_{0} E_{z} \right)$$
$$H'_{y} = H_{y}$$
$$H'_{z} = \gamma(v_{y}) \left(H_{z} + v_{y} \varepsilon_{0} E_{x} \right)$$

Bewegung entlang der z-Richtung

$$E'_{x} = \gamma(v_{z}) \left(E_{x} - \frac{v_{z}}{c^{2}} \frac{1}{\varepsilon_{0}} H_{y} \right)$$
$$E'_{y} = \gamma(v_{z}) \left(E_{y} + \frac{v_{z}}{c^{2}} \frac{1}{\varepsilon_{0}} \cdot H_{x} \right)$$
$$E'_{z} = E_{z}$$
$$H'_{x} = \gamma(v_{z}) \left(H_{x} + v_{z} \varepsilon_{0} E_{y} \right)$$
$$H'_{y} = \gamma(v_{z}) \left(H_{y} - v_{z} \varepsilon_{0} E_{x} \right)$$
$$H'_{z} = H_{z}$$

Versuchsliste

1.	Versuch	Ladungstrennung
2.	Versuch	Ladungstrennung
3.	Versuch	Reibungselektrizität
4.	Versuch	Ladungen löffeln
5.	Versuch	Coulomb-Gesetz 14
6.	Versuch	Elektrische Feldlinien
7.	Versuch	Drehmoment auf einen elektrischen Dipol 22
8.	Versuch	Elektrische Feldlinien
9.	Versuch	Faraday-Becher
10.	Versuch	Faraday-Käfig
11.	Versuch	Van-de-Graaff-Generator
12.	Versuch	Kapazität von Kugeln
13.	Versuch	Reihen- und Parallelschaltung von Kapazitäten
14.	Versuch	Energieumwandlung
15.	Versuch	Spannungswaage (Kirchhoffsche Waage)
16.	Versuch	Influenzversuch: Verschiebungsdichte im Kondensator 47
17.	Versuch	Plattenkondensator mit Dielektrikum
18.	Versuch	Steighöhe im Kondensator
19.	Versuch	Strom-Spannungs-Kennlinie
20.	Versuch	Ohmscher Leiter
21.	Versuch	Ohmsches Gesetz
22.	Versuch	Leitfähigkeit
23.	Versuch	Temperaturabhängigkeit der Leitfähigkeit
24.	Versuch	Kombination von Widerständen
25.	Versuch	EMK des Daniell-Elementes
26.	Versuch	Entladen eines Kondensators
27.	Versuch	Dioden-Kennlinie: Halbleiterdiode, Germanium 85
28.	Versuch	Potentiometerschaltung 85
29.	Versuch	Kraft zweier stromdurchflossener Leiter
30.	Versuch	Lorentzkraft auf stromdurchflossenen Leiter
31.	Versuch	Fadenstrahlrohr 99
32.	Versuch	Magnetische Feldlinien
33.	Versuch	Magnetische Feldlinien
34.	Versuch	Lorentz-Kraft, Leiterschaukel
35.	Versuch	Barlowsches Rad
36.	Versuch	Barlowsches Rad
37.	Versuch	Magnetfelder von Leitern
38.	Versuch	Magnetfelder von Leitern
39.	Versuch	Halleffekt
40.	Versuch	Halleffekt

41. Versuch Induktion	134
42. Versuch Induktion im Erdfeld	134
43. Versuch Induktion im Erdfeld	134
44. Versuch Tesla-Transformator	137
45. Versuch Magnetische Induktion	138
46. Versuch Magnetische Induktion	138
47. Versuch Fallrohre	141
48. Versuch Fallrohre	141
49. Versuch Funkeninduktor	148
50. Versuch Funkeninduktor	148
51. Versuch Hochspannungsleitung	151
52. Versuch Hochspannungsleitung	151
53. Versuch Transformatorenversuche, Teil Hochspannung	151
54. Versuch Transformatorenversuche, Teil Hochstrom	151
55. Versuch Transformatorenversuche	151
56. Versuch Berechnung von Spannungen in einem Netzwerk	152
57. Versuch Einfache Wechselstromkreise	153
58. Versuch Wechselstromwiderstand	155
59. Versuch Wechselstromwiderstand	155
60. Versuch Elektrischer Schwingkreis	160
61. Versuch Elektrischer Schwingkreis	160
62. Versuch Elektrischer Schwingkreis	160
63. Versuch Elektromotor und -generator	166
64. Versuch Elektromotor und -generator	166
65. Versuch Simulation Elektromotor	166
	100
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	166
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	166 172
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator	100 166 172 172
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	100 166 172 172 172
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 	100 1000 1000 1000 1000 1000 1000 1000 1000
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	100 1000 1000 1000 1000 1000 1000 1000 1000
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 66. Versuch Simulation von Gleich- und Wechselstromgeneratoren	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgenerator67. Versuch Drehstromgenerator68. Versuch Asynchroner Drehstrommotor69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw.70. Versuch Einphasen-Asynchronmotor71. Versuch Linearmotor72. Versuch Betatron73. Versuch Dia- und Paramagnetismus74. Versuch Dia- und Paramagnetismus75. Versuch Dia- und Paramagnetismus76. Versuch Ferromagnetismus - Modellversuch77. Versuch Hysterese des Ferromagneten78. Versuch Hysterese des Ferromagneten	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgenerator67. Versuch Drehstromgenerator68. Versuch Asynchroner Drehstrommotor69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw.70. Versuch Einphasen-Asynchronmotor71. Versuch Linearmotor72. Versuch Betatron73. Versuch Dia- und Paramagnetismus74. Versuch Dia- und Paramagnetismus75. Versuch Dia- und Paramagnetismus76. Versuch Ferromagnetismus - Modellversuch77. Versuch Hysterese des Ferromagneten78. Versuch Hysterese des Ferromagneten79. Versuch Hysterese des Ferromagneten	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgenerator67. Versuch Drehstromgenerator68. Versuch Asynchroner Drehstrommotor69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw.70. Versuch Einphasen-Asynchronmotor71. Versuch Linearmotor72. Versuch Betatron73. Versuch Dia- und Paramagnetismus74. Versuch Dia- und Paramagnetismus75. Versuch Dia- und Paramagnetismus76. Versuch Ferromagnetismus - Modellversuch77. Versuch Hysterese des Ferromagneten78. Versuch Hysterese des Ferromagneten79. Versuch Hysterese des Ferromagneten80. Versuch Magnetische Bezirke	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 71. Versuch Linearmotor 72. Versuch Betatron 73. Versuch Dia- und Paramagnetismus 74. Versuch Dia- und Paramagnetismus 75. Versuch Dia- und Paramagnetismus 76. Versuch Ferromagnetismus - Modellversuch 77. Versuch Hysterese des Ferromagneten 78. Versuch Hysterese des Ferromagneten 79. Versuch Lacherleitung	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgenerator 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 71. Versuch Linearmotor 72. Versuch Betatron 73. Versuch Dia- und Paramagnetismus 74. Versuch Dia- und Paramagnetismus 75. Versuch Dia- und Paramagnetismus 76. Versuch Ferromagnetismus - 77. Versuch Hysterese des Ferromagneten 78. Versuch Hysterese des Ferromagneten 79. Versuch Hysterese des Ferromagneten 79. Versuch Hysterese des Ferromagneten 80. Versuch Lecherleitung 81. Versuch Lecherleitung 82. Versuch Kagnetische Bezirke	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 71. Versuch Linearmotor 72. Versuch Betatron 73. Versuch Betatron 74. Versuch Dia- und Paramagnetismus 75. Versuch Dia- und Paramagnetismus 76. Versuch Ferromagnetismus - Modellversuch 77. Versuch Hysterese des Ferromagneten 78. Versuch Hysterese des Ferromagneten 79. Versuch Hysterese des Ferromagneten 79. Versuch Magnetische Bezirke 80. Versuch Koaxialleitung 82. Versuch Stehende Wallen	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 71. Versuch Linearmotor 72. Versuch Betatron 73. Versuch Dia- und Paramagnetismus 74. Versuch Dia- und Paramagnetismus 75. Versuch Dia- und Paramagnetismus 76. Versuch Ferromagnetismus 77. Versuch Hysterese des Ferromagneten 78. Versuch Hysterese des Ferromagneten 79. Versuch Hysterese des Ferromagneten 79. Versuch Magnetische Bezirke 81. Versuch Koaxialleitung 82. Versuch Stehende Wellen 84. Versuch Stehende Wellen	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 71. Versuch Linearmotor 72. Versuch Betatron 73. Versuch Dia- und Paramagnetismus 74. Versuch Dia- und Paramagnetismus 75. Versuch Dia- und Paramagnetismus 76. Versuch Ferromagnetismus - 77. Versuch Hysterese des Ferromagneten 78. Versuch Hysterese des Ferromagneten 79. Versuch Hysterese des Ferromagneten 79. Versuch Magnetische Bezirke 80. Versuch Koaxialleitung 81. Versuch Lecherleitung 82. Versuch Stehende Wellen 84. Versuch Stehende Wellen	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 71. Versuch Linearmotor 72. Versuch Betatron 73. Versuch Dia- und Paramagnetismus 74. Versuch Dia- und Paramagnetismus 75. Versuch Dia- und Paramagnetismus 76. Versuch Ferromagnetismus 77. Versuch Hysterese des Ferromagneten 78. Versuch Hysterese des Ferromagneten 79. Versuch Hysterese des Ferromagneten 79. Versuch Magnetische Bezirke 81. Versuch Lecherleitung 82. Versuch Koaxialleitung 83. Versuch Stehende Wellen 84. Versuch Stehende Wellen 85. Versuch Hertzscher Dipol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
66. Versuch Simulation von Gleich- und Wechselstromgeneratoren 67. Versuch Drehstromgenerator 68. Versuch Asynchroner Drehstrommotor 69. Versuch Schleifring-Drehstromasynchronmotor für Fahrstühle usw. 70. Versuch Einphasen-Asynchronmotor 71. Versuch Linearmotor 72. Versuch Betatron 73. Versuch Dia- und Paramagnetismus 74. Versuch Dia- und Paramagnetismus 75. Versuch Dia- und Paramagnetismus 76. Versuch Ferromagnetismus - 77. Versuch Hysterese des Ferromagneten 78. Versuch Hysterese des Ferromagneten 79. Versuch Hysterese des Ferromagneten 79. Versuch Magnetische Bezirke 81. Versuch Lecherleitung 82. Versuch Koaxialleitung . 83. Versuch Stehende Wellen 84. Versuch Stehende Wellen 85. Versuch Hertzscher Dipol 86. Versuch Hertzscher Dipol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

88. Versuch Wellenwanne
89. Versuch Wellenwanne
90. Versuch Polarisiertes Licht: Polarisator und Analysator
91. Versuch Fresnelsche Formeln
92. Versuch Brewsterwinkel
93. Versuch Brewsterwinkel
94. Versuch Brewsterwinkel
95. Versuch Evaneszente Wellen - tunneln mit Licht
96. Versuch Tunneleffekt mit Mikrowellen
97. Versuch Tunneleffekt mit Mikrowellen
98. Versuch Tunneleffekt mit Mikrowellen
99. Versuch Kraft-Polygon
100Versuch Kraft-Polygon

Abbildungsverzeichnis

2.1.	Auslenkung zweier mit identischer LADUNG q geladener Kugeln.	13
2.2.	Feldlinien + und	16
2.3.	Feldlinien bei zwei gleichen positiven LADUNGEN.	17
2.4.	Feldlinien $+q$ und $-q$	18
2.5.	Integration über eine Kugelfläche mit einer Punktladung im Zentrum	19
2.6.	Allgemeine Oberflächen und beliebige Ladungsverteilung	20
2.7.	Kräfte auf einen Dipol im homogenen elektrischen Feld	22
2.8.	Berechnung eines Feldes einer Kugelschale	23
2.9.	Die Feldverteilung einer homogen geladenen Kugelschale.	24
2.10.	Elektrisches Feld einer homogen geladenen Kugel	25
2.11.	Integrationsfläche zur Berechnung des elektrischen Feldes einer	
	Ebene	25
2.12.	Elektrisches Feld um eine endliche Platte.	26
2.13.	Elektrisches Feld entgegengesetzt gleich geladener Platten.	27
2.14.	Elektrisches Feld gleich geladener Platten	28
2.15.	Integrationsfläche	28
2.16.	Feldlinien in der Nähe eines Leiters	29
2.17.	Approximation eines beliebigen Integrationsweges durch Kreisseg-	
	mente	31
2.18.	Potential einer homogen geladenen Ebene	34
2.19.	Potential eines Kreisringes	35
2.20.	Potential einer homogen geladenen Kreisscheibe	36
2.21.	Potential einer homogen geladenen Kugelschale	37
2.22.	Potential einer homogenen unendlichen Linienladung	38
2.23.	Integrationsoberfläche an der Grenze Metall-Vakuum.	40
2.24.	Geometrie eines Plattenkondensators.	41
2.25.	Minimierung der Randeffekte in einem Kondensator	42
2.26.	PARALLELSCHALTUNG von Kondensatoren.	43
2.27.	REIHENSCHALTUNG oder SERIENSCHALTUNG von Kondensatoren.	
		43
2.28.	Flächenladungsversuch	46
2.29.	Schematisches Bild eines ATOMS mit seiner ELEKTRONENHULLE.	48
2.30.	Isolatoren in einem Kondensatoren	50
2.31.	Anordnung permanenter Dipole ohne und mit elektrischem Feld.	51
2.32.	Induzierte Polarisation	52
2.33.	Berechnung des Gesetzes von Clausius-Mosotti	54
2.34.	Links: Kondensator ohne und rechts: mit Dielektrikum	55
2.35.	Dielektrische Flussigkeit im Kondensator	57
2.36.	Skizze der Anderungen beim Anlegen einer SPANNUNG	57
3.1.	Kräfte auf LADUNGEN in einem Leiter	65
3.2.	Berechnung des Stromes in einem Medium	67

3.3.	Fluss eines Stromdichtefeldes	69
3.4.	Stromfluss in einem Kondensator	70
3.5.	Bahnkurven ohne und mit elektrischem Feld.	72
3.6.	Berechnung des Widerstandes bei einem inhomogenen Leiter	75
3.7.	Ladungstransport in einem van de Graaff-Generator	78
3.8.	Aufladen und Entladen eines Kondensators über einen WIDER-	
0.01	STAND.	80
39	Ladekurven am Kondensator	81
3 10	Entladekurven am Kondensator	82
3.11	Kennlinie eines 10000-Widerstands	83
3 1 2	In Schaltungen übliche Symbole	83
0.12. 3 13	Messung der Kennlinie eines Widerstandes	84
3.10. 3.14	Restimming einer Diedenkennlinie	84
2.14. 2.15	Turische Diedenkennlinie	04 95
0.10. 2.16	Proprint steiler	00 06
3.10. 2.17	Ark sitemen lt ansien Wildenstünde	00 07
3.17.	Arbeitspunkt zweier Widerstande	81
3.18.	Serieschaltung einer Diode D mit einem WIDERSTAND R .	88
3.19.	Arbeitspunkt einer Diode.	88
3.20.	Kennlinien eines Transistors.	89
3.21.	Bestimmung der Ausgangskennlinie eines Transistors	89
3.22.	Arbeitskennlinie eines Transistors	90
3.23.	Verstärkung eines Transistors in der Emitterschaltung	90
3.24.	Verstärkerschaltung mit BC107.	91
3.25.	Strom in zwei parallelen Leitern	93
3.26.	Metallischer Gastank mit Ausströmöffnung.	94
3.27.	Berechnung der magnetischen Kraft	95
3.28.	Magnetische Induktion relativ zur Geschwindigkeit der Ladung.	100
3.29.	Berechnung der Kraft auf ein Leiterelement.	103
3.30.	Kräfte auf eine Leiterschlaufe im homogenen B -Feld	104
3.31.	Drehmoment auf eine Leiterschleife im homogenen Magnetfeld	105
3.32.	Drehmoment auf eine Leiterschleife im homogenen Magnetfeld	106
3.33.	Tangentiales Magnetfeld eines Linienstromes.	110
3.34.	Magnetfeld einer homogenen Stromverteilung	111
3.35.	Integrationsfläche zur Analyse der Quellenfreiheit des Magnetfel-	
	des	113
3.36.	Integration über die Mantelfläche.	113
3.37.	Darstellung von B in einer $(x = \text{const})$ -Ebene	119
3.38.	Vektorpotential einer unendlichen Stromdichte.	120
3.39.	HALL-EFFEKT	121
3.40.	Bewegte magnetische Induktion und elektrische Felder.	122
3.41.	Lorentztransformation von E und B	125
0.11.		
4.1.	Induktion im inhomogenen Magnetfeld	133
4.2.	Vergleich eines Stabmagneten mit einer Spule.	135
4.3.	Induzierte Spannung	136
4.4.	Vorzeichen der magnetischen Induktion und der induzierten SPAN-	
	NUNG	136
4.5.	Selbstinduktion	137

4.6.	WIRBELSTRÖME in Metallen	. 141
4.7.	Bewegung eines Leiters aus einem Magnetfeld.	. 142
4.8.	Magnetische Induktion einer langen Spule	. 144
4.9.	Berechnung einer endlichen Spule	. 145
4.10.	Magnetische Induktion einer endlichen Spule bei konstantem r	. 146
4.11.	Magnetische Induktion einer endlichen Spule bei konstantem 1	. 147
4.12.	Zwei gekoppelte Stromkreise	. 148
4.13.	Symbolische Darstellung eines TRANSFORMATORS	. 149
4.14.	Schematischer Aufbau eines TRANSFORMATORS	. 150
4.15.	Kirchhoffsche Gesetze: links die MASCHENREGEL, rechts die KNO-	
	TENREGEL	. 152
4.16.	Definition von Strömen und Spannungen bei Wechselspannungen	153
4.17.	Spule mit Wechselspannung	. 156
4.18.	Kondensator mit Wechselspannung	159
4.19.	Schwingkreis	. 161
4.20.	Parallelschwingkreis	. 162
4.21.	Schwingkreis mit Widerstand	. 162
4.22.	Parallelschwingkreis gedämpft	163
4.23.	Parallelschwingkreis gedämpft: zweite Möglichkeit	164
4.24.	Parallelschwingkreis gedämpft: dritte Möglichkeit	165
4.25.	Bestandteile eines Elektromotors	. 166
4.26.	Aufbau eines Elektromotors	. 167
4.27.	Bauarten von Elektromotoren	. 170
4.28.	Kennlinien von Nebenschluss- und Hauptschlussmotoren	. 172
4.29.	Skizze eines Betatrons	. 173
4.30.	Berechnung des Skin-Effektes	. 175
4.31.	Berechnung der Energie im Magnetfeld	. 178
4.32.	Dia-, Para- und Ferromagnete im inhomegenen Feld	. 180
4.33.	Kreisströme als Ursache des Dia- und des Paramagnetismus	. 181
4.34.	Illustration zum Satz von Larmor	. 182
4.35.	Einschalten eines Magnetfeldes für ein Elektron in einem Atom.	. 183
4.36.	Berechnung der Larmorfrequenz mit einem Kreisel	. 185
4.37.	Berechnung des Diamagnetismus	. 186
4.38.	Ein einzelner Kreisstrom	. 187
4.39.	Atomare Kreisströme	. 188
4.40.	Elektronenspin	. 190
4.41.	Schematischer Verlauf der Magnetisierung	. 192
4.42.	Zusammenhang zwischen H, M und B	. 193
4.43.	Messung der Hysterese eines Ferromagneten.	. 194
4.44.	Hysteresekurve eines Ferromagneten	. 195
4.45.	Ferromagnetische Domänen	. 196
4.46.	Domänenstruktur im ändernden Magnetfeld	. 196
4.47.	Löschen des remanenten Magnetismus	. 197
6.1	3 mögliche DOPPELLEITERSYSTEME	214
6.2	800 MHz-Breitbandverstärker	215
6.3	Magnetfelder und elektrische Felder bei einer Lecherleitung	215
6.4.	Doppelleitung aus parallelen Platten.	216

6.5.	Ausbreitung von elektromagnetischen Wellen	. 217
6.6.	Integrationspfad zur Anwendung des vierten Maxwellschen Geset-	
	zes	. 218
6.7.	Koaxialkabel, Wellen- und Abschlusswiderstand	. 219
6.8.	Berechnung des Poynting-Vektors	. 221
6.9.	Wellenausbreitung	. 223
6.10.	Berechnung der Wellenausbreitung	. 224
6.11.	Bild einer ebenen Welle	. 227
6.12.	Kugelwelle	. 228
6.13.	Polarisation durch Absorption in einem Drahtpolarisator	. 231
6.14.	Polarisator und Analysator	. 231
6.15.	Dichroismus	. 232
6.16.	Polarisation und Spiegelung	. 233
6.17.	Definition der S-POLARISATION und der P-POLARISATION	. 233
6.18.	Stetigkeitsbedingungen für elektromagnetische Wellen	. 241
6.19.	Richtungen des elektrischen Feldes und Vorzeichen	. 245
6.20.	Richtungen der Felder bei senkrechtem Einfall	. 247
6.21.	Polarisation bei der Spiegelung an Wasser	. 249
6.22.	Polarisation bei der Spiegelung an Wasser	. 249
6.23.	Polarisation bei der Spiegelung an Wasser	. 250
6.24.	p-Polarisation	. 251
6.25.	Intensitätsverlauf für p- und s-Polarisation	. 251
6.26.	Amplitudenverlauf	. 252
6.27.	Intensitätsverlauf	. 252
6.28.	Verlauf der Intensität	. 255
6.29.	Gewichtete Intensität	. 255
6.30.	Feldamplituden und Intensitäten bei senkrechtem Einfall, abhän-	
	gig von $a_n = n_2/n_1$.	. 257
6.31.	Feldamplituden und Intensitäten bei senkrechtem Einfall, abhän-	
	gig von $a_n = n_2/n_1$, mit logarithmischer Abszisse	. 257
6.32.	Momentaufnahme der Interferenz	. 258
6.33.	Intensitätsverteilung bei Totalreflexion	. 259
\mathbf{C} 1		075
C.I.	Berechnung der Ableitung	. 275
C.2.	Approximation der Funktion $f(x) = \cos(x)$ mit dem Grad 1, 2	000
C a	$\operatorname{und} 3. \ldots $. 280
C.3.	Approximation of Function $f(x) = \cos(x)$ mit dem Grad 1, 2	000
C 4	$\operatorname{und} 3. \ldots $. 282
C.4.	Approximation der Funktion $f(x) = \cos(x)$ mit dem Grad 1, 2	000
	$\mathbf{Und} 3. \dots \mathbf{N} 1$. 282
C.5.	Definition von Vektoren	. 283
C.6.	Gradient als Richtung der starksten Steigung	. 290
U.7.	VERTORFELD mit Umrandung	. 291
U.8.	Drenung eines schwimmenden Klotzes, Kotation	. 293
D.1	Integration einer Funktion	. 297
D.2	Darstellung von $f(x)$, wobei <i>a</i> variiert wird	302
- · - ·		
E.1.	Kartesisches, zylindrisches und sphärisches Koordinatensystem .	. 305

E .2.	Umrechnung der Koordinaten
F.1.	Mitgeführtes orthogonales Koordinatensystem und kartesisches Ko- ordinatensystem 300
F 2	Betrachtung in der xu -Ebene für e_{\perp} 310
F.3.	Betrachtung in der ρz -Ebene zur Bestimmung von \boldsymbol{e}_r und \boldsymbol{e}_{θ} 310
G.1.	DREIECK
H.1.	Beziehung zwischen den Ableitungen
I.1.	Definition der Eulerschen Winkel
J.1.	Elektrisches Feld entlang einer Linienladung
J.2.	Elektrisches Feld senkrecht zu einer Linienladung
J.3.	E -Feld einer homogen geladenen Kreisscheibe
J.4.	LADUNG senkrecht zu einem Kreiszylinder
J.5.	Elektrische Felder bei einem Koaxialkabel

Tabellenverzeichnis

2.1.	Elektrisches Feld in der Natur 15
2.2.	Gefüllte Elektronenschale
2.3.	Nicht gefüllte Elektronenschale
2.4.	Einige relative Permittivitäten
3.1.	Verstärkungen der Schaltung 3.21
3.2.	Dimensionierung der Schaltung nach Abbildung 3.24 92
4.1.	Wirbelstromkräfte in N m^{-3} von Magneten mit 0.1 T und 1 T auf
	Platten mit der Geschwindigkeit v aus verschiedenen Materialien. 143
4.2.	Skintiefen verschiedener Materialien (nach [Wik16a; Wik16b]) 178
C.1.	Beispiele für Ableitungen
C.2.	Differentiationsregeln
C.3.	Ableitung einiger Funktionen
C.4.	Reihenentwicklungen
D.1.	Beispiele für Integrale
D.2.	Unbestimmte Integrale
G.1.	Formeln für schiefwinklige ebene Dreiecke

Glossar

Dipol Entweder

- 1. zwei dem Betrage nach gleich grosse Ladungen q mit unterschiedlichem Vorzeichen im Abstand r. Das elektrische Dipolmoment zeigt von der negativen Ladung zur positiven Ladung oder
- 2. ein Kreisstrom, der ein magnetisches Dipolmoment erzeugt
- 21, 22, 29, 49, 51, 53, 55, 191, 270, 271
- elektrisches Feld Eine Eigenschaft einer Ladung, anders als bei der Coulombkraft. Das elektrische Feld einer Ladung ist die Coulombkraft auf eine Testladung, geteilt durch die Grösse der Testladung. Symbol E, Einheit [E] =N C⁻¹ = V m⁻¹. 15, 16, 18, 19, 23–26, 28
- **Elementarladung** Die kleinste direkt beobachtbare Ladung. Sie hat die Grösse $e = 1.602176634 \cdot 10^{-19}$ C. 14, 268
- **extensive Grösse** Eine extensive Grösse ist eine Grösse, die proportional zum beobachteten System ist. Beispiele sind das Volumen oder die Energie. 12
- Ladung Ladung ist die Quelle von elektrischen Feldern. Sie wird in Coulomb gemessen. Nach E. Noether [Noe18] ist die Erhaltung der Ladung eine Konsequenz der Eichinvarianz elektrischer und magnetischer Felder, gegeben durch das elektrostatische Potential und das Vektorpotential. Symbol q oder Q, Einheit [q] = C = A s = Coulomb 11–15, 17, 18, 21, 27, 28, 33, 39, 40, 43, 51, 95, 96, 107, 123, 142, 187, 217, 218, 231, 345, 353
- Ladungseinheit Die Ladungseinheit hängt vom Einheitensystem ab. IM SI-System ist dies das Coulomb. Es gibt auch Eingheitensystem, vor allem in der Theorie beliebt, bei denen die Ladungseinheit 1 ist. Im elektrostatischen CGS-System hat die Ladung die Einheit g^{1/2}cm^{3/2}s⁻¹. Im elektromagnetischen CGS-System ist die Ladungseinheit g^{1/2}cm^{1/2}. 13

Abkürzungen

 $\ensuremath{\mathsf{RMS}}$ Root-Mean-Square. 154

Referenzen

- [AF00] M. Alonso und E. J. Finn. *Physik.* 3. Aufl. QC 21/2000 A Ex.5. JR. Oldenbourg Verlag, 2000 (siehe S. 265).
- [AW95] G. B. Arfken und H. J. Weber. Mathematical Methods for Physicists.
 4. Aufl. QA 401/1995 A. Academic Press, 1995 (siehe S. 265).
- [Bro+08] I. N. Bronštein u. a. Taschenbuch der Mathematik. 7. Aufl. QA 40/2008
 B. Verlag Harri Deutsch, 2008 (siehe S. 35, 117, 265, 285, 286, 288, 298–300, 305, 321, 322, 332).
- [Cod17] Codata. Landé-g-Faktor Proton. hhttp://physics.nist.gov/cgibin/cuu/Value?gp. Entnommen 2017-06-29. 29. Juni 2017. URL: http: //physics.nist.gov/cgi-bin/cuu/Value?gp (siehe S. 190).
- [Dör01] A. Döring. "Rasterkraftmikroskopische Untersuchungen an Haftklebstoffen". Seite 61. PhD Thesis. University of Ulm, 2001 (siehe S. 27).
- [Far32a] M. Faraday. "Experimental Researches in Electricity". In: *Philosophi-cal Transactions of the Royal Society of London* 122 (1832), S. 125–162. DOI: 10.1098/rstl.1832.0006. eprint: http://rstl.royalsocietypublishing.org/content/122/125.full.pdf+html. URL: http://rstl. royalsocietypublishing.org/content/122/125.short (siehe S. 265).
- [Far32b] M. Faraday. "The Bakerian Lecture: Experimental Researches in Electricity. Second Series". In: *Philosophical Transactions of the Royal Society of London* 122 (1832), S. 163–194. DOI: 10.1098/rstl.1832.0007. eprint: http://rstl.royalsocietypublishing.org/content/122/163.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/122/163.short (siehe S. 265).
- [Far33a] M. Faraday. "Experimental Researches in Electricity. Fifth Series". In: *Philosophical Transactions of the Royal Society of London* 123 (1833), S. 675-710. DOI: 10.1098/rstl.1833.0030. eprint: http://rstl. royalsocietypublishing.org/content/123/675.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/123/ 675.short (siehe S. 265).
- [Far33b] M. Faraday. "Experimental Researches in Electricity. Fourth Series". In: Philosophical Transactions of the Royal Society of London 123 (1833), S. 507-522. DOI: 10.1098/rstl.1833.0022. eprint: http://rstl. royalsocietypublishing.org/content/123/507.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/123/ 507.short (siehe S. 265).

- [Far33c] M. Faraday. "Experimental Researches in Electricity. Third Series". In: *Philosophical Transactions of the Royal Society of London* 123 (1833),
 S. 23-54. DOI: 10.1098/rstl.1833.0006. eprint: http://rstl.royalsocietypublishing.org/content/123/23.full.pdf+html.
 URL: http://rstl.royalsocietypublishing.org/content/123/23.short (siehe S. 265).
- [Far34a] M. Faraday. "Experimental Researches in Electricity. Eighth Series". In: *Philosophical Transactions of the Royal Society of London* 124 (1834), S. 425-470. DOI: 10.1098/rstl.1834.0022. eprint: http://rstl. royalsocietypublishing.org/content/124/425.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/124/ 425.short (siehe S. 265).
- [Far34b] M. Faraday. "Experimental Researches in Electricity. Seventh Series". In: *Philosophical Transactions of the Royal Society of London* 124 (1834), S. 77-122. DOI: 10.1098/rstl.1834.0008. eprint: http://rstl. royalsocietypublishing.org/content/124/77.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/124/ 77.short (siehe S. 265).
- [Far34c] M. Faraday. "Experimental Researches in Electricity. Sixth Series". In: *Philosophical Transactions of the Royal Society of London* 124 (1834), S. 55-76. DOI: 10.1098/rstl.1834.0007. eprint: http://rstl. royalsocietypublishing.org/content/124/55.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/124/ 55.short (siehe S. 265).
- [Far35a] M. Faraday. "Experimental Researches in Electricity. Ninth Series". In: *Philosophical Transactions of the Royal Society of London* 125 (1835), S. 41-56. DOI: 10.1098/rstl.1835.0005. eprint: http://rstl. royalsocietypublishing.org/content/125/41.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/125/ 41.short (siehe S. 265).
- [Far35b] M. Faraday. "Experimental Researches in Electricity. Tenth Series". In: *Philosophical Transactions of the Royal Society of London* 125 (1835), S. 263-274. DOI: 10.1098/rstl.1835.0016. eprint: http://rstl. royalsocietypublishing.org/content/125/263.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/125/ 263.short (siehe S. 265).
- [Far38a] M. Faraday. "Experimental Researches in Electricity. Thirteenth Series". In: Philosophical Transactions of the Royal Society of London 128 (1838), S. 125–168. DOI: 10.1098/rstl.1838.0009. eprint: http://rstl.royalsocietypublishing.org/content/128/125.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/128/125.short (siehe S. 265).
- [Far38b] M. Faraday. "Supplementary Note to Experimental Researches in Electricity. Eleventh Series". In: *Philosophical Transactions of the Royal Society of London* 128 (1838), S. 79–81. DOI: 10.1098/rstl.1838.0007. eprint: http://rstl.royalsocietypublishing.org/content/128/

79.full.pdf+html. URL: http://rstl.royalsocietypublishing. org/content/128/79.short (siehe S. 265).

- [Far39] M. Faraday. "Experimental Researches in Electricity. Fifteenth Series". In: *Philosophical Transactions of the Royal Society of London* 129 (1839), S. 1–12. DOI: 10.1098/rstl.1839.0002. eprint: http://rstl. royalsocietypublishing.org/content/129/1.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/129/1. short (siehe S. 265).
- [Far40] M. Faraday. "Experimental Researches in Electricity. Seventeenth Series". In: Philosophical Transactions of the Royal Society of London 130 (1840), S. 93-127. DOI: 10.1098/rstl.1840.0004. eprint: http://rstl.royalsocietypublishing.org/content/130/93.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/130/93.short (siehe S. 265).
- [Far43] M. Faraday. "Experimental Researches in Electricity. Eighteenth Series". In: Philosophical Transactions of the Royal Society of London 133 (1843), S. 17-32. DOI: 10.1098/rstl.1843.0004. eprint: http://rstl.royalsocietypublishing.org/content/133/17.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/133/17.short (siehe S. 265).
- [Far46] M. Faraday. "Experimental Researches in Electricity. Twentieth Series". In: Philosophical Transactions of the Royal Society of London 136 (1846), S. 21-40. DOI: 10.1098/rstl.1846.0003. eprint: http://rstl.royalsocietypublishing.org/content/136/21.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/136/21.short (siehe S. 265).
- [Far49a] M. Faraday. "Experimental Researches in Electricity. Twenty-Second Series (Continued)". In: *Philosophical Transactions of the Royal Society* of London 139 (1849), S. 19-41. DOI: 10.1098/rstl.1849.0002. eprint: http://rstl.royalsocietypublishing.org/content/139/ 19.full.pdf+html. URL: http://rstl.royalsocietypublishing. org/content/139/19.short (siehe S. 265).
- [Far49b] M. Faraday. "The Bakerian Lecture: Experimental Researches in Electricity. Twenty-Second Series". In: *Philosophical Transactions of the Royal Society of London* 139 (1849), S. 1–18. DOI: 10.1098/rstl.
 1849.0001. eprint: http://rstl.royalsocietypublishing.org/content/139/1.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/139/1.short (siehe S. 265).
- [Far50] M. Faraday. "Experimental Researches in Electricity. Twenty-Third Series". In: *Philosophical Transactions of the Royal Society of Lon*don 140 (1850), S. 171–188. DOI: 10.1098/rstl.1850.0008. eprint: http://rstl.royalsocietypublishing.org/content/140/171. full.pdf+html. URL: http://rstl.royalsocietypublishing.org/ content/140/171.short (siehe S. 265).

- [Far51a] M. Faraday. "Experimental Researches in Electricity. Twenty-Fifth Series". In: *Philosophical Transactions of the Royal Society of London* 141 (1851), S. 7–28. DOI: 10.1098/rstl.1851.0004. eprint: http://rstl.royalsocietypublishing.org/content/141/7.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/141/7.full.pdf+141/7.short (siehe S. 265).
- [Far51b] M. Faraday. "Experimental Researches in Electricity. Twenty-Sixth Series". In: *Philosophical Transactions of the Royal Society of London* 141 (1851), S. 29–84. DOI: 10.1098/rstl.1851.0005. eprint: http://rstl.royalsocietypublishing.org/content/141/29.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/141/29.short (siehe S. 265).
- [Far51c] M. Faraday. "The Bakerian Lecture. Experimental Researches in Electricity. Twenty-Fourth Series". In: *Philosophical Transactions of the Royal Society of London* 141 (1851), S. 1–6. DOI: 10.1098/rstl.1851.
 0001. eprint: http://rstl.royalsocietypublishing.org/content/141/1.full.pdf+html. URL: http://rstl.royalsocietypublishing.org/content/141/1.short (siehe S. 265).
- [Far52a] M. Faraday. "Experimental Researches in Electricity. Twenty-Eighth Series". In: Philosophical Transactions of the Royal Society of London 142 (1852), S. 25-56. DOI: 10.1098/rstl.1852.0004. eprint: http: //rstl.royalsocietypublishing.org/content/142/25.full.pdf+ html. URL: http://rstl.royalsocietypublishing.org/content/ 142/25.short (siehe S. 265).
- [Far52b] M. Faraday. "Experimental Researches in Electricity. Twenty-Ninth Series". In: Philosophical Transactions of the Royal Society of London 142 (1852), S. 137-159. DOI: 10.1098/rstl.1852.0012. eprint: http://rstl.royalsocietypublishing.org/content/142/137. full.pdf+html. URL: http://rstl.royalsocietypublishing.org/ content/142/137.short (siehe S. 265).
- [Gia06] D. C. Giancoli. *Physik.* QC 21/2006 Gb Ex.2. Pearson Studium, 2006 (siehe S. 265).
- [HRW03] D. Halliday, R. Resnick und J. Walker. Physik. QC 21/2003 H. Wiley-VCH GmbH, 2003 (siehe S. 265).
- [Hec05] E. Hecht. Optik. 4. Aufl. Übersetzt von Dr. Anna Schleitzer. Oldenbourg Wissenschaftsverlag GmbH, 2005. ISBN: 3-486-27359-0. DOI: 10.
 1515/9783110526653 (siehe S. 228, 230-232, 257).
- [Jac75] J. D. Jackson. Classical electrodynamics. 2. Aufl. Wiley, 1975 (siehe S. 40, 114, 139, 176, 294).
- [Kän78] W. Känzig. Physik 2: Elektrizität und Magnetismus. Verlag der Fachvereine Zürich, 1978 (siehe S. 57).
- [Kne78] F. Kneubühl. *Repetitorium der Physik*. Teubner, 1978. DOI: 10.1007/ 978-3-322-84886-4 (siehe S. 12, 30, 38, 39, 44, 191, 265).
- [LL85] L. D. Landau und E. M. Lifschitz. *Elektrodynamik der Kontinua*. 4. Aufl.
 Bd. 8. Akademie-Verlag Berlin, 1985 (siehe S. 54).
- [LL89] L. D. Landau und E. M. Lifschitz. Klassische Feldtheorie. Hrsg. von H.-G. Schöpf. Bd. 2. Akademie-Verlag Berlin, 1989 (siehe S. 114, 117).
- [LLS96] R. Langkau, G. Lindström und W. Scobel. *Physik kompakt: Elektroma-gnetische Wellen*. QC 21/C6.4. vieweg studium, 1996 (siehe S. 265).
- [Lei98] H. J. Leisi. *Klassische Physik.* Bd. 2. QC 21/1996 L-2 und QC 21/1996
 L-1. Birkhäuser, 1998. DOI: 10.1007/978-3-0348-8807-3 (siehe S. 66, 71, 77, 79, 93–95, 99, 107, 112, 114, 121, 122, 134, 182, 188, 203, 265).
- [LL96] G. Lindström und R. Langkau. *Physik kompakt: Elektrodynamik.* QC 21/C6.3 Ex.2. vieweg studium, 1996. DOI: 10.1007/978-3-662-12692-9 (siehe S. 265).
- [Mar09] O. Marti. Physikalische Elektronik und Messtechnik. http://wwwex. physik.uni-ulm.de/lehre/physikalischeelektronik/phys_ elektr/phys_elektr.pdf. Universität Ulm, 2009.URL: http:// wwwex.physik.uni-ulm.de/lehre/physikalischeelektronik/ phys_elektr/phys_elektr.pdf (siehe S. 92).
- [Mar14] O. Marti. Mechanik Vorlesungsskript. Vorlesungsskripte Othmar Marti. Universität Ulm, 2014, S. 389. URL: http://wwwex.physik.uniulm.de/lehre/krm-2014/krm-2014.pdf (siehe S. 185).
- [Mar15] O. Marti. Wärmelehre. Skript zur Vorlesung. Universität Ulm, 2015. eprint: http://wwwex.physik.uni-ulm.de/lehre/td-2015/td-2015.pdf. URL: http://wwwex.physik.uni-ulm.de/lehre/td-2015/td-2015.html (besucht am 08.05.2020) (siehe S. 73).
- [Max65] J. C. Maxwell. "A Dynamical Theory of the Electromagnetic Field". In: *Phil. Trans. R. Soc. Lond.* 155 (1865), S. 459–512. DOI: 10.1098/ rstl.1865.0008 (siehe S. 265).
- [Max73] J. C. Maxwell. A treatise on electricity and magnetism. Oxford : Clarendon Press, 1873. DOI: 10.1017/cbo9780511709340 (siehe S. 209, 265).
- [MS09] L. C. McDermott und P. S. Shaffer. *Tutorien zur Physik.* Pearson Studium, 2009 (siehe S. 265).
- [Mes06] D. Meschede. *Gerthsen Physik.* 23. Aufl. QC 21/2006 G-1 Ex.2. Springer Verlag, 2006. DOI: 10.1007/978-3-662-45977-5 (siehe S. 232, 265).
- [Noe18] E. Noether. "Invariante Variationsprobleme". In: Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematischphysikalische Klasse (1918). (vorgelegt 26.7.1.1918 durch Felix Klein, endgütige Fassung des Manuskripts September 1918), S. 235–257. DOI: 10.1007/978-3-642-39990-9_13 (siehe S. 353).
- [Pér96] J.-P. Pérez. Optik. Heidelberg: Spektrum Akademischer Verlag, 1996.
 ISBN: 3-86025-389-1 (siehe S. 228, 231).
- [Som78] A. Sommerfeld. Theoretische Physik III, Elektrodynamik. Verlag Harri Deutsch, 1978 (siehe S. 54).

[Thi11]	B. Thidé. <i>Electromagnetic Field Theory</i> . März 2011. ISBN: 0486477738. URL: https://www.researchgate.net/profile/Bo_Thide/publication/ 258221118_Electromagnetic_Field_Theory/links/0deec5279bb5419081000000/ Electromagnetic-Field-Theory.pdf (besucht am 09.06.2020) (sie- he S. 114).
[TM04]	P. A. Tipler und G. Mosca. <i>Physik.</i> 2. Aufl. ISBN-13: 978-3827411648. Spektrum Verlag, 2004. DOI: 10.1007/978-3-8274-2236-1 (siehe S. 12, 22, 30, 38, 39, 44, 71, 77, 79, 93, 121, 134, 230, 231, 265).
[Tur07]	C. W. Turtur. <i>Prüfungstrainer Physik.</i> Teubner Verlag, 2007. DOI: 10. 1007/978-3-8348-8332-2 (siehe S. 265).
[Wel94]	K. Weltner. <i>Mathematik für Physiker</i> . Lehrbuch und Leitfaden (5 Bände) Exemplar 711621537. vieweg studium, 1994. DOI: 10.1007/978- 3-642-15527-7 (siehe S. 265).
[Wik16a]	Wikipedia. <i>Elektrische Leitfähigkeiten</i> . https://de.wikipedia.org/ wiki/Wikipedia:Lizenzbestimmungen_Creative_Commons_Attribution- ShareAlike_3.0_Unported. 21. Juni 2016. URL: https://de. wikipedia.org/wiki/Elektrische%5C_Leitf%7B%5C%22a%7Dhigkeit (siehe S. 178).
[Wik16b]	Wikipedia. <i>Permeabilitäten</i> . https://de.wikipedia.org/wiki/ Wikipedia:Lizenzbestimmungen_Creative_Commons_Attribution- ShareAlike_3.0_Unported. 21. Juni 2016. URL: https://de. wikipedia.org/wiki/Permeabilit%78%5C%22a%7Dt%5C_(Magnetismus) (siehe S. 178).
[Wik20a]	Wikipedia. <i>Impedanzanalysiator</i> . 12. Juni 2020. URL: https://de. wikipedia.org/wiki/Impedanzanalysator (besucht am 12.06.2020) (siehe S. 158).

- [Wik20b] Wikipedia. Lorentz-Transformation. 6. Juni 2020. URL: https://de. wikipedia.org/wiki/Lorentz-Transformation (siehe S. 127).
- [Wol14] I. Wolfram Research. *Mathematica*. Version 10.0. Champaign, Illinois: Wolfram Research, Inc., 2014 (siehe S. 328).

Stichwortverzeichnis

 δ -Funktion Dirac, 301-303 Übersetzungsfaktor, 150 Ableitung, 275–276 Bezugssystem rotierend, <u>323–326</u> drei Dimensionen, 290–294 mitgeführt, 294–295 Ableitung von Vektoren, 287–294 Ableitung:Näherungslösungen, 280–282 Ampèresches Durchflutungsgesetz, 107– 112Ampèresches Gesetz, 115 Amplitude, 227, 228, 230–232, 251, 252 Analysator, 231, 232 Atom, 48 atomare Polarisierbarkeit, 48

B-Feld

Eigenschaften, 99–120 Barlowsches Rad, 107 Basis, 83 Basis-Emitter-Kennlinie, 89 Bauelemente, 82–92 Betatron, 173–174 Betrag der Amplitude, 229 Beweglichkeit, 73 Bezugssystem, 93 Bildladung, 29-30 Binormale, 286 **Biot-Savart** Gesetz, 102–107, 118 Kraft, 103 Biot-Savart-Kraft, 181 Bohrsches Magneton, 190 Boltzmannstatistik, 191 Brechungsindex, 229 Brechzahl, 229 Brewster-Winkel, 248

Cavendish, 13 Clausius, 53–55 Coulomb, 14 Gesetz, 14, 60 Coulombeichung, 116, 117 Coulombsches Gesetz, 12–14 Curie-Gesetz, 192 Curie-Konstante, 192

D dielektrische Verschiebung, 19 Diamagnetismus, 181, 186–188 Dichroismus, 231 Dielektrika, 50–56 dielektrische Suszeptibilität, 63 Dielektrische Verschiebung, 19 dielektrische Verschiebung, 60, 61, 180 Stetigkeit, 52, 63 Dielektrizitätskonstanten, 238 Differentiation einfache Funktionen, 277–278 Regeln, 276–277 Differentiationsreglen, 276–277 Dipol, 21-22 Dipolmoment, 21 induziert, 48, 63 Dirac δ -Funktion, 301–303 Divergenz, 21, 291–292 Domäne ferromagnetisch, 196 Doppelleitersystem, 213–218 Drehmatrizen, 327–328 Drehmoment, 105 Drehspulinstrument, 106 Drehung Matrix, 328-329 Tensor, <u>328–329</u> Vektor, 328-329 Drehungen, 327-330 Dreibein

rechtshändig, 213 Dreieck, 321, 322 schiefwinklig, 321–322 Driftgeschwindigkeit, 65, 73 Durchlassrichtung, 85 Eichung, 116 Einfallsebene, 234, 238 Elektrische Eigenschaften materie, 47-60elektrische Felder von Leitern, 22–30 Elektrische Feldlinien, 60 elektrische Flussdichte, 19 Elektrische Ladung, 12–14 Elektrische Ströme, 65–132 elektrische Suszeptibilität, 180 elektrischer Fluss, 21, 23, 61 elektrischer Strom, 66 Elektrisches Feld Fluss, 19 elektrisches Feld, 15–18, 60, 99, 180 Energie, 44–47 Energiedichte, 45, 62 Stetigkeit, 52, 63 elektrisches Potential, 32, 61 Elektrodynamik Kraftgesetz, 102 elektromagnetische Wellen, 209–260 Elektromotor, 166–173 gemittelte Betrachtung, 169 elektromotorische Kraft, 77–79 Elektronen, 99, 189 Hülle, 48 Elektrostatik, <u>11–63</u>, <u>116</u> elektrostatisches Potential, 30–38, 61 kontinuierliche Ladungsverteilung, 62Emitter, 83 EMK, 77–79, 138, 139, 152 Energie elektrisches Feld, 44–47 Magnetfeld, 178–179 potentiell, 61Energiedichte des elektrischen Feldes, 45.62 Energiefluss, 221–222 stehende Wellen, 222 ε_0 Permittivität des Vakuums, 13, 60 Eulersche Winkel, 329–330

Fakultät, 281 Faraday Induktionsgesetz differentiell, 137–140 integral, 137–140 Michael, 16 Faradaysches Induktionsgesetz, 133– 178Feld elektrisch, 15–18, 60 magnetisch, 98–99 Feldlinien, 16 elektrisch, 60Ferromagnet, 195 Ferromagnetismus, 181, 193–197 Flächenladungsdichte, 46–47 Fluss, 68 elektrisch, 61 elktrisch, 21 magnetisch, 134–137 Fluss des elektrischen Feldes, 19 Flussdichte elektrisch, 19 magnetisch, 99–102, 134 Frequenz Skineffekt, 178 Fresnelsche Formeln p-Polarisation, 243, 244 Fresnelschen Formeln, 234 Funkeninduktor, 148 Galilei-Transformation, 210 Gauss Gesetz, 52 Gauss, K.F., 295 Gausssches Gesetz, 18–21, 61 Gegeninduktivitäten, 149 Gesetz Clausius und Mosotti, 53–55 Clausius-Mosotti, 55 Coulomb, 12–14, 60 Gauss, 18–21, 52, 61 Kirchhoff, 152–153 Ohm, 71-77 Gesetz von Biot-Savart, 102–107, 118 Gleichung Poisson, 62 Gleichungen Maxwell, 203–208

Gradient, 290-291 Graphit, 71 Green, G., 296 **H**-Feld, <u>98–99</u> Hall-Effekt, 121–122 Hallspannung, 121, 122 Hauptnormale, 286 Hauptschlussmotor, 170 Helmholtzspulen, 99 Hohlleiter, 220 Hysterese, 197 *i* Stromdichte, 69 Impedanz Kapazität komplex, 160Kondensator komplex, 160Impedanzen, 153–165 Induktion, 133 magnetisch, 99–102, 134 Induktionsgesetz, 176 Faraday, 133-178 differentiell, 137–140 itegral, 137–140 universell, 140 Induktionskonstante, 99 induktiver Widerstand, 157, 158, 274 Induktivität Selbst-, 147 Wechselstromwiderstand, 156–157 komplex, 157-158 induzierte Spannung, 141, 150, 156 Inertialsystem, 94 Influenz, 29–30, 42 Influenzladung, 29 Inhomogenes Magnetfeld, 180–182 Integrale bestimmt, 299-300 Rechenverfahren, 298 unbestimmt, 299 variable obere Grenze, 299–300 Integration, 297–298 Intensität, 228–232, 234, 240, 251, 252, 255Joulsche Wärme, 77–79 Kapazität, 39–44, 62

365

Impedanz komplex, 160 Wechselstromwiderstand, 159 kapazitiver Widerstand, 274 Kartesische Koordinaten, 305–308 Kern. 47 Kernladungszahl, 47 Kirchhoffsche Gesetze, 152–153 Klebestreifen, 27 Knotenregel, 152 Koaxialkabel, 220 Kollektor, 83 Kollektor-Kennlinienfeld, 89 Kommutator, 166 Kondensator, 82 Impedanz komplex, 160Reihenschaltung, 43 Wechselstromwiderstand, 159 Kondensatoren, 42 Parallelschaltung, 43 Kontinuitätsgleichung, 66–70 Koordinaten kartesich, 305-308 sphärisch, 305–308 zylindrisch, 305–308 Koordinatensystem, 329 Kraft, 13 Biot Savart, 103 Kraftgesetz der Elektrodynamik, 102 Kurve Normlenebene, 285 Raum, 285–286 tangente, 285 Lösung, allgemein Wellengleichung, 211–213 Ladung, 11-18, 21-24, 27-35, 39-41, 43, 44, 47, 50, 51, 54, 56, 58, 60, 65, 67, 73, 77, 79, 93–98, 100, 102, 107, 123, 126, 130, 187, 194, 203, 217, 218, 222-224, 331, 336 elektrisch, 12–14 magnetisch, 114 Proton, 94 Ladungsdichte, 26 Ladungserhaltung, 69, 95

Ladungsinvarianz, 95

Ladungsmenge, 67

relativistisch, 95

Ladungsträger, 65, 67, 68, 73

magnetische Flussdichte, 99–102, 134, 180magnetische Induktion, 99–102, 134, 180

Ladungstransport, 65 Ladungsverteilung kontinuierlich, 60Landé-Faktor, 190 Langevin-Funktion, 192 Laplace, 118 Larmor Satz, 182-186 Larmorkreisfrequenz, 185 Larmorwinkelgeschwindigkeit, 184 Lecher-Leitung, 213 Lecherleitungen, 220 Leiter, 61 elektrische Felder, 22–30 Leiterschleife bewegt, 133–134 Leitfähigkeit, 71 Skineffekt, 178 Leitwert, 71 Lenzsche Regel, 135, 136 Lichtenberg, G.C. 1742–1799, 12 Lichtstrahlen. 227 Linienintegral, 300–301 Lorentz-Beziehung, 54, 63 Lorentz-Kraft, 99 Lorentz-Transformation, 99, 210 B, 122-127E, 122–127 allgemeine elektromagnetische Felder, 127–128 beliebige Geschwindigkeit, 127–128 EMK, 138 Lorentzeichung, 117 Lorentzkraft, 92–93, 122, 136, 140

Magnetfeld, 92–93 Eigenschaften, 99–120 Energie, 178–179 inhomogen, <u>180–182</u> Quellenfreiheit, 112–114 zeitlich veränderlich, 133–197 Magnetische Eigenschaften der Materie, 179-197 magnetische Feldstärke, 101

Magnetische Kraft Berechnung, 93–99 magnetischer Fluss, 134–137 magnetisches Feld, 98–99, 101, 180 Magnetisches Moment, 106 Elektronen, 189–190 magnetisches Moment, 108 Magnetisierung, 188–189 Maschenregel, 152 Materie elektrische Eigenschaften, 47–60 magnetische Eigenschaften, 179-197Magnetisierung, 188–189 Mathematik, 275–286 Maxwell Gleichungen, 203–208 Maxwell, James Clerk, 203 Maxwellsche Gleichungen, 203–208 Maxwellsche Verschiebungsstromdichte, 203 Maxwellspannung, 45, 62 mechanische Spannung, 45 Millikan, 14 Moment magnetisch, 106 Elektronen, 189–190 Mosotti, 53-55

 ∇ Nabla-Operator, 296 Nabla-Operator, 296 Nebenschlussmotor, 169 Normalenebene, 285 Normalenebene zu Tangente einer Kurve. 285

Oberfläche, 238 Oberflächenladungsdichte, 45 Oberflächennormalen, 238 Ohmscher Leiter, 71 ohmscher Widerstand, 150 Ohmsches Gesetz, 71–77 Optik , 210 optisch aktive Substanz, 232

Motor, 106

Orientierung k, E und B, 213 Orientierungspolarisation, 51 p Dipolmoment, 21 p-Polarisation, 233, 251, 252, 255 p-polarisiert, 234 Parallelschaltung, 42 Kondensatoren, 43, 62 Paramagnetismus, 181, 191–193 Permeabilität Skineffekt, 178 Vakuum, 98 Permittivität, 53 Vakuum, 13, 60 φ Potential, 32 Pointingvektor, 238 Poisson-Gleichung, 38–39, 62 Poissongleichung, 39 Polarisation, 53 p, 251, 252, 255 s, 238–241, 251, 252, 255 Polarisationsfilter, 233 Polarisator, 231, 232 Polarisierbarkeit, 53 atomar, 48 Potential elektrostatisch, 30–38, 61 kontinuierlich, 62 Stetigkeit, 53, 63 potentielle Energie, 61Poynting-Vektor, 221–222 Poyntingvektor stehende Wellen, 222 Produkte mit Vektoren, 286–287 Protonen, 47 Punktladung, 13 Quantenelektrodynamik, 190

Quantenfeldtheorie, 117 Quantenmechanik, 116 Quellen, 21 Quellenfreiheit des Magnetfeldes, 112– 114

Raum Kurve, 285–286 RC-Stromkreise, 79–82 Rechte-Hand-Regel, 135, 136

Reflexion, 234, 240, 258 Regel Lenz, 135 Reihen, 278–280 Reihenschaltung, 43 Kondensatoren, 43, 62 rektifizierende Ebene, 286 relative Dielektrizitätszahl, 180 relative elektrische Permeabilität, 180 relative elektrische Permittivität, 180 Relativitätstheorie, 93, 116, 117, 224 retardierte Zeit, 225 ρ_{el} elektrische Ladungsdichte, 15 Rotation, 292–294 Rotor, 166 s-Polarisation, 233, 238–241, 251, 252, 255s-polarisiert, 234 Satz von Gauss, 295 Satz von Green, 296 Satz von Larmor, 182–186 Satz von Stokes, 296 Schaltungen, 82–92 Schiefwinkliges Dreieck, 321–322 Schmiegungsebene, 285 Schwingkreis, 161–163 elektrisch, 163 gedämpft, 162–163 komplex, 163–165 ideal, 160–161 komplex, 161–162 Selbstinduktion, 137 Selbstinduktivität, 147, 149 Serienschaltung, 43 SI-System, 98, 101 Signalfilterung, 163 Skineffekt, 175–178 Frequenz, 178 Spannung, 32, 33, 41, 43, 44, 46, 50, 56-58, 61, 66, 78, 80, 84, 86-89, 91, 92, 121, 122, 136, 137, 150, 151, 153–157, 159, 161, 167, 195, 272 induziert, 141, 150, 156 mechanisch, 45Spannungsquelle, 80Sperrrichtung, 85 spezifischer Widerstand, 72, 141, 271

Sphärische Koordinaten, 305–308 Spiegelsymmetrie, 26 Spin, 189 Elektronen, 189–190 Spule, 135 endlich lang, 145-147unendlich lang, 143-145Stator, 166 Stehende Wellen, 220–221 stehende Wellen Energiefluss, 222 Poyntingvektor, 222 Stetigkeit, 52–53 dielektrische Verschiebung, 52, 63 elektrisches Feld, 52, 63 Potential, 53, 63 Stokes, G. G., 296 Strahlungsfeld, 225 Strom, 66–68, 70, 77, 86–88, 90, 91, 93, 95, 98, 100, 101, 106, 107, 109, 111, 112, 118-120, 122, 128, 134–137, 141, 142, 144, 145, 147–151, 154, 155, 157, 159, 160, 167, 170, 171, 176, 182, 187, 189, 194, 195 elektrisch, 66 makroskopisch, 128 Stromdichte, 67, 69 Stromdichtefeld, 68 Stromkreise, 79–82 Stromverteilung Magnetfeld, 114–120 Suszeptibilität, 180 dielektrisch, 63 Symmetrieüberlegungen, 26

Tangente, 285 Tangente an Kurve, 285 Taylorreihe, 278–279 Tensor, 39, 71, 222, 268, 272, 273 Transformator, 147–151 Translationsinvarianz, 25

Umrechnung kartesisch zu sphärisch, 306 kartesisch zu zylindrisch, 306 sphärisch zu kartesisch, 306 sphärisch zu zylindrisch, 307 zylindrisch zu kartesisch, 307

zylindrisch zu sphärisch, 308 Vakuum, 209, 210 Vakuumpermittivität, 229 van de Graaff-Generator, 78 Vektoren, 283–286 Ableitung, 287–294 Vektorprodukt, 286–287 Vektorfeld, 13, 67, 116, 129, 208, 269, 291Stromdichte, 69 Vektoridentitäten, 286–295 Vektorpotential, 114–117, 119, 120, 131 Vektorprodukt, 286–287 Verschiebung dielektrisch, 19 Verschiebungspolarisation, 52 Verschiebungsstrom, 133 Vierervektor, 97 Volumen, 286

Weber, 135 Wechselspannungsquelle, 163 Wechselstom Induktivität, 156–157 komplex, 157–158 Ohmscher Widerstand, 153–155 komplex, 155-156Spule, 156–157 komplex, 157–158 Wechselstromkreise, 153–165 Wechselstromwiderstand Kapazität, 159 Kondensator, 159 Wellen Doppelleiter, 213–218 elektromagnetisch, 209–260 Raum, 222-227 stehend, 220-221 Wellengleichung, 209–211 allgemeine Lösung, 211–213 Vakuum, 209–211 Wellenvektor, 227 Wellenwiderstand, 218–220 Wellenzahl, 227 Wideroe-Bedingung, 174 Widerstand, 72, 75, 76, 78–80, 82–84, 88, 90–92, 134, 137, 154, 155, 162, 163, 176, 179, 214, 218, 219, 271, 273 induktiv, 157, 158, 274 kapazitiv, 274 ohmsch, 150 komplex, 155–156 Wechselstrom, 153–155 spezifisch, 72, 141, 271 Winkel Euler, 329–330 Wirbelstrom, 141–143 Zahlendichte, 191 zeitlich veränderliche Magnetfelder, 133– 197 Zylinderkoordinaten, 305–308