«Auskünfte aus erster Hand gibt nur die Natur selbst. Sie ist also zu befragen, will man nicht zeitlebens am Krückstock von Autoritäten humpelnd lernen.»

Inhaltsverzeichnis

1 Einleitung
 1.1 Dank ... 11
 1.2 Fakultative Abschnitte 11

2 Einführung
 2.1 Physikalische Grössen und Einheiten 14
 2.1.1 Einheitensysteme 14
 2.1.2 Messen 15

3 Mechanik in einer Dimension 21
 3.1 Kinematik 21
 3.1.1 Massenpunkte 21
 3.1.2 Bewegung eines Massenpunktes auf einer Geraden 21
 3.2 Erhaltungssätze und Erhaltungsgrössen in einer Dimension 25
 3.2.1 Stoss in einer Dimension 25
 3.2.2 Impulserhaltung 26
 3.2.3 Energieerhaltung 27
 3.2.4 Erhaltungsgrössen bei inelastischen Stössen 28
 3.2.5 Stösse auf einer Geraden 29
 3.3 Kräfte und Newtonsche Gesetze in einer Dimension 31
 3.3.1 Newtonsche Gesetze in einer Dimension für konstante Massen 32
 3.4 Mechanische Arbeit in einer Dimension 32
 3.4.1 Beschleunigungsarbeit oder kinetische Energie 33
 3.4.2 Potentielle Energie 33
 3.4.3 Energieerhaltung mechanischer Systeme in einer Dimension 34
 3.4.4 Arbeit und Leistung 35
 3.4.5 Potentielle Energie und Kräfte 37

4 Mechanik in drei Dimensionen 39
 4.1 Kinematik in drei Dimensionen 39
 4.1.1 Massenpunkte im Raum 39
 4.1.2 Bewegung im Raum 39
 4.2 Erhaltungssätze und Erhaltungsgrössen 53
 4.2.1 Impulserhaltung 53
 4.2.2 Kinetische Energie 53
 4.2.3 Potentielle Energie 53
 4.2.4 Konservative Kraftfelder 55
 4.2.5 Energieerhaltung mechanischer Systeme * 59
 4.2.6 Arbeit und Leistung * 60
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.7</td>
<td>Potentielle Energie und Kräfte</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Dynamik</td>
<td>63</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Das Prinzip vom Parallelogramm der Kräfte</td>
<td>63</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Das Reaktionsprinzip</td>
<td>66</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Grundgesetz der Dynamik</td>
<td>67</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Integralform des Kraftgesetzes</td>
<td>68</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Reibung</td>
<td>69</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Strömungsgeschwindigkeit *</td>
<td>71</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Kräfte in beschleunigten Bezugssystemen *</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Teilchensysteme</td>
<td>72</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Impulserhaltung</td>
<td>73</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Massenmittelpunkt</td>
<td>74</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Massenmittelpunktssystem (2 Massen)</td>
<td>77</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Kinetische Energie</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>Stösse</td>
<td>78</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Linearer Stoss im Massenmittelpunktssystem</td>
<td>79</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Stösse in der Ebene</td>
<td>81</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Stösse im Raum</td>
<td>83</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Raketen oder Tintenfische</td>
<td>84</td>
</tr>
<tr>
<td>4.6</td>
<td>Zentralbewegung</td>
<td>87</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Winkelgeschwindigkeit</td>
<td>87</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Winkelbeschleunigung</td>
<td>87</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Vektorcharakter der Drehbewegung</td>
<td>88</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Drehmoment</td>
<td>89</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Drall, Drehimpuls</td>
<td>91</td>
</tr>
<tr>
<td>4.7</td>
<td>Gravitation</td>
<td>92</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Die Keplerschen Gesetze</td>
<td>92</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Newtonsche Gravitationsgesetz</td>
<td>93</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Gewicht</td>
<td>112</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Schwer und träge Masse</td>
<td>113</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Satelliten und Ähnliches</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>Relativität</td>
<td>117</td>
</tr>
<tr>
<td>5.1</td>
<td>Klassische Relativität gleichförmig bewegter Bezugssysteme</td>
<td>117</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Galileitransformation</td>
<td>118</td>
</tr>
<tr>
<td>5.2</td>
<td>Klassische Relativität beschleunigter Bezugssysteme</td>
<td>118</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Trägheitskräfte</td>
<td>118</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Das Prinzip von d’Alembert</td>
<td>119</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Gleichförmig rotierende Bezugssysteme</td>
<td>121</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Allgemeines beschleunigtes und rotierendes Bezugssystem</td>
<td>126</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Die Erde als rotierendes Bezugssystem</td>
<td>129</td>
</tr>
<tr>
<td>5.3</td>
<td>Spezielle Relativitätstheorie</td>
<td>134</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Widersprüche zur klassischen Relativität</td>
<td>134</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Theorie von Einstein</td>
<td>137</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Längenkontraktion</td>
<td>144</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Uhrenvergleich</td>
<td>146</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Der relativistische Dopplereffekt</td>
<td>149</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Addition von Geschwindigkeiten</td>
<td>151</td>
</tr>
</tbody>
</table>
5.3.7 Messung von Beschleunigungen 154
5.3.8 Bewegte Masse .. 155
5.3.9 Masse-Energie-Äquivalenz 158
5.3.10 Relativistisches Kraftgesetz * 160
5.3.11 Lorentz-Transformation .. 165
5.3.12 Lorentz- und Galilei-Transformation 173
5.3.13 Das Zwillingsparadoxon 173

6 Mechanik starrer Körper ... 177
6.1 Grundbegriffe ... 177
6.1.1 Definition .. 177
6.1.2 Masse und Dichte .. 177
6.1.3 Schwerpunkt ... 177
6.1.4 Drehungen des starren Körpers 178
6.1.5 Freiheitsgrade der Bewegungen 182
6.2 Statik des starren Körpers ... 182
6.2.1 Kräfte am starren Körper ... 182
6.2.2 Kräftepaare ... 183
6.2.3 Dynäme ... 183
6.2.4 Schwerkraft ... 185
6.3 Der starre Rotator .. 186
6.3.1 Kinematik .. 186
6.3.2 Trägheitsmoment ... 186
6.3.3 Drehimpuls ... 191
6.3.4 Drallsatz .. 194
6.3.5 Bewegungen mit Drehungen 195
6.4 Kreisel ... 197
6.4.1 Kinematik des Kreisels ... 198
6.4.2 Drehimpuls und kinetische Energie 198
6.4.3 Kräftefreier Kreisel ... 203
6.4.4 Der Kreisel unter dem Einfluss von Kräften 210
6.5 Mechanische Maschinen .. 212

7 Mechanik deformierbarer Medien 215
7.1 Elastomechanik ... 215
7.1.1 Dehnung und Kompression 217
7.1.2 Scherung .. 219
7.1.3 Verdrillung eines Drahtes .. 220
7.1.4 Biegung ... 220
7.1.5 Beziehung zwischen den elastischen Konstanten 223
7.1.6 Anelastisches Verhalten ... 224
7.2 Flüssigkeiten und Gase .. 226
7.2.1 Aggregatzustände ... 226
7.2.2 Gestalt von Flüssigkeitsoberflächen 226
7.2.3 Druck ... 228
7.2.4 Schweredruck ... 230
7.2.5 Gasdruck * .. 233
7.2.6 Atmosphärendruck .. 234
7.2.7 Druck als Potential * ... 236
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.5.1 Gradient in kartesischen Koordinaten</td>
<td>332</td>
</tr>
<tr>
<td>E.5.2 Divergenz in kartesischen Koordinaten</td>
<td>333</td>
</tr>
<tr>
<td>E.5.3 Rotation in kartesischen Koordinaten</td>
<td>334</td>
</tr>
<tr>
<td>F Rechnen mit Integralen</td>
<td>337</td>
</tr>
<tr>
<td>F.1 Unbestimmte Integrale</td>
<td>339</td>
</tr>
<tr>
<td>F.1.1 Bestimmte Integrale und Integrale mit variabler oberer Grenze</td>
<td>340</td>
</tr>
<tr>
<td>F.2 Berechnung von Linienintegralen</td>
<td>341</td>
</tr>
<tr>
<td>G Umrechnung zwischen Koordinatensystemen</td>
<td>343</td>
</tr>
<tr>
<td>G.1 Vom kartesischen ins sphärische System</td>
<td>344</td>
</tr>
<tr>
<td>G.2 Vom sphärischen ins kartesische System</td>
<td>344</td>
</tr>
<tr>
<td>G.3 Vom kartesischen ins zylindrische System</td>
<td>344</td>
</tr>
<tr>
<td>G.4 Vom zylindrischen ins kartesische System</td>
<td>345</td>
</tr>
<tr>
<td>G.5 Vom sphärischen ins zylindrische System</td>
<td>345</td>
</tr>
<tr>
<td>G.6 Vom zylindrischen ins sphärische System</td>
<td>345</td>
</tr>
<tr>
<td>H Geschwindigkeiten und Beschleunigungen in Kugelkoordinaten</td>
<td>347</td>
</tr>
<tr>
<td>H.1 Geschwindigkeiten</td>
<td>349</td>
</tr>
<tr>
<td>H.2 Beschleunigung</td>
<td>351</td>
</tr>
<tr>
<td>H.2.1 Interpretation</td>
<td>356</td>
</tr>
<tr>
<td>I Berechnungen in ebenen schiefwinkligen Dreiecken</td>
<td>357</td>
</tr>
<tr>
<td>J Berechnung der Ableitung in rotierenden Bezugssystemen</td>
<td>359</td>
</tr>
<tr>
<td>K Rechnen mit Vektoren</td>
<td>363</td>
</tr>
<tr>
<td>K.1 Vektoridentitäten</td>
<td>363</td>
</tr>
<tr>
<td>K.1.1 Produkte mit Vektoren</td>
<td>363</td>
</tr>
<tr>
<td>K.1.2 Ableiten von Vektoren</td>
<td>364</td>
</tr>
<tr>
<td>K.1.3 Vektorableitungen bei Skalarfeldern</td>
<td>364</td>
</tr>
<tr>
<td>K.1.4 Vektorableitungen bei Vektorfeldern</td>
<td>365</td>
</tr>
<tr>
<td>L Drehungen</td>
<td>367</td>
</tr>
<tr>
<td>L.1 Drehmatrizen</td>
<td>367</td>
</tr>
<tr>
<td>L.2 Drehung von Vektoren und Matrizen (oder Tensoren)</td>
<td>368</td>
</tr>
<tr>
<td>L.3 Allgemeine Drehung mit Eulerwinkeln</td>
<td>369</td>
</tr>
<tr>
<td>M Hinweise und Links</td>
<td>371</td>
</tr>
<tr>
<td>M.1 Literaturhinweise</td>
<td>371</td>
</tr>
<tr>
<td>Abbildungsverzeichnis</td>
<td>372</td>
</tr>
<tr>
<td>Tabellenverzeichnis</td>
<td>378</td>
</tr>
<tr>
<td>Stichwortverzeichnis</td>
<td>383</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1. Dank

Ohne die hingebungsvolle Arbeit des Entzifferns meiner Handschrift durch Tamara Stadter würde dieses Skript nicht existieren.

1.2. Fakultative Abschnitte

Abschnitte, die mit einem Sternchen „*“ markiert sind, enthalten für das Verständnis der Physik notwendige Themen, die aber in einem ersten Durchgang übersprungen werden können.
2. Einführung

Was ist Physik?

Abbildung 2.1.: Wo steht die Physik in den Naturwissenschaften?

Versuch zur Vorlesung:
Autorennen (Versuchskarte M-55)

Versuch zur Vorlesung:
Lokomotive (Versuchskarte M-10)
2.1. Physikalische Grössen und Einheiten

Eine physikalische Grösse besteht aus der Masszahl und der Einheit.

Beispiel:

\[3.57 \text{ m} \]

Die Einheiten stimmen, also kann die Gleichung richtig sein.

2.1.1. Einheitensysteme

2.1.1.1. Internationales System (SI)

<table>
<thead>
<tr>
<th>Grösse</th>
<th>Symbol (Beispiel)</th>
<th>Einheit</th>
<th>Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>(x)</td>
<td>Meter</td>
<td>(m)</td>
</tr>
<tr>
<td>Zeit</td>
<td>(t)</td>
<td>Sekunde</td>
<td>(s)</td>
</tr>
<tr>
<td>Masse</td>
<td>(m)</td>
<td>Kilogramm</td>
<td>(kg)</td>
</tr>
<tr>
<td>Temperatur</td>
<td>(T)</td>
<td>Kelvin</td>
<td>(K)</td>
</tr>
<tr>
<td>Strom</td>
<td>(I)</td>
<td>Ampère</td>
<td>(A)</td>
</tr>
<tr>
<td>Stoffmenge</td>
<td>(n)</td>
<td>Mol</td>
<td>(mol)</td>
</tr>
<tr>
<td>Lichtstärke</td>
<td>(I)</td>
<td>candela</td>
<td>(cd)</td>
</tr>
</tbody>
</table>

Tabelle 2.1.: SI (Système Internationale) Grundeinheiten

Die SI-Einheiten sind die gesetzlichen Einheiten. Das SI ist überbestimmt, nur die Einheiten der Länge, der Zeit und der Masse wären notwendig.
2.1 Physikalische Grössen und Einheiten

2.1.1.1. Definition der Zeit

\[1 \text{s} = 9192631770 \text{ Schwingungen von } ^{133}\text{Cs} \] (2.1.1)

2.1.1.2. Definition der Länge

\[1 \text{m} \equiv \text{Lichtweg in } \frac{1}{299792485} \text{s} \] (2.1.2)

D.h. Lichtgeschwindigkeit \(c \) ist definiert, nicht die Länge. Man könnte \(c = 1 \) setzen und die Länge in Sekunden messen.

2.1.1.2. cgs-System

Grössen werden im cgs-System durch \(cm, g, s \) ausgedrückt

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>cm</td>
</tr>
<tr>
<td>Masse</td>
<td>g</td>
</tr>
<tr>
<td>Zeit</td>
<td>s</td>
</tr>
</tbody>
</table>

Tabelle 2.2.: cgs-System: Grundeinheiten

2.1.2. Messen

Eine Größe messen heisst, das zu messende Objekt mit der Masseinheit zu vergleichen.
Es gibt auch indirekte Messmethoden, z.B. bei Thermometern

2.1.2.1. Messunsicherheit

Versuch zur Vorlesung:

Messunsicherheit (Versuchskarte M-183)

Bei jeder Messung gibt es eine Messunsicherheit

<table>
<thead>
<tr>
<th>Wahrer Wert</th>
<th>(v_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemessener Wert</td>
<td>(v_g)</td>
</tr>
<tr>
<td>Messunsicherheit (absolute Messunsicherheit)</td>
<td>(\Delta v = v_g - v_w)</td>
</tr>
<tr>
<td>Messunsicherheit (relative Messunsicherheit)</td>
<td>(\frac{\Delta v}{v})</td>
</tr>
</tbody>
</table>

Tabelle 2.3.: Arten der Messunsicherheit

Messunsicherheiten werden wie folgt kategorisiert
• grober Fehler: „Nichtkönnen“
• konstante Messunsicherheit: Beispiel Parallaxe
• systematische Messunsicherheit: Beispiel: ungenaue Uhr, falsche oder ungenaue Theorien. Diese Messunsicherheiten können, bei einem vollständigen Versuchsprotokoll, im nachhinein korrigiert werden.
• zufällige Messunsicherheit: Statistik, können reduziert werden.

2.1.2.2. Fehlerfortpflanzung
Wir betrachten die Fehlerfortpflanzung anhand der Geschwindigkeitsmessung. Die Geschwindigkeit kann aus der Zeit \(t \), die zum Durchlaufen einer bestimmten Strecke \(x \) benötigt wird, berechnet werden. Wir nehmen an, dass wir \(n \) Messungen durchführen, und dabei die Messungen mit \(j = 1 \ldots n \) bezeichnen. Wir verwenden fernen den Mittelwert der Ortsmessung

\[
\langle x \rangle = \frac{1}{n} \sum_{j=1}^{n} x_j
\]

und den Mittelwert der Zeitmessung

\[
\langle t \rangle = \frac{1}{n} \sum_{j=1}^{n} t_j
\]

Die Abweichung der einzelnen Messwerte vom Mittelwert ist dann

\[
\Delta x_j = x_j - \langle x \rangle \\
\Delta t_j = t_j - \langle t \rangle
\]

Die Standardabweichung eines einzelnen Messwertes einer Größe \(x \) bei \(n \) Messungen ist definiert durch

\[
\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \Delta x_i^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2}
\]

Die Standardabweichung des Mittelwertes \(\langle x \rangle \) einer Größe \(x \) bei \(n \) Messungen ist

\[
\sigma_{\langle x \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta x_i^2} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2}
\]

Die einzelnen Messwerte können dann auch als

\[
x_j = \langle x \rangle + \Delta x_j \\
t_j = \langle t \rangle + \Delta t_j
\]
Es gelten

\[\sum_{j=1}^{n} \Delta x_j = 0 \]
\[\sum_{j=1}^{n} \Delta t_j = 0 \]

Mit \(v_j = x_j/t_j \) wird

\[
\langle v \rangle = \frac{1}{n} \sum_{j=1}^{n} v_j \\
= \frac{1}{n} \sum_{j=1}^{n} \langle x \rangle + \Delta x_j/t_j
= \frac{1}{n} \sum_{j=1}^{n} \langle x \rangle \left(1 + \frac{\Delta x_j}{\langle x \rangle} \right)
\approx \frac{1}{n} \sum_{j=1}^{n} \langle x \rangle \left(1 + \frac{\Delta x_j}{\langle x \rangle} \right) \left(1 - \frac{\Delta t_j}{\langle t \rangle} \right)
= \frac{1}{n} \sum_{j=1}^{n} \langle x \rangle \left(1 + \frac{\Delta x_j}{\langle x \rangle} - \frac{\Delta t_j}{\langle t \rangle} + O(2) \right)
= \frac{1}{n} \langle x \rangle \left(\sum_{j=1}^{n} \frac{\Delta x_j}{\langle x \rangle} - \sum_{j=1}^{n} \frac{\Delta t_j}{\langle t \rangle} + O(2) \right)
= \frac{1}{n} \langle x \rangle \left(n + 0 - 0 + O(2) \right)
= \frac{\langle x \rangle}{\langle t \rangle} + O(2)
\]

Dies bedeutet, dass man für statistisch unabhängige Daten sowohl zuerst das Ergebnis ausrechnen kann und dann mitteln, oder zuerst die Messwerte Mitteln, und dann das Resultat berechnen kann. Die beiden Resultate werden bis auf Summanden der Ordnung 2 in den Fehlern identisch sein.

Der Begriff \(O(2) \) sagt, dass Terme mit der Ordnung (Summe aller Exponenten) von 2 oder mehr vernachlässigt wurden.

Die Messunsicherheit von \(\langle v \rangle \) wird durch

\[
\sigma_{\langle v \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{j=1}^{n} (v_j - \langle v \rangle)^2}
\]

Ein einzelner berechneter Wert der *Geschwindigkeit* wird dann
\[v_j = \frac{x_j}{t_j} \]
\[= \frac{\langle x \rangle + \Delta x_j}{\langle t \rangle + \Delta t_j} \]
\[= \frac{\langle x \rangle}{\langle t \rangle} \left(1 + \frac{\Delta x_j}{\langle x \rangle} \right) \left(1 + \frac{\Delta t_j}{\langle t \rangle} \right) \]
\[\approx \langle v \rangle \left(1 + \frac{\Delta x_j}{\langle x \rangle} - \Delta t_j \right) \]
\[= \langle v \rangle + \Delta v_j \]

Zufällige Fehler sind Gauss-verteilt. Der relative Fehler des Mittelwertes aller Messungen nimmt meist mit \(\sqrt{n} \) (wobei \(n \) die Anzahl Messungen ist) ab. Die Messunsicherheit von \(\langle v \rangle \) wird durch

\[
\sigma_{\langle v \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (v_i - \langle v \rangle)^2} \\
= \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\Delta v_i)^2} \\
= \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \langle v \rangle^2 \left(\frac{\Delta x_i}{\langle x \rangle} - \frac{\Delta t_i}{\langle t \rangle} \right)^2} \\
= \langle v \rangle \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\frac{\Delta x_i}{\langle x \rangle} \right)^2 + \left(\frac{\Delta t_i}{\langle t \rangle} \right)^2 - 2 \frac{\Delta x_i}{\langle x \rangle} \frac{\Delta t_i}{\langle t \rangle}} \\
\]

Nun ist aber \(\Delta t_i \) und \(\Delta x_i \) nach unseren Annahmen statistisch unabhängig, also nicht korreliert. Daraus folgt, dass das Produkt \(2 \frac{\Delta x_i}{\langle x \rangle} \frac{\Delta t_i}{\langle t \rangle} \) sich zu null mittelt und weggelassen werden kann. Wir haben also

\[
\frac{\sigma_{\langle v \rangle}}{\langle v \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\frac{\Delta x_i}{\langle x \rangle} \right)^2 + \left(\frac{\Delta t_i}{\langle t \rangle} \right)^2} \\
= \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\frac{\Delta x_i}{\langle x \rangle} \right)^2 + \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\frac{\Delta t_i}{\langle t \rangle} \right)^2} \\
= \sqrt{\frac{1}{\langle x \rangle^2} \sum_{i=1}^{n} \Delta x_i^2 + \frac{1}{\langle t \rangle^2} \sum_{i=1}^{n} \Delta t_i^2} \\
= \sqrt{\left(\frac{\sigma(x)}{\langle x \rangle} \right)^2 + \left(\frac{\sigma(t)}{\langle t \rangle} \right)^2} \\
\]
Im besprochenen Falle haben wir eine Funktion, die als Polynom geschrieben werden kann. Deshalb lässt sich das Fehlerfortpflanzungsgesetz relativ schreiben. Im Allgemeinen gilt: wenn \(y = f(x_1, x_2, \ldots) \) ist, lautet das Gaußsche Fehlerfortpflanzungsgesetz

\[
\sigma_{\langle y \rangle} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \sigma_{\langle x_i \rangle} \right)^2
\]

(2.1.7)

Das Symbol \(\frac{\partial}{\partial t} \) bedeutet die partielle Ableitung nach \(t \). Hängt eine Funktion von mehreren Variablen ab, also zum Beispiel \(f(x, y, z, t) \), dann betrachtet man bei der partiellen Ableitung \(\frac{\partial f(x, y, z, t)}{\partial t} \) die Variablen \(x, y \) und \(z \) als konstant und leitet wie gewöhnlich nach \(t \) ab. Man kann auch schreiben:

\[
\frac{\partial f(x, y, z, t)}{\partial t} = \frac{df(x = \text{const}, y = \text{const}, z = \text{const}, t)}{dt} = \left. \frac{\partial f(x, y, z, t)}{\partial t} \right|_{x, y, z}
\]

Analog sind man bei der partiellen Ableitung \(\frac{\partial f(x, y, z, t)}{\partial y} \) die Variablen \(x, z \) und \(t \) konstant und man leitet wie gewöhnlich nach \(y \) ab. Für relative Fehler muss man \(\sigma_{\langle y \rangle} \) durch \(y = f(x_1, x_2, \ldots) \) teilen. Dies ist jedoch nur bei Funktionen vom Typ \(x_i^k \), \(k \in \mathbb{R} \) korrekt.

\[
\sigma_{\langle y \rangle} = \frac{\sigma_{\langle f(x_1, x_2, \ldots) \rangle}}{f(x_1, x_2, \ldots)} = \sqrt{\sum_{i=1}^{n} \left(\frac{1}{f(x_1, x_2, \ldots)} \cdot \frac{\partial f}{\partial x_i} \sigma_{\langle x_i \rangle} \right)^2}
\]

(2.1.8)

Andererseits könnte man auch so argumentieren: Wir ersetzen die Messwerte durch die Schätzwerte \(\sigma_x \) und \(\sigma_t \). Wir erhalten (ohne Berücksichtigung der Vorzeichen, da wir dies ja nicht kennen)

\[
\sigma_{\langle v \rangle} = \sigma_x + \sigma_t
\]

Allgemein gilt: wenn \(y = f(x_1, x_2, \ldots) \) ist, ist

\[
\sigma_y = \sum_{j=1}^{n} \left. \left| \frac{\partial f}{\partial x_j} \right| \sigma_{x_j}
\]

Diese zuletzt vorgestellten Rechnungen (Größtfehlerabschätzung) sollten nicht verwendet werden. Sie liefern bis zu zehn mal zu hohe Fehlerschranken.
3. Mechanik in einer Dimension

Die Mechanik ist die Lehre des Gleichgewichts und der Bewegung von Körpern unter dem Einfluss von Kräften.

3.1. Kinematik

Frage: Wie bewegt sich ein Körper?
Als Körper verwenden wir Massenpunkte.

3.1.1. Massenpunkte

Definition: Ein Massenpunkt ist ein idealisierter Körper, dessen gesamte Masse m in einem Punkt vereinigt ist.

3.1.1.1. Realisierung

Wenn Form und Masse eines Körpers bei der Bewegung keine Rolle spielen, kann dieser Körper für Berechnungen durch einen Massenpunkt ersetzt werden. Beispiele:

- Planeten und Sonnen im Weltall.
- Fußball bei Flugbahn
- Elektronen im einfachen Atom-Modell

Die Lage eines Massenpunktes wird durch seinen Ort x angegeben.

3.1.2. Bewegung eines Massenpunktes auf einer Geraden

Versuch zur Vorlesung:
Geschwindigkeitsmessung (Versuchskarte M-145)
Abbildung 3.1.: Die Lage des Punktes P zur Zeit t ist $x(t)$.

Oft gibt man für eine Bewegung den Ort als Funktion der Zeit an, als als *Fahrplan* an.

Abbildung 3.2.: *Fahrplan*. Horizontal ist die Zeit, vertikal die Distanz entlang einer Strecke, hier einer Geraden aufgetragen. Eingezeichnet ist schwarz die *Momentangeschwindigkeit* $v(t)$ als Tangente an die Kurve $x(t)$, und die Durchschnittsgeschwindigkeit $v_{Durchschnitt}$ von t_{anfang} bis t_{ende} in blau.

3.1.2.1. Durchschnitts- und *Momentangeschwindigkeit in einer Dimension*

Die Durchschnittsgeschwindigkeit eines Massenpunktes ist gegeben durch

$$v_{Durchschnitt} = \langle v \rangle = \frac{x(t_{Ende}) - x(t_{Anfang})}{t_{Ende} - t_{Anfang}} \quad (3.1.1)$$

Bemerkung:
Diese Definition gilt nur bei der Bewegung auf einer Geraden.

Beispiel: Ausflug. Bei einem Ausflug ist man nach der Zeit Δt am Ende wieder bei sich zuhause. Die physikalische Durchschnittsgeschwindigkeit ist dann

$$v = \frac{\Delta x}{\Delta t} = \frac{0}{\Delta t} = 0$$
Die „Autofahrerdefinition“ der Geschwindigkeit ist anders:

\[\langle v \rangle = \frac{1}{T} \int_{t_{\text{anfang}}}^{t_{\text{ende}}} |v(t)| \, dt \quad (3.1.2) \]

In der Gleichung (3.1.2) tritt die Momentangeschwindigkeit auf. Sie ist die Steigung des Graphen zur Zeit \(t \), also Ableitung des Ortes nach der Zeit. Wir können deshalb schreiben

\[v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \frac{dx(t)}{dt} = \dot{x}(t) \quad (3.1.3) \]

Die Momentangeschwindigkeit ist die Tangente an die Ortsfunktion im Fahrplendiagramm.

Versuch zur Vorlesung:
Geschwindigkeitsmessung einer Pistolenkugel
(Versuchskarte M-13)

3.1.2.2. Beschleunigung in einer Dimension

Versuch zur Vorlesung:
Beschleunigte Bewegung (Versuchskarte M-200)

Die Beschleunigung ist definiert als die Änderung der Geschwindigkeit pro Zeit, also

\[a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \dot{v} = \ddot{x} \quad (3.1.4) \]

Abbildung 3.3.: Zeitabhängige Beschleunigung.
Es gelten die folgenden Beziehungen:

\[x(t) = x_0 + \int_0^t v(\tau) \, d\tau = x_0 + \int_0^t \left\{ v_0 + \int_0^\tau a(\tilde{\tau}) \, d\tilde{\tau} \right\} \, d\tau \] \hspace{1cm} (3.1.5)

\[v(t) = \frac{dx(t)}{dt} = v_0 + \int_0^t a(\tau) \, d\tau \] \hspace{1cm} (3.1.6)

\[a(t) = \frac{dv(t)}{dt} = \frac{d^2 x(t)}{dt^2} \] \hspace{1cm} (3.1.7)

Beispiel: Freier Fall in Bodennähe (sonst gelten die unten stehenden Gleichungen nicht). Wir verwenden für die Beschleunigung den Betrag des Feldvektors des Gravitationsfeldes, nämlich \(g = 9.81 \, \text{m/s}^2 \). Wir haben die Beziehungen:

\[a(t) = g = 9.81 \, \text{m/s}^2 = \text{const.} \]

\[v(t) = v_0 + \int_0^t g \, d\tau = v_0 + gt \]

\[x(t) = x_0 + \int_0^t v(\tau) \, d\tau = x_0 + \int_0^t (v_0 + g \tau) \, d\tau = x_0 + v_0 t + \frac{1}{2} gt^2 \]

Abbildung 3.4.: Fahrplan eines geworfenen Balls.

\[x = x_0 + v_0 t + \frac{1}{2} gt^2 \]

Versuch zur Vorlesung:
Anfangsgeschwindigkeit (Versuchskarte M-133)
3.2. Erhaltungssätze und Erhaltungsgrössen in einer Dimension

3.2.1. Stoss in einer Dimension

Versuch zur Vorlesung:
Impulserhaltung beim Stoss (Versuchskarte M-205)

Wir betrachten den Stoss zweier Massen m_1 und m_2 auf einer reibungsarmen Luftkissenbahn. Der Stoss soll dabei so vonstatten gehen, dass die beiden Massen nicht verändert werden. Sie sollen also weder deformiert werden, noch soll durch den Stoss sich ihre Temperatur ändern. Wir wollen aber keine Annahme machen über das Massenverhältnis und die Anfangsgeschwindigkeiten, sondern mögliche Gesetze empirisch bestimmen.

Abbildung 3.5.: Situation der beiden Massen vor dem Stoss (oben) und nach dem Stoss (unten).

Viele Experimente könnten die Messgrössen in Tabelle 3.1 ergeben.

<table>
<thead>
<tr>
<th>m_1/kg</th>
<th>v_1/(m/s)</th>
<th>m_2/kg</th>
<th>v_2/(m/s)</th>
<th>v_1'/(m/s)</th>
<th>v_2'/(m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.104</td>
<td>0.5</td>
<td>0.001</td>
<td>0.005</td>
<td>0.108</td>
</tr>
<tr>
<td>0.5</td>
<td>0.200</td>
<td>0.5</td>
<td>0.002</td>
<td>0.002</td>
<td>0.202</td>
</tr>
<tr>
<td>1</td>
<td>0.097</td>
<td>0.5</td>
<td>0.004</td>
<td>0.039</td>
<td>0.124</td>
</tr>
<tr>
<td>1</td>
<td>0.201</td>
<td>0.5</td>
<td>-0.002</td>
<td>0.066</td>
<td>0.270</td>
</tr>
<tr>
<td>1</td>
<td>0.001</td>
<td>0.5</td>
<td>0.103</td>
<td>0.071</td>
<td>-0.036</td>
</tr>
<tr>
<td>0.5</td>
<td>0.100</td>
<td>0.5</td>
<td>-0.101</td>
<td>-0.104</td>
<td>0.100</td>
</tr>
<tr>
<td>0.5</td>
<td>0.097</td>
<td>0.5</td>
<td>-0.198</td>
<td>-0.203</td>
<td>0.097</td>
</tr>
<tr>
<td>1</td>
<td>0.098</td>
<td>0.5</td>
<td>-0.002</td>
<td>0.035</td>
<td>0.136</td>
</tr>
<tr>
<td>0.5</td>
<td>0.196</td>
<td>0.5</td>
<td>0.096</td>
<td>0.093</td>
<td>0.192</td>
</tr>
<tr>
<td>2</td>
<td>0.096</td>
<td>0.5</td>
<td>-0.103</td>
<td>0.017</td>
<td>0.215</td>
</tr>
<tr>
<td>5</td>
<td>0.101</td>
<td>0.5</td>
<td>-0.104</td>
<td>0.065</td>
<td>0.266</td>
</tr>
<tr>
<td>5</td>
<td>0.999</td>
<td>0.5</td>
<td>-0.100</td>
<td>0.802</td>
<td>1.896</td>
</tr>
</tbody>
</table>

Tabelle 3.1.: Simulierte Messwerte für einen Stoss auf einer Gerade.
Wir suchen nun nach Erhaltungsgrößen, das heißt Messwerte, die alleine oder als Funktion und in Kombination summieren über beide Massen vor dem Stoss und nach dem Stoss gleich sind.

Wir haben in unserem Falle die Geschwindigkeiten \(v_i \) und die Massen \(m_i \) zur Verfügung. Ein Erhaltungssatz könnte also wie

\[
X_{\text{vorher}} = \sum_{i=1}^{2} m_i^k v_i^\kappa = X_{\text{nachher}} = \sum_{i=1}^{2} m_i^k v_i'^\kappa \tag{3.2.1}
\]

lauten. Welche Werte von \(k \) und \(\kappa \) zu Gleichungen führen, deren Werte vor und nach dem Stoss erhalten bleiben, kann man nach Emmy Noether aus den Symmetriebeziehungen ableiten. Wir werden hier, unter Berücksichtigung der experimentellen Fehler, unsere Schlüsse aus dem Experiment ziehen.

3.2.2. Impulserhaltung

\[
m_1 \cdot v_1 \quad m_2 \cdot v_2 \quad m_1 \cdot v_1 + m_2 \cdot v_2 \quad m_1 \cdot v'_1 \quad m_2 \cdot v'_2 \quad m_1 \cdot v'_1 + m_2 \cdot v'_2
\]

<table>
<thead>
<tr>
<th>(m_1 \cdot v_1) (kgm/s)</th>
<th>(m_2 \cdot v_2) (kgm/s)</th>
<th>(m_1 \cdot v_1 + m_2 \cdot v_2) (kgm/s)</th>
<th>(m_1 \cdot v'_1) (kgm/s)</th>
<th>(m_2 \cdot v'_2) (kgm/s)</th>
<th>(m_1 \cdot v'_1 + m_2 \cdot v'_2) (kgm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0522</td>
<td>0.0009</td>
<td>0.0532</td>
<td>0.0026</td>
<td>0.0540</td>
<td>0.0566</td>
</tr>
<tr>
<td>0.1002</td>
<td>0.0010</td>
<td>0.1012</td>
<td>0.0012</td>
<td>0.1014</td>
<td>0.1027</td>
</tr>
<tr>
<td>0.0974</td>
<td>0.0024</td>
<td>0.0998</td>
<td>0.0397</td>
<td>0.0622</td>
<td>0.102</td>
</tr>
<tr>
<td>0.2016</td>
<td>-0.0011</td>
<td>0.2005</td>
<td>0.0660</td>
<td>0.1351</td>
<td>0.2012</td>
</tr>
<tr>
<td>0.0011</td>
<td>0.0516</td>
<td>0.0528</td>
<td>0.0719</td>
<td>-0.0184</td>
<td>0.0535</td>
</tr>
<tr>
<td>0.0502</td>
<td>-0.0509</td>
<td>-0.0007</td>
<td>-0.0521</td>
<td>0.0501</td>
<td>-0.0019</td>
</tr>
<tr>
<td>0.0488</td>
<td>-0.0993</td>
<td>-0.0504</td>
<td>-0.1016</td>
<td>0.0485</td>
<td>-0.0531</td>
</tr>
<tr>
<td>0.0983</td>
<td>-0.0011</td>
<td>0.0971</td>
<td>0.0356</td>
<td>0.0684</td>
<td>0.1040</td>
</tr>
<tr>
<td>0.0981</td>
<td>0.0482</td>
<td>0.1464</td>
<td>0.0466</td>
<td>0.0964</td>
<td>0.1430</td>
</tr>
<tr>
<td>0.1934</td>
<td>-0.0515</td>
<td>0.1418</td>
<td>0.0356</td>
<td>0.1078</td>
<td>0.1435</td>
</tr>
<tr>
<td>0.5055</td>
<td>-0.0520</td>
<td>0.4534</td>
<td>0.3274</td>
<td>0.1331</td>
<td>0.4605</td>
</tr>
<tr>
<td>4.999</td>
<td>-0.0502</td>
<td>4.9487</td>
<td>4.0146</td>
<td>0.9848</td>
<td>4.9631</td>
</tr>
</tbody>
</table>

Tabelle 3.2.: Größse \(m_i \cdot v_i \) aus den Messdaten.

Wir finden zuerst, dass \(k = 1 \) und \(\kappa = 1 \) zu einer Erhaltungsgrößen führt

\[
m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v'_1 + m_2 \cdot v'_2 \tag{3.2.2}
\]

Wir nennen die Größe

\[
p_i = m_i \cdot v_i \tag{3.2.3}
\]

Impuls.
Allgemein, wenn n Massen involviert sind, gilt
\[\sum_{i=1}^{n} m_i \cdot v_i = \sum_{i=1}^{n} m_i \cdot v'_i \] (3.2.4)

Das heisst:

In einem abgeschlossenen System ist der Gesamtimpuls eine Erhaltungsgrösse.

Für quantenmechanische Rechnungen wie auch in der Wärmelche re und in der statistischen Physik ist der Impuls p die relevante Grösse, nicht die Geschwindigkeit v. Auch die klassische Physik kann konsistenter formuliert werden, wenn Impulse und nicht Geschwindigkeiten verwendet werden.

Im Detail besprechen wir die Konsequenzen der Impulserhaltung im Abschnitt 4.4.

3.2.3. Energieerhaltung

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
m_1 \cdot v_1^2 & m_2 \cdot v_2^2 & m_1 \cdot v_1^2 + m_2 \cdot v_2^2 & m_1 \cdot v_1'^2 & m_2 \cdot v_2'^2 & m_1 \cdot v_1'^2 + m_2 \cdot v_2'^2 \\
\hline
0.0054 & 1.901 \cdot 10^{-6} & 0.0054 & 0.0001 & 0.0058 & 0.0058 \\
0.0200 & 2.101 \cdot 10^{-6} & 0.0200 & 0.0015 & 0.0077 & 0.0077 \\
0.0094 & 0.00001 & 0.0094 & 0.0015 & 0.0077 & 0.0077 \\
0.0406 & 0.000002 & 0.0406 & 0.0043 & 0.0365 & 0.0365 \\
1.322 \cdot 10^{-6} & 0.0053 & 0.0053 & 0.0051 & 0.0006 & 0.0006 \\
0.0050 & 0.0051 & 0.0050 & 0.0054 & 0.0050 & 0.0050 \\
0.0047 & 0.0197 & 0.0245 & 0.0206 & 0.0047 & 0.0047 \\
0.0006 & 2.761 \cdot 10^{-6} & 0.0096 & 0.0012 & 0.0093 & 0.0093 \\
0.0192 & 0.0046 & 0.0239 & 0.0043 & 0.0185 & 0.0185 \\
0.0187 & 0.0053 & 0.0240 & 0.0066 & 0.0232 & 0.0232 \\
0.0511 & 0.0054 & 0.0565 & 0.0214 & 0.0354 & 0.0354 \\
4.9980 & 0.0050 & 5.0030 & 3.223 & 1.7991 & 5.0027 \\
\hline
\end{array}
\]

Tabelle 3.3.: Grösse $m_i \cdot v_i^2$ aus den Messdaten.

Weiter finden wir, dass für $k = 1$ und $\kappa = 2$ die linke Seite der Gleichung Gleichung (3.2.1) innerhalb der Fehlergenauigkeit gleich der rechten Seite ist. Damit haben wir eine Erhaltungsgrösse gefunden. Die Erhaltungsgrösse ist
\[m_1 \cdot v_1^2 + m_2 \cdot v_2^2 = m_1 \cdot v_1'^2 + m_2 \cdot v_2'^2 \] (3.2.5)
Wir nennen die Größe
\[E_{\text{kin},i} = \frac{1}{2} m_i \cdot v_i^2 \]
kinetische Energie.

Den Faktor \(\frac{1}{2} \) begründen wir später.
Allgemein gilt
\[
\sum_{i=1}^{n} \frac{1}{2} m_i \cdot v_i^2 = \sum_{i=1}^{n} \frac{1}{2} m_i \cdot v_i'^2
\]
(3.2.6)

Das heisst:

In einem abgeschlossenen System ist die Gesamtenergie eine Erhaltungsgrösse.

Hier ist die Gesamtenergie die kinetische Energie. Im Allgemeinen besteht die Gesamtenergie nicht nur aus der kinetischen Energie, sondern auch aus anderen Energieformen wie der potentiellen Energie, der elektrischen Energie oder der Wärme.
Für mechanische Systeme sind dies die innere Energie \(E_i \) und die Lageenergie oder potentielle Energie \(E_{\text{pot}} \). Die innere Energie ist eine Grösse, die den Energieinhalt im Teilchen angibt. Dies kann die chemische Energie sein, aber auch die relativistische Masseenergie. Wir haben also
\[
E = E_{\text{kin}} + E_{\text{pot}} + E_{\text{innen}} = \text{konstant}
\]
(3.2.7)

Energieerhaltung gilt für alle Energieformen.

3.2.4. Erhaltungsgrössen bei inelastischen Stössen

Bei inelastischen Stössen werden die beteiligten Massen verändert, sei es, dass die Massen zusammenkleben oder dass sie deformiert werden. In diesem Falle gilt die Impulserhaltung ohne jede Einschränkung. Die Energieerhaltung gilt nur, wenn die sogenannten inneren Energien berücksichtigt werden.

Bei jedem Stoss und in jedem Teilchensystem, ob klassisch berechnet, ob relativistisch oder qunatenmechanisch berechnet gilt die Impulserhaltung.
3.2 Erhaltungssätze und Erhaltsgrössen in einer Dimension

3.2.5. Stösse auf einer Geraden

Abbildung 3.6.: Stoss zweier Massen

Impulserhaltung (eindimensionales Problem, also kann man mit Zahlen rechnen)

\[p_1 + p_2 = p'_1 + p'_2 \] \hspace{1cm} (3.2.8)

Stösse heissen elastisch wenn gilt

\[E_1 + E_2 = \frac{1}{2} p_1^2 + \frac{1}{2} p_2^2 = E'_1 + E'_2 = \frac{1}{2} p'_1^2 + \frac{1}{2} p'_2^2 \] \hspace{1cm} (3.2.9)

Dann kann aus Gleichung (3.2.8) und Gleichung (3.2.9) \(p'_1 \) und \(p'_2 \) ausgerechnet werden.

Wir schreiben die Gleichungen um und erhalten

\[p_1 - p'_1 = p'_2 - p_2 \] \hspace{1cm} (3.2.10)

und

\[\frac{1}{m_1} (p_1^2 - p'_1^2) = \frac{1}{m_2} (p'_2^2 - p_2^2) \]

Ausmultipliziert bekommen wir

\[\frac{1}{m_1} (p_1 + p'_1) (p_1 - p'_1) = \frac{1}{m_2} (p'_2 + p_2) (p'_2 - p_2) \] \hspace{1cm} (3.2.11)

\[\frac{1}{m_1} (p_1 + p'_1) = \frac{1}{m_2} (p'_2 + p_2) \] \hspace{1cm} (3.2.12)

also gilt für die Relativgeschwindigkeiten

\[v_1 + v'_1 = v_2 + v'_2 \]

\[v_1 - v_2 = v'_2 - v'_1 \] \hspace{1cm} (3.2.13)
Also ist die Relativgeschwindigkeit nach dem Stoss \((v'_2 - v'_1) \) das Negative der Relativgeschwindigkeit vor dem Stoss \((v_1 - v_2) \).

Das bedeutet, dass bei einer Frontalkollision von einem Auto \((v_1 = 36 \text{ km/h} = 10 \text{ m/s}) \) mit einem Fußgänger \((v_2 = 3.6 \text{ km/h} = 1 \text{ m/s}) \) die Relativgeschwindigkeit vorher \((v_1 - v_2 = 9 \text{ m/s}) \) gleich dem negativen der Relativgeschwindigkeit nach dem Stoss ist. Da das Auto aber (siehe unten) nur unwesentlich abgebremst wird, fliegt der Fußgänger nach dem Stoss mit \(v'_2 = 19 \text{ m/s} = 68.4 \text{ km/h} \) durch die Gegend.

Die Impulse nach dem Stoss sind dann

\[
\begin{align*}
p'_1 &= p_1 \frac{m_1 - m_2}{m_1 + m_2} + p_2 \frac{2m_1}{m_1 + m_2} \\
p'_2 &= p_2 \frac{m_2 - m_1}{m_1 + m_2} + p_1 \frac{2m_2}{m_1 + m_2}
\end{align*}
\] (3.2.14)

Es gibt die folgenden Spezialfälle:

- Spezialfall \(p_2 = 0 \), d.h. Stoss mit einem ruhenden Objekt

\[
\begin{align*}
p'_1 &= p_1 \frac{m_1 - m_2}{m_1 + m_2} \\
p'_2 &= p_1 \frac{2m_2}{m_1 + m_2}
\end{align*}
\] (3.2.15)

- Spezialfall \(m_2 \to \infty \), d.h. Stoss mit einer schweren Wand

\[
\begin{align*}
p'_1 &= -p_1 \\
p'_2 &= 2p_1
\end{align*}
\] (3.2.16)

- Stoss zweier gleicher Massen \(m_1 = m_2 = m \)

\[
\begin{align*}
p'_1 &= p_2 \\
p'_2 &= p_1
\end{align*}
\] (3.2.17)

3.2.5.1. Vollkommen plastischer Stoss

Wir nennen einen Stoss vollkommen plastisch, wenn die beiden Körper nach dem Stoss aneinander kleben, wenn sie quasi zu einer Masse \((m_1 + m_2 = m) \) mit einer Geschwindigkeit \((v'_2 = v'_1 = v) \) geworden sind. Dann ist

\[
\frac{p'_1}{m_1} = \frac{p'_2}{m_2}
\] (3.2.18)

Die Impulserhaltung ergibt dann

\[
\begin{align*}
p_1 + p_2 &= p'_1 + p'_2 \\
&= p'_1 + \frac{m_2}{m_1} p'_1 \\
&= p'_1 \left(\frac{m_1 + m_2}{m_1} \right) \\
&= m_1 v'_1 \left(\frac{m_1 + m_2}{m_1} \right) \\
&= v m \\
&= p
\end{align*}
\] (3.2.19)
3.3 Kräfte und Newtonsche Gesetze in einer Dimension

und damit für die Teilimpulse

\[
p'_1 = \frac{m_1}{m_1 + m_2} (p_1 + p_2)
\]

\[
p'_2 = \frac{m_2}{m_1 + m_2} (p_1 + p_2)
\]

(3.2.20)

Beim plastischen Stoss ist die Energie nicht erhalten. Wir bezeichnen mit \(Q \) die Energie, die in Wärme und Deformation gespeichert wird.

\[
E_{\text{kin}_1} + E_{\text{kin}_2} = E_{\text{kin}} + Q
\]

\[
\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} (m_1 + m_2) v^2 + Q
\]

(3.2.21)

Für die Endgeschwindigkeit hatten wir

\[
(m_1 + m_2) v = m_1 v_1 + m_2 v_2
\]

und damit

\[
v = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}
\]

Eingesetzt

\[
Q = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 - \frac{m_1 + m_2}{2} \left(m_1 v_1 + m_2 v_2 \right)^2
\]

\[
= \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 - \frac{m_1^2 v_1^2}{2 (m_1 + m_2)} - \frac{m_2^2 v_2^2}{2 (m_1 + m_2)} - \frac{m_1 m_2 v_1 v_2}{m_1 + m_2}
\]

\[
= \frac{1}{2} m_1 m_2 \left(1 - \frac{m_1}{m_1 + m_2} \right) + \frac{1}{2} m_2 v_2^2 \left(1 - \frac{m_2}{m_1 + m_2} \right) - \frac{m_1 m_2}{m_1 + m_2} v_1 v_2
\]

\[
= \frac{1}{2} m_1 m_2 \left(v_1^2 + \frac{m_1 m_2}{m_1 + m_2} v_2^2 - \frac{m_1 m_2}{m_1 + m_2} v_1 v_2 \right)
\]

(3.2.22)

Die Größe \(\mu = \frac{m_1 m_2}{m_1 + m_2} \) heisst auch die reduzierte Masse. Mit ihr können Zweikörper-Probleme im Schwerpunktssystem einfacher gelöst werden.

3.3. Kräfte und Newtonsche Gesetze in einer Dimension

Unter der Kraft versteht man die zeitliche Änderung des Impulses, also

\[
F = \frac{dp(t)}{dt} = \dot{p}
\]

(3.3.1)

Die Gleichung Gleichung (3.3.1) ist auch als 2. Newtonsches Gesetz bekannt. Aus Gleichung (3.3.1) kann als Korollar sofort das erste Newtonsche Gesetz

\[
F = 0 \iff p = \text{const}
\]

(3.3.2)

abgeleitet werden. Bezugssysteme, in denen das erste Newtonsche Gesetz gilt, heissen Inertialsysteme

Wenn zwei Körper \(A \) und \(B \) sich an einem Punkt \(P \) berühren, werden sie gegenseitig Kräfte ausüben, und zwar die Kraft \(F_{\text{von } A \text{ auf } B} \) (in \(P \)) und die Kraft \(F_{\text{von } B \text{ auf } A} \) (in \(P \)). Wenn die beiden sich berührenden Körper ihren Bewegungszustand nicht ändern, muss nach Gleichung (3.3.1) die Gesamtkraft null sein.
Mechanik in einer Dimension

\[F_{\text{gesamt}} = 0 = F_{\text{vom } A \text{ auf } B} (\text{in } P) + F_{\text{vom } B \text{ auf } A} (\text{in } P) \]

Umgeformt erhalten wir

\[F_{\text{vom } A \text{ auf } B} (\text{in } P) = -F_{\text{vom } B \text{ auf } A} (\text{in } P) \quad (3.3.3) \]

Die Newtonschen Gesetze werden durch die Beobachtung ergänzt, dass es keine bevorzugten Inertialsysteme (Standpunkte) gibt.

3.3.1. Newtonsche Gesetze in einer Dimension für konstante Massen

Wenn wir die Definition des Impulses \(p \) aus Gleichung (3.2.3) in das zweite Newtonsche Gesetz nach Gleichung (3.3.1) einsetzen, erhalten wir

\[F(t) = \frac{d}{dt} (m(t) v(t)) = \dot{m}(t) v(t) + m(t) \dot{v}(t) \quad (3.3.4) \]

Ist die Masse \(m(t) \) konstant, also unabhängig von der Zeit, lautet das zweite Newtonsche Gesetz

\[F(t) = m \dot{v}(t) = m a(t) \]

Dabei haben wir die Definition der Beschleunigung verwendet. Das erste Newtonsche Gesetz für konstante Massen lautet

\[F = 0 \leftrightarrow v = \text{const} \]

3.4. Mechanische Arbeit in einer Dimension

Verschiebt man ein Objekt entlang der Strecke \(s \) mit der Konstanten Kraft \(F \), so hat man die Arbeit

\[W = F \cdot s \]

geleistet. Ist die Kraft nicht konstant, so teilt man die Strecke in infinitesimal kleine Teilstrecken \(ds \) auf und erhält für jede Teilstrecke die Arbeit

\[dW = F \, ds \]

Die einzelnen Teilarbeiten sind additiv, also erhält man als Definition der Arbeit

\[\text{Die mechanische Arbeit ist} \]

\[W(x_1 \rightarrow x_2) = \int_{x_1}^{x_2} F(x) \, dx = \int F(s) \, ds \quad (3.4.1) \]
3.4.1. Beschleunigungsarbeit oder *kinetische Energie*

Wir fragen uns nun: Was ist der Aufwand, um eine konstante Masse m vom Impuls $p = 0$ auf den Impuls p zu bringen? Der Aufwand, die Beschleunigungsarbeit, hängt von zwei Größen ab

- \dot{p}. Mit der Impulsänderung ändern wir auch die *Geschwindigkeit* oder die *Masse* oder beides.

- ds Der Aufwand muss vom Weg abhängen.

Den Aufwand nennen wir die *kinetische Energie*. Wir schreiben unter Verwendung der Definition der Arbeit Gleichung (3.4.1):

$$ W = \int_0^p \dot{p} ds $$

Aus dem Experiment und der Definition des Impulses wissen wir, dass $p = mv$ oder $v = p/m$ ist. Nun ist aber auch

$$ \frac{ds}{dt} = v $$

und deshalb

$$ ds = v dt = \frac{p}{m} dt $$

Gleichzeitig wechseln die Integrationsgrenzen von $[0, \ell]$ zu $[0, t]$. Wir haben also

$$ W = \int_0^t \dot{p} \frac{m}{p} dt' = \int_0^t \left(\frac{d}{dt} \frac{p^2}{2m} \right) dt = \frac{1}{2m} \int_0^p d \left(\frac{p^2}{2} \right) = \frac{p^2}{2m} $$

das heißt, die *Arbeit*, um eine konstante Masse von 0 auf den Impuls p zu bringen ist W. Diese *Arbeit* muss als *kinetische Energie* betrachtet werden. Sie steckt in der Bewegung der Masse m. Sollte die Masse veränderlich sein, kann immer die Masse temporär als konstant angesehen und die kinetische Energie mit dem obigen Verfahren berechnet werden.

$$ \text{kinetische Energie} $$

$$ E_{\text{kin}} = \frac{p^2}{2m} $$

Die Einheit der kinetischen Energie ist: $1 \text{Joule} = 1 \text{Nm}$

3.4.2. Potentielle Energie

Unter potentieller Energie verstehen wir die Möglichkeit, *Arbeit* zu leisten, wobei wir die Energie, die in der Bewegung ist, ausklammern. *Arbeit* im physikalischen Sinne ist

$$ dW = F_{\text{ext}} \cdot ds $$
Wir betrachten also nur die Komponente der Kraft \mathbf{F}_{ext}, die entlang des Wegeelements ds liegt.

Nun ist die Kraft, die das System aufbringt, die Kraft, gegen die wir arbeiten müssen, $F = -F_{\text{ext}}$. Die im System gespeicherte Energie ist deshalb

$$dW = F_{\text{ext}} \cdot ds = -F \cdot ds$$ \hspace{1cm} (3.4.6)

Damit ist die potentielle Energie definiert durch

$$E_{\text{pot}} = -\int_{s_1}^{s_2} F \cdot ds$$ \hspace{1cm} (3.4.7)

Die Einheit der potentiellen Energie ist: $1\text{ Joule} = 1\text{ Nm}$

3.4.3. Energieerhaltung mechanischer Systeme in einer Dimension

Versuch zur Vorlesung:

Energieerhaltung (Versuchskarte M-093)

Wir betrachten ein System, dessen Energie konstant ist.

$$E_{\text{tot}} = E_{\text{kin}} + E_{\text{pot}} + E_{\text{innen}} = \text{konstant}$$ \hspace{1cm} (3.4.8)

Dabei ist E_{innen} die noch unspezifizierte innere Energie eines Teilchens. Für Massenpunkte ist $E_{\text{innen}} = 0$.

Die Konstanz der gesamten Energie E_{tot} bedeutet, dass deren zeitliche Ableitung null sein muss

$$\frac{dE_{\text{tot}}}{dt} = 0$$ \hspace{1cm} (3.4.9)

Diese Gleichung ist ein Ausdruck des Hamiltonschen Prinzips, dass die Gesamtenergie konstant sei. Im Einzelnen hat man

$$0 = \frac{dE_{\text{kin}}}{dt} + \frac{dE_{\text{pot}}}{dt} + \frac{dE_{\text{innen}}}{dt}$$ \hspace{1cm} (3.4.10)

Nehmen wir nun an, dass die innere Energie konstant sei (z.B. Massenpunkte). Dann ist

$$0 = \frac{dE_{\text{kin}}}{dt} + \frac{dE_{\text{pot}}}{dt}$$ \hspace{1cm} (3.4.11)
3.4.3.1. Eindimensionaler Spezialfall: E_{pot} linear in x

Wir betrachten ein eindimensionales Problem und nehmen an, dass

$$E_{\text{pot}} = -F \cdot x$$

sei. Dann ist die Bewegungsgleichung

$$\frac{d}{dt}(E_{\text{kin}} + E_{\text{pot}}) = \frac{d}{dt}\left(\frac{1}{2m}p^2 - Fx\right) = 0$$

oder (mit $m = \text{konst}$)

$$\frac{1}{2m}2p \cdot \dot{p} - F\dot{x} = 0$$

Ungeschrieben ist

$$p \cdot \dot{p} = mF \dot{x} = F\dot{p}$$

und mit $p \neq 0$

$$F = \dot{p} \quad (3.4.12)$$

3.4.4. Arbeit und Leistung

Versuch zur Vorlesung:
Arbeit an der schiefen Ebene (Versuchskarte M-094)

Beispiel Hebel

Die Größe Weg \times Kraft, also die Arbeit, wird beim Hebel erhalten.
\[dW = F_{|| zu s} \cdot ds \]
(3.4.13)

\[W = \int_{s_0}^{s_1} F_{|| zu s} ds = W(s_1) - W(s_0) \]
(3.4.14)

Dabei ist \(ds \) der Weg entlang der Bahn! also

\[F_{|| zu r} \Rightarrow W = F \cdot s \]
(3.4.15)

\[F_{\perp zu r} \Rightarrow W = 0! \]
(3.4.16)

Beispiel:

Kreisbahn \(a_{zentripetal} \perp dr \Rightarrow W = 0 \)

Die Einheit der *Arbeit* ist \(1 \frac{m^2 kg}{s^2} = 1 \text{ Joule} = 1 J = 1 Nm = \frac{1}{3600000} \text{ kWh} \)

Im allgemeinen dreidimensionalen Falle hängt die *Arbeit* \(W \) von der durchlaufenden Bahn \(r(s) \) ab.

Beispiel:

Luftwiderstand

\[F_{Luft} = bv^2 \]

Wenn die Beschleunigung \(a \) konstant ist, gilt

\[v(s) = \sqrt{2as} \]

Dann ist

\[W_{Luft} = \int_{0}^{s_0} bv^2 ds = \int_{0}^{s_0} 2a s \cdot b \ ds = ab \cdot s^2 \]

Beispiel:

Bei der *Gleitreibung* haben wir

\[
W(r_1, r_2, b) = \int_{s_2}^{s_1} (-F_G) ds \\
= F_G \int_{s_2}^{s_1} ds \\
= F_G (s_2 - s_1)
\]
Das heisst, die Arbeit ist, wie erwartet, proportional zur zurückgelegten Strecke. Bei der Berechnung der Arbeit spielt Zeit keine Rolle. Wenn wir die Zeit, in der eine Arbeit geleistet wird, berücksichtigen wollen, sprechen wir von Leistung.

Definition der Leistung

\[P = \frac{dW}{dt} \]

(3.4.17)

Gleichung (3.4.17) kann mit der Definition der Arbeit umgeschrieben werden:

\[
P = \frac{dW}{dt} = \frac{d}{dt} \int_{r_0}^{r} F(s)ds
= d \left(\frac{d}{dr} \int_{r_0}^{r} F(s)ds \right) \frac{dr}{dt}
= F(r(t)) \cdot \frac{dr}{dt} \quad (3.4.18)
\]

Wir haben bei der Umformung verwendet, dass die Ableitung nach der oberen Grenze (die untere ist hier konstant) eines Integral der Integrand selbst ist. Umgeschrieben erhalten wir

\[P = \frac{dW}{dt} = F(t) \cdot v(t) \]

(3.4.19)

Die Einheit der Leistung ist

\[1 \text{ Watt} = 1W = 1 \frac{Nm}{s} = 1 \frac{m^2}{s^3} kg \]

(3.4.20)

3.4.5. Potentielle Energie und Kräfte

Aus der Definition der potentiellen Energie ersehen wir, dass

\[F(r) = -\frac{d}{dr} (E_{pot}(r)) \]

(3.4.21)

Der Beweis lautet:

\[
d (E_{pot}(r)) = \frac{\partial E_{pot}}{\partial r} dr
= d \left[-\int_{r_0}^{r} F(s) ds \right] = -F(r) dr \]

(3.4.22)

3.4.5.1. Gleichgewicht und Stabilität

Versuch zur Vorlesung:

Arten des Gleichgewichts (Versuchskarte M-021)
Um die Stabilität einer Gleichgewichtslage zu untersuchen, betrachten wir die drei möglichen Verläufe der potentiellen Energie mit einer Ortskoordinate.

Abbildung 3.7.: Gleichgewichtslagen und potentielle Energie

1. Bei einer Auslenkung ergibt sich eine Rückstellkraft: wir haben ein stabiles Gleichgewicht
 Bedingung ist: \(\frac{\partial E}{\partial x} = 0, \frac{d^2 E}{dx^2} > 0 \) oder \(\frac{dF}{dx} < 0 \)

2. Bei einer Auslenkung ergibt sich eine zunehmende Kraft nach aussen: wir haben ein labiles Gleichgewicht
 Bedingung ist: \(\frac{\partial E}{\partial x} = 0, \frac{d^2 E}{dx^2} < 0 \) oder \(\frac{dF}{dx} > 0 \)

3. Bei einer Auslenkung ist die Masse immer noch im Gleichgewicht: wir haben ein indifferentes Gleichgewicht
 Bedingung ist: \(\frac{\partial E}{\partial x} = 0, \frac{d^2 E}{dx^2} = 0 \) oder \(\frac{dF}{dx} = 0 \)

In 3 Dimensionen ist ein Massenpunkt im Gleichgewicht, wenn \(\text{grad } E_{pot} = 0 \) ist.
4. Mechanik in drei Dimensionen

4.1. Kinematik in drei Dimensionen

4.1.1. Massenpunkte im Raum

Die Lage eines Massenpunktes wird durch seinen Ortsvektor angegeben.

\[
\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \\ \varphi \\ \theta \end{pmatrix} = \begin{pmatrix} \rho \\ \varphi \\ \theta \end{pmatrix}
\]

kartesische Koordinaten Kugelkoordinaten Zylinderkoordinaten

4.1.2. Bewegung im Raum

Ein Massenpunkt bewege sich entlang einer Bahmlinie \(\mathbf{r}(t) \)
Abbildung 4.2.: Bewegung eines Massenpunktes.

Die Zeit t ist der Parameter, der die Bahn beschreibt.

$$
\mathbf{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}
$$ \hspace{1cm} (4.1.1)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Ortsvektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>$\mathbf{r}(t)$</td>
</tr>
<tr>
<td>$t+\Delta t$</td>
<td>$\mathbf{r}(t+\Delta t)$</td>
</tr>
</tbody>
</table>

Tabelle 4.1.: Bewegung in der Zeit Δt.

Verschiebung $\Delta \mathbf{r} = \mathbf{r}(t+\Delta t) - \mathbf{r}(t)$

Beispiel: für Bewegungen im *Raum*

$$
\mathbf{r}(t) = \begin{pmatrix} \alpha \cos t \\ b \sin t \\ ct \end{pmatrix} \text{ Schraube}
$$

$$
\mathbf{r}(t) = \begin{pmatrix} ae^{-\frac{t}{2}} \cos t \\ 0 \\ be^{-\frac{t}{2}} \sin t \end{pmatrix} \text{ Spirale}
$$

$$
\mathbf{r}(t) = \begin{pmatrix} at \\ 0 \\ bt - ct^2 \end{pmatrix} \text{ Wurfparabel}
$$

$$
\mathbf{r}(t) = \begin{pmatrix} r \\ \omega t \\ 0 \end{pmatrix} \text{ Kreisbahn, in Kugelkoordinaten}
$$
Mit dem Satz des Pythagoras berechnen wir den Abstand von Ursprung

\[r = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} \]

4.1.2.1. Geschwindigkeit

Definition:

\[\mathbf{v}(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} = \frac{d}{dt} \mathbf{r}(t) = \dot{\mathbf{r}}(t) \quad (4.1.2) \]

In kartesischen Koordinaten mit

\[\mathbf{r}(t) = \begin{pmatrix} r_x(t) \\ r_y(t) \\ r_z(t) \end{pmatrix} \]

ist

\[\mathbf{v}(t) = \begin{pmatrix} \frac{dr_x(t)}{dt} \\ \frac{dr_y(t)}{dt} \\ \frac{dr_z(t)}{dt} \end{pmatrix} \quad (4.1.3) \]

Wichtig: Die Geschwindigkeit ist tangential zur Bahnkurve.

Diese Aussage folgt aus der Definition der Geschwindigkeit!

Beispiel: Schraube

\[\mathbf{r}(t) = \begin{pmatrix} a \cos t \\ b \sin t \\ ct \end{pmatrix} \Rightarrow \mathbf{v}(t) = \begin{pmatrix} -a \sin t \\ b \cos t \\ c \end{pmatrix} \]

Spirale

\[\mathbf{r}(t) = \begin{pmatrix} ae^{-\frac{t}{\tau}} \cos t \\ 0 \\ be^{-\frac{t}{\tau}} \sin t \end{pmatrix} \Rightarrow \mathbf{v}(t) = \begin{pmatrix} -ae^{-\frac{t}{\tau}} \sin t - \frac{a}{\tau} e^{-\frac{t}{\tau}} \cos t \\ 0 \\ be^{-\frac{t}{\tau}} \cos t - \frac{b}{\tau} e^{-\frac{t}{\tau}} \sin t \end{pmatrix} \]

Wurfparabel

\[\mathbf{r}(t) = \begin{pmatrix} at \\ 0 \\ bt - ct^2 \end{pmatrix} \Rightarrow \mathbf{v}(t) = \begin{pmatrix} a \\ 0 \\ b - 2ct \end{pmatrix} \]

Der Betrag der Geschwindigkeit ist

\[|\mathbf{v}(t)| = \sqrt{v_x^2(t) + v_y^2(t) + v_z^2(t)} \]

\[= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \]
4.1.2.2. Beschleunigung

Abbildung 4.3.: Berechnung der Beschleunigung aus der Geschwindigkeitsänderung

Definition der Beschleunigung

\[a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{d}{dt} \frac{v(t)}{dt} = \overset{\cdot}{v}(t) = \ddot{v}(t) \quad (4.1.4) \]

Wichtig: \(a(t) \) steht beliebig zur Bahn
Beispiel: Schraube

\[
v(t) = \begin{pmatrix} -a \sin t \\ b \cos t \\ c \end{pmatrix} \Rightarrow a(t) = \begin{pmatrix} -a \cos t \\ b \sin t \\ 0 \end{pmatrix}
\]

also ist \(a(t) \) senkrecht auf \(v(t) \), d.h. senkrecht auf der Bahntangente
Wurfparabel:

\[
v(t) = \begin{pmatrix} a \\ 0 \\ b - 2ct \end{pmatrix} \Rightarrow a(t) = \begin{pmatrix} 0 \\ 0 \\ -2c \end{pmatrix}
\]

Betrag

\[a(t) = \sqrt{a_x^2(t) + a_y^2(t) + a_z^2(t)} = \sqrt{(\overset{\cdot}{x})^2 + (\overset{\cdot}{y})^2 + (\overset{\cdot}{z})^2} \]

4.1.2.3. Bewegung in Kugelkoordinaten *

Zur Erinnerung ist hier nochmals die Definition der Kugelkoordinaten angegeben:
4.1 Kinematik in drei Dimensionen

Abbildung 4.4.: Definition der Kugelkoordinaten

Ort

\[x = r \sin \theta \cos \varphi \]
\[y = r \sin \theta \sin \varphi \]
\[z = r \cos \theta \]

mit

\[r^2 = x^2 + y^2 + z^2 \]
\[\cos \theta = \frac{z}{r} = \frac{z}{\sqrt{x^2 + y^2 + z^2}} \]
\[\tan \varphi = \frac{y}{x} \]

Die Geschwindigkeit in Kugelkoordinaten ist

\[v_r = v_x \sin \theta \cos \varphi + v_y \sin \theta \sin \varphi + v_z \cos \theta = \dot{r} \]
\[v_\theta = v_x \cos \theta \cos \varphi + v_y \cos \theta \sin \varphi - v_z \sin \theta = r \dot{\varphi} \]
\[v_\varphi = -v_x \sin \varphi + v_y \cos \varphi = r \sin \theta \dot{\varphi} \]
\[v^2 = \dot{r}^2 + r^2 \left(\dot{\varphi}^2 + \sin^2 \theta \dot{\varphi}^2 \right) \]
Schließlich ist die \textit{Beschleunigung} in Kugelkoordinaten

\begin{align*}
a_r &= a_x \sin \theta \cos \varphi + a_y \sin \theta \sin \varphi + a_z \cos \theta = \quad (4.1.7) \\
&= \ddot{r} - r \left(\dot{\theta}^2 + \sin^2 \theta \dot{\varphi}^2 \right) \\
a_\theta &= a_x \cos \theta \cos \varphi + a_y \cos \theta \sin \varphi - a_z \sin \theta = \quad (4.1.8) \\
&= r \ddot{\theta} - r \sin \theta \cos \theta \dot{\varphi}^2 + 2 \dot{r} \dot{\theta} \\
a_\varphi &= -a_x \sin \varphi + a_y \cos \varphi = \quad (4.1.9) \\
&= \dot{r} \sin \theta \cdot \ddot{\varphi} + 2 \dot{\varphi} \left(\dot{r} \cdot \sin \theta + r \cos \theta \dot{\theta} \right)
\end{align*}

\begin{equation} a^2 = a_r^2 + a_\theta^2 + a_\varphi^2 \quad (4.1.10) \end{equation}

\begin{align*}
&= -2 \cos (\theta) r^2 \sin (\theta) \dot{\varphi}^2 \ddot{\theta} + 4 r^2 \cos (\theta) \dot{\theta} \dot{\varphi} \sin (\theta) \dot{\varphi} \\
&+ 4 \cos (\theta) r \sin (\theta) \dot{\varphi} \dot{\theta} + r^2 \ddot{\theta}^2 + 4 r^2 \dot{\varphi}^2 + 4 r^2 \dot{\varphi}^2 \\
&+ 2 r \dot{\varphi}^2 \left(\cos (\theta) \right)^2 \dot{\varphi}^2 \ddot{\theta} + 2 r^2 \dot{\varphi}^4 + r^2 \ddot{\theta}^2 - r^2 \dot{\varphi}^4 \left(\cos (\theta) \right)^2 + \dddot{r} - 2 \dddot{r} \dot{\theta}^2 \\
&- 2 r \dddot{r} \dot{\varphi}^2 + r^2 \dddot{\theta} + 2 r^2 \dddot{\theta}^2 + 2 r^2 \dot{\varphi}^2 + 4 r \dddot{\theta} \dddot{\theta} + 2 r \dot{r} \dddot{\varphi} + r^2 \dddot{\varphi}^2 - 4 \left(\cos (\theta) \right)^2 r^2 \dot{\varphi}^2 \\
&- 4 \left(\cos (\theta) \right)^2 \dddot{\varphi} \dot{r} \dddot{\varphi} \dot{r} \dddot{\varphi} - \left(\cos (\theta) \right)^2 r^2 \dddot{\varphi}^2
\end{align*}

Eine Ableitung der Gleichungen befindet sich im Anhang H.

\subsection*{4.1.2.3.1. Planare Kreisbewegung mit konstantem Radius}

Wir betrachten eine Bewegung in der \textit{xy}-Ebene

\begin{center}
\begin{tikzpicture}
\begin{scope}[shift={(-0.5,0.5)}]
\draw[->,thick] (-1.5,0) -- (1.5,0) node[below] {$x(t)$} coordinate (x axis);
\draw[->,thick] (0,-0.5) -- (0,3) node[left] {$y(t)$} coordinate (y axis);
\draw[->,thick] (0,0) -- (2,0) node[below right] {+} coordinate (O);
\draw[thick,->] (O) -- (2,2) node[above right] {$\varphi(t)$} coordinate (P);
\draw[thick,->] (O) -- (2,0) node[below right] {$r(t)$} coordinate (R);
\end{scope}
\end{tikzpicture}
\end{center}

\textbf{Abbildung 4.5.: Bewegung in einer Ebene}

\begin{description}
\item[Definitionen]
\begin{itemize}
\item Gegenuhrzeigersinn: positiver Drehsinn
\item Uhrzeigersinn: negativer Drehsinn
\end{itemize}
\end{description}

Der Ortsvektor ist:

\begin{equation}
\begin{align*}
\mathbf{r} (t) &= \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} r \cos \varphi(t) \\ r \sin \varphi(t) \end{pmatrix} \\
x(t) &= r \cos \varphi(t) \\
y(t) &= r \sin \varphi(t)
\end{align*}
\end{equation}
Daraus definieren wir die Winkelgeschwindigkeit:
Definition: \(\omega (t) = \frac{d}{dt} \phi (t) \)
(Alle Rechnungen müssen im Bogenmass durchgeführt werden.)
Unter der Annahme, dass \(r \) konstant ist, berechnen wir die Geschwindigkeit
ist
\[
v (t) = \frac{dr (t)}{dt}
\]
(4.1.12)
\[
v_x (t) = \frac{d}{dt} (r \cos \phi (t))
\]
\[
v_y (t) = \frac{d}{dt} (r \sin \phi (t))
\]
also
\[
v (t) = r \omega (t) \cdot \left(\begin{array}{c} - \sin \phi (t) \\ \cos \phi (t) \end{array} \right) = \left(\begin{array}{c} v_x (t) \\ v_y (t) \end{array} \right)
\]
(4.1.13)
\[
v (t) = r \omega (t)
\]
(4.1.14)
Wir erhalten die Radialkomponente der Geschwindigkeit, indem wir sie mit einem Einheitsvektor in Richtung des Radiusvektors \(r \) multiplizieren (siehe Gleichung (C.4.9)). Der Einheitsvektor ist
\[
e_r = \left(\begin{array}{c} \cos \phi (t) \\ \sin \phi (t) \end{array} \right)
\]
Wir erhalten
\[
v (t) \cdot e_r (t) = v_x (t) \cos \phi (t) + v_y (t) \sin \phi (t)
\]
\[
= -v (t) \sin \phi (t) \cos \phi (t) + v (t) \cos \phi (t) \sin \phi (t) = 0
\]
(4.1.15)
Den Einheitsvektor in die Richtung der Tangente \(e_t \) erhält man, indem man \(e_r \) um \(\pi/2 \) dreht.
\[
e_t = \left(\begin{array}{c} \cos \left(\phi (t) + \frac{\pi}{2} \right) \\ \sin \left(\phi (t) + \frac{\pi}{2} \right) \end{array} \right) = \left(\begin{array}{c} - \sin \phi (t) \\ \cos \phi (t) \end{array} \right)
\]
Die Tangentialkomponente ist
\[
v_t = v_x (t) [- \sin \phi (t)] + v_y (t) \cos \phi (t)
\]
\[
= v (t) [- \sin \phi (t)] [- \sin \phi (t)] + v (t) \cos \phi (t) \cos \phi (t)
\]
\[
= v (t)
\]
(4.1.16)
Für die Beschleunigung erhalten wir
\[
a (t) = \frac{dv (t)}{dt} = \left(\begin{array}{c} a_x (t) \\ a_y (t) \end{array} \right) = \left(\begin{array}{c} \frac{dv_x (t)}{dt} \\ \frac{dv_y (t)}{dt} \end{array} \right)
\]
(4.1.17)
mit

\[
\begin{align*}
\frac{dv_x(t)}{dt} &= \frac{d}{dt} (-r\omega(t) \sin \varphi(t)) = -r \left(\dot{\omega}(t) \sin \varphi(t) + \omega(t)^2 \cos \varphi(t) \right) \quad (4.1.18) \\
\frac{dv_y(t)}{dt} &= \frac{d}{dt} (r\omega(t) \cos \varphi(t)) = r \left(\dot{\omega}(t) \cos \varphi(t) - \omega(t)^2 \sin \varphi(t) \right)
\end{align*}
\]

also ist

\[
a(t) = r \dot{\omega}(t) \begin{pmatrix}
-\sin \varphi(t) \\
\cos \varphi(t)
\end{pmatrix} - r\omega^2(t) \begin{pmatrix}
\cos \varphi(t) \\
\sin \varphi(t)
\end{pmatrix}
\]

(4.1.19)

Tangentialkomponente
Radialkomponente

also ist \(a_r = -r\omega^2(t)\) die ins Zentrum gerichtete Zentripetalbeschleunigung
und \(a_\varphi = r \dot{\omega}(t)\) die den Geschwindigkeitsbetrag erhöhende Tangentialbeschleunigung
mit dem Betrag der Beschleunigung \(a = r \sqrt{\omega^4 + (\dot{\omega})^2}\)

4.1.2.3.2. Beschreibung einer ebenen Bewegung mit komplexen Zahlen *

Die obige Rechnung kann sehr viel bequemer mit komplexen Zahlen durchgeführt werden.

![Abbildung 4.6.: Kartesische und komplexe Ebene](image.png)

Abbildung 4.6.: Kartesische und komplexe Ebene

Es gelten die Beziehungen

\[
\begin{align*}
z &= x + iy = r (\cos \varphi + i \sin \varphi) \quad (4.1.20) \\
x &= r \cos \varphi \quad (4.1.21) \\
y &= r \sin \varphi \quad (4.1.22)
\end{align*}
\]

Es gilt:
\[e^{i\varphi} = \cos \varphi + i \sin \varphi \]
\[\text{Re} \left(e^{i\varphi} \right) = \cos \varphi \quad (4.1.24) \]
\[\text{Im} \left(e^{i\varphi} \right) = \sin \varphi \quad (4.1.25) \]
daher ist auch
\[\frac{e^{i\varphi} + e^{-i\varphi}}{2} = \frac{\cos \varphi + i \sin \varphi + \cos (-\varphi) + i \sin (-\varphi)}{2} \]
\[= \frac{\cos \varphi}{2} \]
\[\frac{e^{i\varphi} - e^{-i\varphi}}{2i} = \frac{\cos \varphi + i \sin \varphi - \cos (-\varphi) - i \sin (-\varphi)}{2i} \]
\[= \sin \varphi \quad (4.1.26) \]
Eine Kreisbahn wird mit komplexen Zahlen durch
\[z(t) = x(t) + iy(t) = re^{i\varphi(t)} \]
\[|z(t)| = (z(t) \cdot \bar{z}(t))^{\frac{1}{2}} = r \]
beschrieben. Wir erhalten die konjugiert komplexe Größe
\[\bar{z}(t) = x(t) - iy(t) \]
Geschwindigkeit ist dann
\[v(t) = v_x(t) + iv_y(t) \]
\[= \frac{d}{dt} z(t) \]
\[= \frac{d}{dt} (re^{i\varphi(t)}) \]
\[= r i e^{i\varphi(t)} \cdot \frac{d\varphi(t)}{dt} \]
\[= i\omega(t) z(t) \quad (4.1.30) \]
wobei \(\omega(t) = \dot{\varphi}(t) \) die **Winkelgeschwindigkeit** ist.
Die **Beschleunigung** ist
\[a(t) = a_x(t) + ia_y(t) \]
\[= \frac{d^2}{dt^2} z(t) \]
\[= \frac{d}{dt} (i\omega(t) z(t)) \]
\[= i \frac{d\omega(t)}{dt} z(t) + i\omega(t) \cdot i\omega(t) z(t) \]
\[= i \frac{d\omega(t)}{dt} z(t) - \omega^2(t) z(t) \quad (4.1.32) \]
Der erste Summand ist wieder die Tangentialbeschleunigung, während der zweite die Zentripetalbeschleunigung beschreibt.
4.1.2.4. Kinematik bezogen auf die Bahn des Massenpunktes *

Um die Kinematik in drei Dimensionen berechnen zu können, müssen wir die Differentialgeometrie von Bahnen verstehen. Wir definieren den Ortsvektor als

\[
\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\] (4.1.33)

Für eine infinitesimale Strecke ist der zurückgelegte Weg

\[
ds = |d\mathbf{r}| = \sqrt{dx^2 + dy^2 + dz^2}
\] (4.1.34)

Durch Integration bekommt man die gesamte Strecke

\[
s = \int_{r_{\text{anfang}}}^{r_{\text{ende}}} ds = \int_{r_{\text{anfang}}}^{r_{\text{ende}}} \sqrt{dx^2 + dy^2 + dz^2}
\] (4.1.35)

Die Bahn (Trajektorie) des Massenpunktes wird durch die Streckenlänge \(s\) auf der Bahn bestimmt. Diese Definition ist ähnlich wie die im täglichen Leben übliche, ausser dass dort in der Regel Richtungen nicht berücksichtigt werden.

\[
\mathbf{r}(s) = \begin{pmatrix} x(s) \\ y(s) \\ z(s) \end{pmatrix}
\] (4.1.36)

Der Tangentenvektor ist

\[
\mathbf{\tau}(s) = \frac{d\mathbf{r}(s)}{ds}
\] (4.1.37)

wobei \(|\mathbf{\tau}(s)| = 1\) ist.

Beweis:

Die Tangentialrichtung ist durch \(\mathbf{\tau} = \lim_{\Delta s \to 0} \frac{\mathbf{r}(s+\Delta s) - \mathbf{r}(s)}{\Delta s}\) gegeben. Also ist

\[
|\mathbf{\tau}(s)| = \left| \frac{d\mathbf{r}}{ds} \right| = \frac{|d\mathbf{r}|}{ds} = \frac{ds}{ds} = 1
\] (4.1.38)
4.1 Kinematik in drei Dimensionen

Den Einheitsvektor senkrecht auf die Bahn (auch Bahnnormale genannt) $n(s)$ und den Krümmungsradius $R(s)$ bekommt man aus $\tau(s)$ durch Ableitung

$$\frac{d\tau(s)}{ds} = \frac{n(s)}{R(s)} \quad \text{mit} \quad |n(s)| = 1 \quad (4.1.39)$$

Beweis:

$$(\tau(s))^2 = \tau(s) \cdot \tau(s) = 1 \quad (4.1.40)$$

$$\frac{d}{ds} (\tau(s))^2 = 2\tau(s) \cdot \frac{d\tau(s)}{ds} = 0 \quad (4.1.41)$$

also ist $\tau(s)$ senkrecht zur Ableitung bezogen auf die Streckenlänge der Bahn $\frac{d\tau(s)}{ds}$.

Abbildung 4.8.: Berechnung des Krümmungsradius

Betrachtet man den an die Bahn geschmiegten Krümmungsradius $R(s)$, so kann aus der Wegstrecke eine Winkeländerung berechnet werden.

$$\Delta s = R(s) \cdot \Delta \varphi$$

Wir erhalten für die Änderung des Normalenvektors aus dem Strahlensatz

$$\frac{|\Delta \tau(s)|}{|\tau(s)|} = \frac{\Delta s}{R(s)} = |\Delta \tau(s)| \quad \text{da} \quad |\tau(s)| = 1! \quad (4.1.42)$$

also ist

$$\frac{1}{R(s)} = \left| \frac{\Delta \tau(s)}{\Delta s} \right| \quad (4.1.43)$$

und

$$R(s) = \left| \frac{d\tau(s)}{ds} \right| \quad (4.1.44)$$

4.1.2.4.1. Bahnbewegung *

Wir zerlegen die Beschleunigung in ihre Tangentialkomponente τ und die Radialkomponente n.
Die Änderung des Ortsvektor $r(s)$ erhalten wir aus der Differentialgeometrie. Wir nennen $s(t)$ den Fahrplan. Also ist der Ortsvektor auch eine Funktion der Zeit $r(s(t))$.

Die Geschwindigkeit ist durch
\[
v(t) = v(s(t)) = v(t) \cdot \tau(s(t))
\]

(4.1.45)
\[
v(t) = \frac{ds(t)}{dt}
\]

(4.1.46)

definiert.

Beweis:
\[
v(s(t)) = \frac{dr(s(t))}{dt} = \frac{dr(s)}{ds} \cdot \frac{ds(t)}{dt} = \tau(s(t)) \cdot v(t)
\]

(4.1.47)

Bemerkung: Dies ist die Definition der Geschwindigkeit, die wir üblicherweise geben würden, aber ohne auf die Richtung $\tau(s(t))$ zu achten.

Die Beschleunigung ist:
\[
a(t) = a(s(t)) = a_\tau(s(t)) + a_n(s(t)) = \frac{dv(t)}{dt} \cdot \tau(s(t)) + \frac{v^2(t)}{R(t)} \cdot n(s(t))
\]

(4.1.48)

a_τ heisst die Tangentialbeschleunigung

a_n heisst die Zentripetalbeschleunigung

Beweis:
\[
a(s(t)) = \frac{d}{dt}v(s(t)) = \frac{d}{dt} \{\tau(s(t)) \cdot v(t)\}
\]
\[
= \frac{d\tau(s)}{ds} \cdot \frac{ds(t)}{dt} \cdot v(t) + \tau(s(t)) \frac{dv(t)}{dt}
\]
\[
= \frac{n(s(t))}{R(s(t))} \cdot v(t)^2 + \tau(s(t)) \frac{dv(t)}{dt}
\]

(4.1.49)

Bemerkung: Wenn wir eine gekrümmte Bahn haben, also $R(t) < \infty$ (Kurve), gibt es die Zentripetalbeschleunigung, sogar wenn $\frac{dv(t)}{dt} = 0$ ist.
4.1.2.4.2. Bewegung eines Massenpunktes auf einer ebenen Bahn *

Wir setzen:

\[\mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix} \]
\[\mathbf{v} = \dot{\mathbf{r}} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \end{pmatrix} \]
\[\mathbf{a} = \ddot{\mathbf{r}} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = \begin{pmatrix} a_x \\ a_y \end{pmatrix} \]

Wegelement:

\[ds = \sqrt{dx^2 + dy^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt = \sqrt{(\dot{x})^2 + (\dot{y})^2} \, dt \]

Tangentenvektor:

\[\tau = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} \]
\[\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \]
\[\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \]

da \(|\tau| = 1\)

Normalenvektor:

\[\mathbf{n} = \begin{pmatrix} -\dot{y} \\ \dot{x} \end{pmatrix} \]
\[\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \]
\[\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \]

Krümmungsradius:

\[R = \frac{(\dot{x}^2 + \dot{y}^2)^{3/2}}{\dot{x} \dot{y} - \ddot{x} \ddot{y}} \]

Betrag von \(\mathbf{v} \):

\[v = \sqrt{\dot{x}^2 + \dot{y}^2} \]

Tangentialbeschleunigung

\[a_t = \frac{\dot{x} \ddot{x} + \dot{y} \ddot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \]

Zentripetalbeschleunigung

\[a_n = \frac{\dot{x} \ddot{y} - \ddot{x} \dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = \frac{v^2}{R} \]

Kontrolle

\[\mathbf{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix} = \tau \cdot a_t + \mathbf{n} \cdot a_n \]

x-Komponente

\[a_x = \frac{\ddot{x}}{\sqrt{x^2 + y^2}} \]
\[= \frac{(x^2 \dddot{x} + y^2 \dddot{y})}{\sqrt{x^2 + y^2}} \]
\[= \frac{x \dddot{x} + y \dddot{y}}{\sqrt{x^2 + y^2}} \]
\[= \dddot{x} \]

©2001-2014 Ulm University, Othmar Marti
y-Komponente

\[a_y = \frac{\ddot{y} \mathbf{\dot{x}} + \mathbf{\dot{y}} \mathbf{\ddot{y}}}{\sqrt{x^2 + y^2}} + \frac{\mathbf{\dot{x}} \mathbf{\dot{y}} - \mathbf{\ddot{x}} \mathbf{\dot{y}}}{\sqrt{x^2 + y^2}} \]
\[= \ddot{y} \]
\[(4.1.63) \]

Beispiel:

„Schlangenlinie“ beschleunigt

\[x(t) = \frac{1}{2} at^2 \quad \dot{x}(t) = at \quad \ddot{x}(t) = a \]
\[y(t) = y_0 \sin \omega t \quad \dot{y}(t) = y_0 \cos \omega t \quad \ddot{y}(t) = -y_0 \sin \omega t \]
\[(4.1.65) \]

\[\tau = \frac{1}{\sqrt{a^2 t^2 + y_0^2 \omega^2 \cos^2 \omega t}} \begin{pmatrix} at \\ \omega y_0 \cos \omega t \end{pmatrix} \]
\[(4.1.67) \]

\[n = \frac{1}{\sqrt{a^2 t^2 + y_0^2 \omega^2 \cos^2 \omega t}} \begin{pmatrix} -\omega y_0 \cos \omega t \\ at \end{pmatrix} \]
\[(4.1.68) \]

\(\tau \) wird mit zunehmendem \(t \) parallel zur \(x \)-Achse, \(n \) wird parallel zur \(y \)-Achse

Der Krümmungsradius ist

\[R = \frac{(a^2 t^2 + y_0^2 \omega^2 \cos^2 \omega t)^{\frac{3}{2}}}{-ay_0t_0 \omega^2 \sin t - ay_0 \omega \cos t} \]
\[(4.1.69) \]

Der Betrag der Geschwindigkeit wird

\[|v| = v = \left(a^2 t^2 + y_0^2 \omega^2 \cos^2 t \right)^{\frac{3}{2}} \]
\[(4.1.70) \]

Die Tangentialbeschleunigung (Änderung des Geschwindigkeitsbetrages) ist

\[a_{\tau} = \frac{a^2 t - y_0^2 \omega^3 \sin t \cos t}{\sqrt{a^2 t^2 + y_0^2 \omega^2 \cos^2 t}} \]
\[(4.1.71) \]

und

\[\lim_{t \to \infty} a_{\tau} = a \]

Die Normalbeschleunigung (Zentripetalbeschleunigung) ist

\[a_n = \frac{-at y_0 \omega^2 \sin t - ay_0 \omega \cos t}{\sqrt{a^2 t^2 + y_0^2 \omega^2 \cos^2 t}} \]
\[(4.1.72) \]

Der Grenzwert wird

\[\lim_{t \to \infty} a_n = -y_0 \omega^2 \sin t \]
4.2. Erhaltungssätze und Erhaltungsgrössen

4.2.1. Impulserhaltung

Wir nennen die Größe
\[p_i = m_i \cdot v_i \] (4.2.1)
den Impuls des \(i \)-ten Massenpunktes.

Allgemein gilt
\[\sum_{i=1}^{n} m_i \cdot v_i = \sum_{i=1}^{n} m_i \cdot v'_i \] (4.2.2)

Das heisst:

In einem abgeschlossenen System ist der Gesamtimpuls eine Erhaltungsgröße.

Dabei wird jede Impulskoordinate einzeln erhalten. In kartesischen Koordinatensystemen sind dies die Impulse in die \(x \)-, \(y \)- und \(z \)-Richtung. In Kugelkoordinaten sind dies die Impulse in der \(r \)-, \(\theta \)- und \(\phi \)-Richtung. Im Detail besprechen wir die Konsequenzen der Impulserhaltung im Abschnitt 4.4.

4.2.2. Kinetische Energie

Wir nennen die Größe
\[E_{kin,i} = \frac{1}{2m_i} \cdot p_i^2 = \frac{m_i}{2} \cdot v_i^2 \] (4.2.3)
die kinetische Energie des \(i \)-ten Massenpunktes.

Allgemein gilt
\[\sum_{i=1}^{n} \frac{1}{2m_i} \cdot p_i^2 = \sum_{i=1}^{n} \frac{1}{2m_i} \cdot p_i'^2 \] (4.2.4)

4.2.3. Potentielle Energie

Unter potentieller Energie verstehen wir die Möglichkeit, Arbeit zu leisten, wobei wir die Energie, die in der Bewegung ist, ausklammern. Arbeit im physikalen
Sinne ist

\[dW = F_{\text{ext}} \cdot ds \] (4.2.5)

Wir betrachten also nur die Komponente der Kraft \(F_{\text{ext}} \), die entlang des Wegelements \(ds \) liegt.

Nun ist die Kraft, die das System aufbringt, die Kraft, gegen die wir arbeiten müssen, \(F = -F_{\text{ext}} \). Die im System gespeicherte Energie ist deshalb

\[dW = F_{\text{ext}} \cdot ds = -F \cdot ds \] (4.2.6)

Damit ist die potentielle Energie definiert durch

\[E_{\text{pot}} = - \int_{s_1}^{s_2} F \cdot ds \] (4.2.7)

Einheit der potentiellen Energie : \(1\text{Joule} = 1\text{Nm} \)

4.2.3.1. Kraftfelder

Versuch zur Vorlesung:
Energieerhaltung (Versuchskarte M-093)

Link zur Vorlesung: (Bahn eines geworfenen Balles)

Definition eines Kraftfelds:
Ein Kraftfeld ist ein Gebiet \(G \), in dem die Kraft \(F \) existiert. \(F \) hängt dabei eindeutig vom Ort \(r \) ab.

\[F = F(r) \] (4.2.8)

Beispiel: *Gravitation*, Magnetfeld, *Feder*
Kraftfelder können zeitabhängig sein.

4.2.3.2. Feldlinien

Feldlinien \(r_{Fl}(s) \) sind Kurven, die in jedem Punkt parallel zu \(F(r(s)) \) sind.
4.2 Erhaltungssätze und Erhaltungsgrössen

\[F(r_{FI}(s)) = F(r_{FI}(s)) \cdot \tau_{FI}(s) \]

\[\tau_{FI} = \frac{d r_{FI}}{ds} \quad (4.2.9) \]

Beispiel Gummiband
Die Länge sei \(l_0 \)
Das Feldlinienbild ergibt sich aus \(F = k(l - l_0) \)

4.2.4. Konservative Kraftfelder

Ein Kraftfeld in einem Definitionsgebiet \(G \) ist kommutativ, wenn die Arbeit für alle in \(G \) liegenden Wege zwischen zwei beliebigen Punkten \(A \in G \) und \(B \in G \) gleich ist, das heisst unabhängig vom Weg. Die Arbeit ist dann eindeutig gegeben.
- Arbeit verschwindet auf jedem geschlossenen Weg
- Arbeit ist unabhängig vom Weg
- Das Kraftfeld ist wirbelfrei
- Es existiert eine potentielle Energie

4.2.4.1. Arbeit auf einem geschlossenen Weg

Definition: Sei $F(r)$ statisch, das Gebiet G sei einfach zusammenhängend

$F(r)$ ist konservativ, wenn

$$W(A, A, b) = W(r_1, r_1, b) = - \int_{r_1 \text{ auf Bahn } b} F(r) \, dr = 0 \quad (4.2.10)$$

unabhängig von b gleich null ist

4.2.4.2. Unabhängigkeit der Arbeit vom Weg

Abbildung 4.13.: Unabhängigkeit der potentiellen Energie vom Weg.

Wenn die Arbeit unabhängig vom Weg sein soll, muss die Differenz der Arbeit entlang zweier verschiedener Wege zwischen zwei Punkten null sein.
\[W(r_1, r_2, b_1) - W(r_1, r_2, b_2) = \]
\[W(r_1, r_2, b_1) + W(r_2, r_1, b_2) = \]
\[W(r_1, r_1, b_1 + b_2) = 0 \] (4.2.11)

wegen der Tatsache, dass in einem konservativen Kraftfeld die Arbeit auf jedem geschlossenen Weg null ist.

4.2.4.3. Wirbelfreiheit konservativer Kraftfelder *

Abbildung 4.14.: Wirbelfreiheit konservativer Felder.

Ein Kraftfeld ist konservativ, wenn
\[\text{rot} \ F(r) = 0 \] (4.2.12)

Nach Stokes gilt
\[\oint_{r_1,b} F(r) \, dr = \int_{Fläche \ s} \text{rot} \ F(r) \cdot n \, da = 0 \] (4.2.13)

da b beliebig ist und auf einer beliebigen Bahn b das Linienintegral entlang eines geschlossenen Weges verschwindet, muss rot \ F = 0 gelten.

4.2.4.4. Potentielle Energie und Arbeitsvermögen

Die potentielle Energie ist eindeutig definiert, da in einem konservativen Kraftfeld \(W \) unabhängig von \(b \) ist.

Potentielle Energie und Arbeit der Feldkraft \(F_{sys} \)
\[W_{sys}(r_1, r_2, b) = E_{pot}(r_1) - E_{pot}(r_2) \] (4.2.14)

Wenn man die Arbeit durch die externe Kraft \(F_{ext} = -F_{sys} \) betrachtet, bekommt man
\[W_{ext}(r_1, r_2, b) = - [E_{pot}(r_1) - E_{pot}(r_2)] \]

\(E_{pot} \) ist das Arbeitsvermögen der Feldkraft.
Beweis:
\[E_{pot}(r) = - \int_{r_0}^{r} \mathbf{F}_{sys} \cdot ds \]

ist. Die Arbeit, die das System leistet (nicht die Arbeit gegen die Feldkraft!) ist
\[
W (r_1, r_2, b) = \int_{r_1, b}^{r_2} \mathbf{F}_{sys} (r) \, dr
\]
\[
= \int_{r_1, b_1}^{r_0, b_1} \mathbf{F}_{sys} (r) \, dr + \int_{r_0, b_2}^{r_2} \mathbf{F}_{sys} (r) \, dr
\]
\[
= - \int_{r_0, b_1}^{r_1} \mathbf{F}_{sys} (r) \, dr + \int_{r_0, b_2}^{r_2} \mathbf{F}_{sys} (r) \, dr
\]
\[
= E_{pot} (r_1) - E_{pot} (r_2) \quad (4.2.15)
\]

Beispiel: Die *Gravitation* in Erdnähe wird durch das Kraftgesetz
\[
\mathbf{F} = m \mathbf{g} = \text{const} \quad (4.2.16)
\]
beschrieben.

Abbildung 4.15.: Berechnung des Arbeitsvermögens der *Feldkraft*.

Abbildung 4.16.: *Koordinatensystem* zur Berechnung der *Arbeit* des
Gravitationsfeldes
Die dazugehörige potentielle Energie ist

\[E_{\text{pot}} = - \int_0^z F \, dz = - \int_0^z -mg \, dz = -Fz = mgz \] \hspace{1cm} (4.2.17)

\(mgh \) ist **nicht** die Definition der potentiellen Energie, sondern ein Spezialfall.

4.2.5. Energieerhaltung mechanischer Systeme *

Versuch zur Vorlesung:

Energieerhaltung (Versuchskarte M-093)

Wir betrachten ein System, dessen Energie konstant ist.

\[E_{\text{tot}} = E_{\text{kin}} + E_{\text{pot}} + E_{\text{innen}} = \text{konstant} \] \hspace{1cm} (4.2.18)

Dabei ist \(E_{\text{innen}} \) die noch unspezifizierte innere Energie eines Teilchens. Für Massenpunkte ist \(E_{\text{innen}} = 0 \).

Die Konstanz der gesamten Energie \(E_{\text{tot}} \) bedeutet, dass deren zeitliche Ableitung null sein muss

\[\frac{dE_{\text{tot}}}{dt} = 0 \] \hspace{1cm} (4.2.19)

Diese Gleichung ist ein Ausdruck des Hamiltonschen Prinzips, dass die Gesamtennergie konstant sei. Im Einzelnen hat man

\[0 = \frac{dE_{\text{kin}}}{dt} + \frac{dE_{\text{pot}}}{dt} + \frac{dE_{\text{innen}}}{dt} \] \hspace{1cm} (4.2.20)

Nehmen wir nun an, dass die innere Energie konstant sei (z.B. Massenpunkte). Dann ist

\[0 = \frac{dE_{\text{kin}}}{dt} + \frac{dE_{\text{pot}}}{dt} \] \hspace{1cm} (4.2.21)

Die Bewegungsgleichung für einen Massenpunkt. Als Beispiel nehmen wir an, dass

\[E_{\text{pot}} = E_0 \left(1 - e^{-r^2/\sigma^2} \right) = E_0 \left(1 - e^{-(r_x(t)^2 + r_y(t)^2 + r_z(t)^2)/\sigma^2} \right) \]

sei. Die *kinetische Energie* ist entsprechend

\[E_{\text{kin}} = \frac{1}{2} m \left(\frac{\partial r(t)}{\partial t} \right)^2 = \frac{1}{2} m \left[\left(\frac{\partial r_x(t)}{\partial t} \right)^2 + \left(\frac{\partial r_y(t)}{\partial t} \right)^2 + \left(\frac{\partial r_z(t)}{\partial t} \right)^2 \right] \]

Aus dem Hamiltonschen Prinzip erhält man dann
\[0 = \frac{1}{2}m \left[2 \left(\frac{d}{dt} r_x(t) \right) \frac{d^2}{dt^2} r_x(t) + 2 \left(\frac{d}{dt} r_y(t) \right) \frac{d^2}{dt^2} r_y(t) + 2 \left(\frac{d}{dt} r_z(t) \right) \frac{d^2}{dt^2} r_z(t) \right] + E_0 \left[2 r_x(t) \frac{d}{dt} r_x(t) + 2 r_y(t) \frac{d}{dt} r_y(t) + 2 r_z(t) \frac{d}{dt} r_z(t) \right] \]

\[= m \left[\left(\frac{d}{dt} r_x(t) \right) \frac{d^2}{dt^2} r_x(t) + \left(\frac{d}{dt} r_y(t) \right) \frac{d^2}{dt^2} r_y(t) + \left(\frac{d}{dt} r_z(t) \right) \frac{d^2}{dt^2} r_z(t) \right] + E_0 \left[2 r_x(t) \frac{d}{dt} r_x(t) + 2 r_y(t) \frac{d}{dt} r_y(t) + 2 r_z(t) \frac{d}{dt} r_z(t) \right] \]

\[= \frac{m}{r_0^2} \left(\frac{d}{dt} r_x(t) \right)^2 + \frac{m}{r_0^2} \left(\frac{d}{dt} r_y(t) \right)^2 + \frac{m}{r_0^2} \left(\frac{d}{dt} r_z(t) \right)^2 \]

\[= \frac{m}{r_0^2} \left(\frac{d}{dt} \mathbf{r}(t) \right)^2 \]

Diese Gleichung kann auch mit Vektoren geschrieben werden. Wir setzen

\[\dot{\mathbf{r}} = \begin{pmatrix} \frac{d}{dt} r_x(t) \\ \frac{d}{dt} r_y(t) \\ \frac{d}{dt} r_z(t) \end{pmatrix} \]

\[\ddot{\mathbf{r}} = \begin{pmatrix} \frac{d^2}{dt^2} r_x(t) \\ \frac{d^2}{dt^2} r_y(t) \\ \frac{d^2}{dt^2} r_z(t) \end{pmatrix} \]

und erhalten

\[0 = m \dot{\mathbf{r}} \cdot \ddot{\mathbf{r}} + \frac{2 E_0}{r_0^2} \mathbf{r} \cdot \dot{\mathbf{r}} e^{-\frac{\mathbf{r}^2}{2r_0^2}} \]

Für \(\dot{\mathbf{r}} \neq 0 \) kann die Bewegungsgleichung als

\[0 = m \ddot{\mathbf{r}} + \frac{2 E_0}{r_0^2} \mathbf{r} e^{-\frac{\mathbf{r}^2}{2r_0^2}} \]

(4.2.23)

geschrieben werden.

4.2.6. Arbeit und Leistung*

Versuch zur Vorlesung:

Arbeit an der schiefen Ebene (Versuchskarte M-094)
Beispiel Hebel

\[\Delta y = \Delta x \]
\[F_0 = mg \]
\[F_0 = mg \cdot \Delta y \cdot \Delta x \]
\[mg \cdot F_0 \]
\[mg \cdot F_0 = mg \Delta x \]

Tabelle 4.2.: Kräftegleichgewicht beim Hebel

Die Größe \(\text{Weg} \times \text{Kraft} \), also die Arbeit, wird beim Hebel erhalten.

\[
dW = \mathbf{F} \cdot dr \quad (4.2.24)
\]
\[
W = \int_{s_0}^{s_1} \mathbf{F} \, dr = W(s_1) - W(s_0) = \int_{s_0}^{s_1} \mathbf{F}(\mathbf{r}(s)) \cdot \mathbf{\tau}(s) \, ds \quad (4.2.25)
\]

dabei ist \(ds \) der Weg entlang der Bahn!

also

\[
\mathbf{F} \parallel \text{Weg} \Rightarrow W = F \cdot s \quad (4.2.26)
\]
\[
\mathbf{F} \perp \text{Weg} \Rightarrow W = 0! \quad (4.2.27)
\]

Beispiel:
Kreisbahn \(\mathbf{a}_\text{zentripetal} \perp dr \Rightarrow W = 0 \)
Einheit der Arbeit \(1 \frac{m^2 \text{kg}}{s^2} = 1 \text{ Joule} = 1J = 1Nm = \frac{1}{3600000} \text{kWh} \)

Im allgemeinen hängt die Arbeit \(W \) von der durchlaufenden Bahn \(\mathbf{r}(s) \) ab.

Beispiel:
Luftwiderstand

\[
\mathbf{F} = bv^2
\]
\[
v(s) = \sqrt{2as}
\]

dann ist
$W_{Luft} = \int_{0}^{s_0} bv^2 ds = \int_{0}^{s_0} 2as \cdot b \cdot ds = ab \cdot s^2$

Gleitreibung

$F_G = -F_G \cdot \tau (s)$

$W (r_1, r_2, b) = \int_{s_2}^{s_1} (-F_G) \tau_b(s) ds$

$= F_G \int_{s_1}^{s_2} \tau_b \cdot \tau_b ds$

$= F_G \int_{s_1}^{s_2} ds$

$= F_G (s_2 - s_1)$

das heisst, die Arbeit ist, wie erwartet, proportional zur zurückgelegten Strecke. Bei der Berechnung der Arbeit spielt Zeit keine Rolle. Wenn wir die Zeit, in der eine Arbeit geleistet wird, berücksichtigen wollen, sprechen wir von Leistung. Sie ist durch

$P = \frac{dW}{dt}$

oder

$P = \frac{dW}{dt} = F \cdot \frac{dr}{dt} = F \cdot \frac{dr}{dt} = F (t) \cdot v (t)$

definiert.
Beweis:

$W (t_0, t) = W (r (t_0), r (t)) = \int_{r(t_0)}^{r(t)} F (t) \cdot dr (t)$

$= \int_{r(t_0)}^{r(t)} F (t) \frac{dr (t)}{dt} \cdot dt = \int_{r(t_0)}^{r(t)} F (t) v (t) dt = \int_{r(t_0)}^{r(t)} P (t) dt$

Die Einheit der Leistung ist

$1 Watt = 1W = \frac{Nm}{s} = \frac{m^2}{s^3} kg$

4.2.7. Potentielle Energie und Kräfte

Es gilt

$F (r) = - grad (E_{pot} (r))$

Was bedeutet dies?
Zuerst betrachten wir die Definition des Gradienten:

\[
\operatorname{grad} = \left(\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array} \right)
\]

(4.2.33)

Beweis:

\[
d \left(E_{\text{pot}} \right) = \frac{\partial E_{\text{pot}}}{\partial x} dx + \frac{\partial E_{\text{pot}}}{\partial y} dy + \frac{\partial E_{\text{pot}}}{\partial z} dz
\]

\[
= \left(\begin{array}{c}
\frac{\partial E_{\text{pot}}}{\partial x} \\
\frac{\partial E_{\text{pot}}}{\partial y} \\
\frac{\partial E_{\text{pot}}}{\partial z}
\end{array} \right) \left(\begin{array}{c}
dx \\
dy \\
dz
\end{array} \right) = \left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array} \right] E_{\text{pot}} \left(\begin{array}{c}
dx \\
dy \\
dz
\end{array} \right)
\]

\[
= \operatorname{grad} E_{\text{pot}} \cdot dr
\]

(4.2.34)

Andererseits haben wir

\[
d \left(E_{\text{pot}} \right) = d \left[- \int_{r_0}^{r} F \left(r \right) dr \right]
\]

\[
= - F \left(r \right) dr
\]

(4.2.35)

Also ist die Behauptung gezeigt.

4.3. Dynamik

Die Dynamik stellt die Frage nach der Ursache der Bewegung. In diesem Abschnitt werden wir zeigen, dass Bewegung durch Kräfte hervorgerufen wird.

4.3.1. Das Prinzip vom Parallelogramm der Kräfte

auch genannt 4. Newtonsches Gesetz

| Kräfte sind Vektoren |

![Abbildung 4.17.: Reibung](image_url)
Eine Kraft, die am Punkt \(P \) angreift, verhält sich wie ein ortsgebundener Vektor.

\[
\begin{align*}
\text{Angriffspunkt} & : P \\
\text{Betrag} & : F \\
\text{Richtung} & : e = \hat{F} \\
\end{align*}
\]

Kraft!

Versuch zur Vorlesung:
Kräfteparallelogramm (Versuchskarte M-012)

Addition von Kräften

\[
F_{\text{total}} (\text{in } P) = \sum_i F_i (\text{in } P)
\]

(4.3.1)

⇒ Nur Kräfte, die an ein und demselben Punkt \(P \) angreifen können addiert werden.

Beispiel:

Abbildung 4.18.: Grafische Addition von Kräften

Die Kräfte, die im Punkt \(P \) angreifen sind im Gleichgewicht, wenn ihre Summe 0 ist.

\[
F_{\text{total}} (\text{in } P) = \sum_i F_i (\text{in } P) = 0
\]

(4.3.2)

Beispiel

Abbildung 4.19.: Kräftegleichgewicht

©2001-2014 Ulm University, Othmar Marti
\[F_1 + F_2 + F_3 = 0 \]

Zerlegung von Kräften

Beispiel: Welche Kräfte wirken auf einen Kranarm?

Abbildung 4.20.: Kräfte an einem Kranarm. Die Kraft \(F_{Biegung} \) verbiegt den Arm.

Versuch zur Vorlesung:
Kran (Versuchskarte M-173)

Bemerkung:
Bei welcher Kombination von Kräften und Richtungen kippt der Kran nach oben weg?

Beispiel:

Pendel

Versuch zur Vorlesung:
Fadenpendel (Versuchskarte M-077)
Abbildung 4.21.: Kräfte an einem Pendel. Der Faden des Pendels kann nur Kräfte entlang des Fadens aufbringen. Deshalb konstruiert man die rücktreibende Kraft, indem man die Fadenlinie durch die Masse verlängert. Dann zeichnet man eine Senkrechte auf die verlängerte Fadenlinie vom Ende der Kraft F_g. Der Schnittpunkt definiert die Fadenkraft F_{Faden} und die rücktreibende Kraft $F_{rücktreibend}$.

Dieses Problem lässt sich viel einfacher mit einer Energiebetrachtung lösen.

4.3.2. Das Reaktionsprinzip

Versuch zur Vorlesung:
Reaktionsprinzip (Versuchskarte M-141)

auch genannt das 3. Newtonsches Gesetz

Übt der Körper 1 die Kraft F_{12} auf der Körper 2 aus, so übt der Körper 2 die Kraft F_{21} auf den Körper 1 aus.

$$\frac{F_{12}}{\text{actio}} = -\frac{F_{21}}{\text{reactio}} \quad (4.3.3)$$

Beispiel Feder
4.3 Dynamik

Abbildung 4.22.: Kräfte an einer Feder

\[F_A = k \cdot x = -F_r \]

\(-F_r\) ist die Reaktion der Feder auf die angelegte Kraft.

4.3.3. Grundgesetz der Dynamik

auch genannt 2. Newtonsches Gesetz

Eine bewegte *Masse* kann durch ihren *Impuls* charakterisiert werden.

\[p = m \cdot v \] \hspace{1cm} (4.3.4)

Einheit des Impulses: \(\frac{m \cdot kg}{s} \)

Dabei ist \(m \) die „träge“ Masse (im Gegensatz zur „schweren“ Masse)

Das 2. Newtonsche Gesetz lautet

\[F = \frac{dp}{dt} = \frac{dm}{dt} \cdot v + m \frac{dv}{dt} = \frac{dm}{dt} \cdot v + m \cdot a \] \hspace{1cm} (4.3.5)

Die *Kraft* entspricht also einer Impulsänderung.

Die Einheit der *Kraft*: 1 Newton = 1 N = 1 m kg s\(^{-2}\)

Bei einer Bewegung ohne äußere *Kraft* gilt:

\[F = 0 = \frac{dp}{dt} \Rightarrow p = \text{const} \] \hspace{1cm} (4.3.6)

Ein konstanter *Impuls* heisst, dass entweder die *Geschwindigkeit* \(v \) mit abnehmender *Masse* zunimmt, oder, im Spezialfall dass \(m \) konstant ist, dass die *Geschwindigkeit* konstant ist (Trägheitsgesetz)

\[m = \text{const} \Rightarrow a = \frac{dv}{dt} = 0 \] \hspace{1cm} (4.3.7)

Wenn die *Kraft* null ist, also \(\dot{p} = 0 \) oder \(p = \text{konstant} \) und gleichzeitig noch \(m = \text{konstant} \) ist, wird dieses System *Inertialsystem* genannt. Diese Konsequenz aus dem Grundgesetz der Dynamik wird oft auch 1. Newtonsches Gesetz genannt.
4.3.4. Integralform des Kraftgesetzes

Für einfache Probleme sind Differentialgleichungen gut. Bei komplizierteren Problemen und bei numerischen Verfahren sind Integrale aber viel geeigneter.

Frage: ein Ball fällt auf den Boden

\[
\frac{dp}{dt} = F \quad \text{aus} \quad dp = Fdt \quad \text{folgt} \quad \int_{p_1}^{p_2} dp = \int_{t_1}^{t_2} Fdt = p_2 - p_1 = p(t_2) - p(t_1) \quad (4.3.8)
\]

Die Größe

\[
p(t_2) - p(t_1) = \int_{t_1}^{t_2} Fdt \quad (4.3.9)
\]

heisst Kraftstoss. Der Kraftstoss kann zur Beschreibung rascher Vorgänge dienen. Beispiel: ein Ball trifft mit der Geschwindigkeit \(v_0\) auf dem Boden auf. Er berührt den Boden während der Aufschlagzeit \(\tau\).

\[
-\sqrt{\frac{F_0}{A}} = -\frac{\tau}{2} \quad \text{und} \quad \sqrt{\frac{F_0}{A}} = \frac{\tau}{2}
\]

Abbildung 4.23.: Fallender Ball springt vom Boden hoch.

Wir nehmen an, dass während dem Aufschlag die Kraft sich wie \(F(t) = -At^2 + F_0\)
verhält. Aus \(F(t) = 0 \) kann man die halbe Kontaktzeit \(\tau \) bestimmen

\[
\tau = \frac{1}{2} \sqrt{\frac{F_0}{A}}
\] (4.3.10)

Also ist

\[
\Delta p = 2mv_0 = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} (-At^2 + F_0) \, dt
\]

\[
= \left. \frac{1}{3} At^3 + F_0t \right|_{-\frac{\tau}{2}}^{\frac{\tau}{2}}
\]

\[
= F_0\tau - \frac{1}{12} A\tau^3
\]

\[
= F_0\tau - \frac{4}{12} F_0\tau^3
\]

\[
= \frac{2}{3} F_0\tau
\]

Wir erhalten

\[
F_0 = \frac{3mv_0}{\tau}
\] (4.3.12)

das heisst, die Kraft wird desto grösser, je kürzer die Kontaktzeit ist. Eine Anwen-
dung ist die Knautschzone bei Autos: je länger die Kontaktzeit ist, das heisst, je
mehr die Kühlerhaube deformiert werden kann, desto kleiner sind die Kräfte auf
die Insassen.

4.3.5. Reibung

Beobachtung: jegliche Bewegung kommt zum Stillstand.

\[
\begin{align*}
\text{Abbildung 4.25.: Reibung}
\end{align*}
\]

Versuch zur Vorlesung:

Reibung (Versuchskarte M-170)

Die Gewichtskraft auf den Klotz ist \(F_g = m \cdot g \).
Die Kraft zum Starten der Bewegung ist

\[
F_{HR} = \mu_{HR} F_g
\] (4.3.13)
Dabei ist F_{HR} die Haftreibungskraft und μ_{HR} der Haftreibungskoeffizient. Um m in gleichförmiger Bewegung zu halten brauchen wir die Kraft

$$F_{GR} = \mu_{GR} F_g$$ \hspace{1cm} (4.3.14)

Hier ist μ_{GR} der Gleitreibungskoeffizient und F_{GR} die Gleitreibungskraft. Es gilt

$$\mu_{GR} \leq \mu_{HR}$$ \hspace{1cm} (4.3.15)

Woher rührt diese Gleitreibung? Guillaume Amontons (1663-1705) postulierte zwei Ursachen:

- Den Abrieb der Oberflächen
- Bei verschleißfreier Reibung wird Energie dissipiert, indem die beiden Körper durch die schrägen Kontaktflächen gegen die äussere Andrucksksraft getrennt werden. Die potentielle Energie wird beim Zurückfallen dissipiert. Amontons zweites Reibungsgesetz liefert $F_{GR} = \mu_{GR} F_g$.

Modernere Bilder beschreiben die Reibung als ein Abscheren von gestauchten Mikrokontakten. Damit können zwei Phänomene erklärt werden:

- Die Reibung ist unabhängig von der scheinbaren Kontaktfläche (dies ist die makroskopisch gemessene Kontaktfläche).
- Poliert man die Grenzflächen, nimmt die Reibung zu.

Die wahre Kontaktfläche ist immer kleiner als die scheinbare. Durch Polieren erhöht man die wahre Kontaktfläche. Erhöht man die Auflagekraft, werden die mikroskopischen Kontakte mehr zusammengedrückt. Ihre wahre Kontaktfläche ist proportional zur Auflagekraft.

$$A_{wahr} = A_{schein} \frac{F_g}{F_0}$$ \hspace{1cm} (4.3.16)

wobei F_0 eine in diesem Model nicht weiter erklärte Konstante ist.

Die Reibungskraft hängt dann mit der Scherspannung, die notwendig ist zum Lösen des Kontakts mit der Unterlage, τ wie folgt zusammen
\[
F_{GR} = A_{\text{wahr}} \cdot \tau \quad \text{(4.3.17)}
\]
\[
= A_{\text{schein}} \frac{F_g}{F_0} \cdot \tau
= \frac{A_{\text{schein}} \tau}{F_0} \cdot F_g
= \mu_{GR} F_g
\]

mit
\[
\mu_{GR} = \frac{A_{\text{schein}} \tau}{F_0} \quad \text{(4.3.18)}
\]

4.3.6. Strömungsgeschwindigkeit als Beispiel für ein nichtlineares Kraftgesetz *

Aus Beobachtungen hat man das empirische Gesetz für die Strömungsgeschwindigkeit abgeleitet.

\[
F = -b \cdot v^n \quad \text{(4.3.19)}
\]

\(b\) und \(n\) sind Konstanten, \(b\) hängt von der Form des bewegten Körpers ab (Widerstandsbeiwert). Die Einheit von \(b\) ist \(N \cdot \left(\frac{\text{m}}{\text{s}}\right)^n\). Das Bewegungsgesetz für einen frei fallenden Körper mit konstanter \textit{Masse} lautet (die Gravitationskraft gibt es ja auch!)

\[
F = mg - bv^n = m \cdot a \quad \text{(4.3.20)}
\]

Die Endgeschwindigkeit \(v_e\) wird erreicht, wenn \(a = 0\) ist, also

\[
mg = bv_e^n
\]

\[
v_e = \left(\frac{mg}{b}\right)^\frac{1}{n} \quad \text{(4.3.21)}
\]

Meist ist \(n \approx 2\).

Ein Mensch (100kg) im freien Fall hat etwa die Endgeschwindigkeit \(v_e = 60\text{m/s}\). Sein Luftwiderstandsbeiwert (Exponent \(n = 2\)) ist also

\[
\Rightarrow b = \frac{100\text{kg} \cdot 10 \text{m}}{(60 \text{m/s})^2} = \frac{1000 \text{m}^2}{3600 \text{m}^2 \text{s}^2} = 0,28 \frac{\text{kg}}{\text{m}}
\]

Wie gross muss der Luftwiderstandsbeiwert eines Fallschirms sein, damit der Mensch überlebt?
4.3.7. Kräfte in beschleunigten Bezugssystemen *

Wir betrachten ein linear beschleunigtes Bezugssystem.

Abb. 4.27.: Linear beschleunigtes Bezugssystem

Durch die Beschleunigung zeigt die resultierende Kraft (Schwerkraft und Trägheitskraft) schräg nach unten. Dies kann mit einem Glas Wasser (halbvoll) beobachtet werden.

Wir betrachten ein rotierendes Bezugssystem.

Abb. 4.28.: Rotierendes Bezugssystem

F_C ist die Corioliskraft.

Ein mitrotierender Beobachter wird die Coriolis-Kraft beobachten.

Beispiele für die Corioliskraft sind Hoch- und Tiefdruckgebiete.

Die Badewannenwirbel werden durch ein Aufschaukeln von Störungen, aber nicht durch die Corioliskraft erzeugt.

4.4. Teilchensysteme

Wir betrachten ein System von Teilchen
Die folgenden Grössen benötigen wir

- Äussere Kräfte F_{ai}
- Innere Kräfte F_{ij}
- Impulse p_i im Laborsystem gemessen

Der Gesamtimpuls ist

\[p = \sum_{i=1}^{n} p_i \]

(4.4.1)

Aus dem Impulssatz folgt

\[\frac{d}{dt} p = \frac{d}{dt} \sum_{i=1}^{n} p_i = F_a = \sum_{i=1}^{n} F_{ai} \]

(4.4.2)

Beweis

F_{ai} äussere Kraft auf m
F_{ij} innere Kraft von m_i auf m_j
$F_{ij} = -F_{ji}$ Reaktionsprinzip

\[\dot{p} = \sum_{i=1}^{n} \dot{p}_i = \sum_{i=1}^{n} (F_{ai} + F_{2i} + F_{3i} + \ldots) \]

\[= \left(\sum_{i=1}^{n} F_{ai} \right) + F_{12} + F_{21} + F_{13} + F_{31} + \ldots \]

\[= \sum_{i=1}^{n} F_{ai} = F_a \]

4.4.1. Impulserhaltung

Wenn keine äusseren Kräfte wirken gilt:

\[p = \sum_{i=1}^{n} p_i = \sum_{i=1}^{n} m_i v_i = \text{konstant} \]

(4.4.3)
4.4.2. Massenmittelpunkt

Definition des Ortsvektors des Massenmittelpunktes

\[r_s = \frac{\sum_{i=1}^{n} m_i r_i}{\sum_{i=1}^{n} m_i} \quad (4.4.4) \]

Der Ortsvektor des Massenmittelpunktes ist der mit der Masse gewichtete Mittelwert der Ortsvektoren der einzelnen Massepunkte. Aus Gleichung (4.4.4) bekommt man

\[r_s \cdot \left(\sum_{i=1}^{n} m_i \right) = \sum_{i=1}^{n} m_i r_i \quad (4.4.5) \]

Wir ersetzen die Summe durch das Integral und erhalten

Für eine kontinuierliche Massenverteilung gilt:

\[r_s \int dm = r_s \int \rho(r)dV = \int r dm = \int r \cdot \rho(r) dV \quad (4.4.6) \]

oder

\[r_s = \frac{\int r dm}{\int dm} = \frac{\int r \rho(r) dV}{\int \rho(r) dV} \quad (4.4.7) \]

In kartesischen Koordinaten gilt

\[r_s = \left(\begin{array}{c} x_s \\ y_s \\ z_s \end{array} \right) \quad (4.4.8) \]

mit

\[x_s = \frac{\sum m_i x_i}{\sum m_i} \quad (4.4.9) \]
\[y_s = \frac{\sum m_i y_i}{\sum m_i} \quad (4.4.10) \]
\[z_s = \frac{\sum m_i z_i}{\sum m_i} \quad (4.4.11) \]

4.4.2.1. Impuls des Massenmittelpunktes

Versuch zur Vorlesung:
Massenmittelpunktsbewegung (Versuchskarte M-047)

Versuch zur Vorlesung:
Massenmittelpunktsbewegung (Versuchskarte M-065)
Mit $m = \sum m_i$ gilt:

$$p = m \mathbf{v}_s = \frac{d}{dt} (m \mathbf{r}_s) \quad (4.4.12)$$

Beweis

Wir verwenden ein lokales *Koordinatensystem*. Weiter sei \mathbf{R}_i der Ortsvektor des Punktes i im mitbewegten Koordinatensystem.

$$\mathbf{r}_i = \mathbf{r}_s + \mathbf{R}_i$$

$$\sum m_i \mathbf{R}_i = \sum m_i \mathbf{r}_i - m \mathbf{r}_s = \sum m_i \mathbf{r}_i - \left(\sum m_i \right) \left(\frac{\sum m_i \mathbf{r}_i}{\sum m_i} \right) = 0$$

$$\Rightarrow p = \sum m_i \mathbf{v}_i = \frac{d}{dt} \sum m_i (\mathbf{R}_i + \mathbf{r}_s) = \frac{d}{dt} \sum m_i (\mathbf{R}_i) + \frac{d}{dt} (m \mathbf{r}_s) = m \mathbf{v}_s$$

Aus

$$\sum m_i \mathbf{v}_i = m \mathbf{v}_s = \left(\sum m_i \right) \mathbf{v}_s$$

bekommt man für die Geschwindigkeit des *Massenmittelpunktes*

$$\mathbf{v}_s = \frac{\sum m_i \mathbf{v}_i}{\sum m_i} \quad (4.4.13)$$

Die Massenmittelpunktsgeschwindigkeit \mathbf{v}_s ist also das mit den Massen gewichtete Mittel der einzelnen Geschwindigkeiten.

4.4.2.2. Beschleunigung des Massenmittelpunktes

Bei konstanten Massen $m_i = const$ gilt für die Beschleunigung des Massenmittelpunktes

$$m \mathbf{a}_s = m \mathbf{\dot{v}}_s = \sum \mathbf{F}_{ai} = \frac{d}{dt} \mathbf{p} \quad (4.4.14)$$

Wenn keine äusseren Kräfte wirken folgt aus

$$\mathbf{F}_a = \sum \mathbf{F}_{ai} = 0$$
4.4.2.3. Potentielle Energie einer Massenverteilung im Erdgravitationsfeld

Wir wollen nun die potentielle Energie einer Massenverteilung im Erdgravitationsfeld berechnen.

\[\mathbf{p} = \text{konstant} \quad (4.4.15) \]

\[\mathbf{v}_s = \frac{d}{dt} \mathbf{r}_s = \text{konstant} \quad (4.4.16) \]

Sei \(\mathbf{g} \) der Feldvektor des Gravitationsfeldes der Erde

Für die Koordinate \(z \) gilt

\[m z_s = \sum m_i z_i \quad (4.4.17) \]

mit \(m = \sum m_i \) der Gesamtmasse. Die potentielle Energie ist dann

\[E_{pot} = \sum_i m_i g \ z_i = g \sum m_i z_i = g \cdot m \ z_s \quad (4.4.18) \]

- \(z_s \) wird minimal bei jeder Aufhängung eines Systems von Massepunkten an einer punktförmigen Aufhängung

- Wenn das System von Massenpunkten in \(z_s \) unterstützt wird, ist es im indifferenten Gleichgewicht.
4.4.3. Massenmittelpunktssystem (2 Massen)

Abbildung 4.32.: Definition der Grössen beim Zweikörperproblem.

Wir wollen die Bewegung der beiden Massen in einem mit dem Massenmittelpunkt mitbewegten Bezugssystem berechnen.

Seien die u_i die Geschwindigkeiten im Massenmittelpunktssystem

$$u_1 = v_1 - v_s$$
$$u_2 = v_2 - v_s$$

Im Laborsystem gilt nach Gleichung (4.4.13):

$$v_s = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \quad (4.4.19)$$

Die Geschwindigkeiten im Massenmittelpunktssystem sind

$$u_1 = v_1 - v_s = \frac{v_1 (m_1 + m_2) - m_1 v_1 - m_2 v_2}{m_1 + m_2} = \frac{m_2 (v_1 - v_2)}{m_1 + m_2}$$
$$u_2 = v_2 - v_s = \frac{m_1 (v_2 - v_1)}{m_1 + m_2} \quad (4.4.20)$$

Beispiel:

Kollision zweier Massen

$$v_1 = 50 \text{ m/s} \quad v_2 = -30 \text{ m/s}$$
$$m_1 = 3000 \text{ kg} \quad m_2 = 1000 \text{ kg}$$

Abbildung 4.33.: Kollision zweier Massenpunkte

Die Massenmittelpunktsgeschwindigkeit ist

$$v_s = \frac{50 \cdot 3000 - 30 \cdot 1000 \frac{m}{s}}{4000} = 30 \frac{m}{s} \quad (4.4.21)$$
Bei einer Kollision bleibt die Massenmittelpunktgeschwindigkeit v_s erhalten. Die Relativgeschwindigkeiten im Massenmittelpunktssystem sind

\begin{align*}
 u_1 &= \frac{1000 (50 - / - 30)}{4000} = 20 \text{ m/s} \\
 u_2 &= \frac{3000 (-30 - 50)}{4000} = -60 \text{ m/s}
\end{align*}

(4.4.22)

Im Massenmittelpunktssystem hat die leichtere Masse die größere Geschwindigkeit.

4.4.4. Kinetische Energie

Die kinetische Energie eines Systems von Massen ist durch

\[
 E_{\text{kin}} = \sum \frac{1}{2} m_i \mathbf{v}_i \cdot \mathbf{v}_i
\]

\[
 = \sum \frac{1}{2} m_i (v_s + u_i) \cdot (v_s + u_i)
\]

\[
 = \sum \frac{1}{2} m_i [v_s^2 + v_s u_i + u_i v_s + u_i^2]
\]

\[
 = \frac{1}{2} v_s^2 \sum m_i + \frac{1}{2} v_s \sum m_i u_i + \frac{1}{2} \sum m_i u_i^2
\]

\[
 = \frac{1}{2} m v_s^2 + v_s \sum \underbrace{m_i u_i} + \sum \frac{1}{2} m_i u_i^2
\]

Nach Definition des Massenmittelpunktes $= 0$

\[
 = \frac{1}{2} m v_s^2 + \frac{1}{2} \sum m_i u_i^2 = E_{\text{kin}} + E_{\text{kin, inner}}
\]

(4.4.23)

Da die Massenmittelpunktsgeschwindigkeit erhalten bleibt, ist nur $E_{\text{kin, inner}}$ relevant für Kollisionen \Rightarrow Kollisionen mit gegenläufigen Bahnen beim Large Hadron Collider (LHC).

Bei inelastischen Stössen kann nur die Energie $E_{\text{kin, inner}}$ in Wärme oder Deformation umgewandelt werden.

4.5. Stösse

Versuch zur Vorlesung:

Massenmittelpunktssbewegung (Versuchskarte M-139)

Stösse sind kurzzeitige Wechselwirkungen (WW) zwischen zwei Körpern.
4.5.1. Stösse auf einer Geraden, Berechnung im Massenmittelpunktssystem

Die Massenmittelpunktsgeschwindigkeit ist nach Gleichung (4.4.13) durch

\[v_s = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \]

gegeben. Da der Gesamtimpuls gleich dem Massenmittelpunktimpuls ist und erhalten wird, ändert sich die Massenmittelpunktsgeschwindigkeit \(v_s \) bei einem beliebigen Stoss nicht. Die Massen \(m_1 \) und \(m_2 \) haben im Massenmittelpunktssystem die Geschwindigkeiten (siehe Gleichung (4.4.20))

\[u_1 = v_1 - v_s = \frac{m_2 (v_1 - v_2)}{m_1 + m_2} \]
\[u_2 = v_2 - v_s = \frac{m_1 (v_2 - v_1)}{m_1 + m_2} \]

Entsprechend sind die Massenmittelpunktimpulse

\[p_{s,1} = m_1 u_1 = \frac{m_1 m_2 (v_1 - v_2)}{m_1 + m_2} \]
\[p_{s,2} = m_2 u_2 = \frac{m_2 m_1 (v_2 - v_1)}{m_1 + m_2} = -p_{s,1} \]

Bei beliebigen Stössen mit zwei Massen haben die beiden Massen im Massenmittelpunktssystem immer entgegengesetzt gleich grosse Impulse, sowohl vor dem Stoss wie nachher. Diese Eigenschaft erleichtert Berechnungen wesentlich!

Die kinetische Energie des Massenmittelpunktes ist

\[E_{\text{kin},s} = \frac{1}{2} (m_1 + m_2) v_s^2 \]
\[= \frac{1}{2} (m_1 + m_2) \left(\frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \right)^2 \]
\[= \frac{1}{2} \frac{(m_1 v_1 + m_2 v_2)^2}{m_1 + m_2} \]

Abbildung 4.34.: Stoss zweier Massen
Die kinetischen Energien der beiden Massen im Massenmittelpunktssystem sind

\[E_{\text{kin},s,1} = \frac{1}{2} m_1 u_1^2 = \frac{1}{2} m_1 \left(\frac{m_2 (v_1 - v_2)}{m_1 + m_2} \right)^2 \]
\[= \frac{m_1 m_2}{2 (m_1 + m_2)^2} m_2 (v_1 - v_2)^2 \]

\[E_{\text{kin},s,2} = \frac{1}{2} m_2 u_2^2 = \frac{1}{2} m_2 \left(\frac{m_1 (v_2 - v_1)}{m_1 + m_2} \right)^2 \]
\[= \frac{m_1 m_2}{2 (m_1 + m_2)^2} m_1 (v_2 - v_1)^2 \]

Die Summe der drei kinetischen Energien ist

\[E_{\text{kin,tot}} = E_{\text{kin},s} + E_{\text{kin},s,1} + E_{\text{kin},s,2} \]
\[= \frac{1}{2 (m_1 + m_2)^2} \cdot \left[(m_1 + m_2) (m_1 v_1 + m_2 v_2)^2 + m_1 m_2 (v_1 - v_2)^2 + m_1^2 m_2 (v_1 - v_2)^2 \right] \]
\[= \frac{1}{2 (m_1 + m_2)} \left[(m_1 v_1 + m_2 v_2)^2 + m_1 m_2 (v_1 - v_2)^2 \right] \]
\[= \frac{1}{2 (m_1 + m_2)} \left[m_1^2 v_1^2 + m_2^2 v_2^2 + 2 m_1 m_2 v_1 v_2 + m_1 m_2 (v_1^2 - 2 v_1 v_2 + v_2^2) \right] \]
\[= \frac{1}{2 (m_1 + m_2)} \left[m_1^2 v_1^2 + m_2^2 v_2^2 + m_1 m_2 v_1^2 + m_1 m_2 v_2^2 \right] \]
\[= \frac{1}{2 (m_1 + m_2)} \left[m_1 (m_1 + m_2) v_1^2 + m_2 (m_1 + m_2) v_2^2 \right] \]
\[= \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \]

Die kinetische Energie kann also in eine kinetische Energie der Massenmittelpunktsgewegung und in die kinetische Energie der Teilchen im Massenmittelpunktssystem aufgeteilt werden.

Die kinetische Energie der Massenmittelpunktsgewegung wird bei jedem Stoss erhalten. Die Summe der kinetischen Energie der Teilchen im Massenmittelpunktssystem wird bei elastischen Stössen erhalten und bei plastischen Stössen vollständig in Deformation oder Wärme umgewandelt.

Bei teilelastischen Stössen wird ein Teil der Energie umgewandelt. Der Faktor \(0 \leq \alpha \leq 1\) gibt an, welcher Bruchteil der Summe der kinetischen Energien im Massenmittelpunktssystem umgewandelt wird. \(\alpha = 0\) bedeutet einen elastischen Stoss, \(\alpha = 1\) einen vollständig plastischen Stoss. Da die Impulse im Massenmittelpunktssystem entgegengesetzt gleich sind, werden die Massenmittelpunktgeschwindigkeiten mit dem Faktor \(\sqrt{1 - \alpha}\) multipliziert.
Der Rechenaufwand zur Behandlung von Stössen und insbesondere von teilelastischen Stössen im Massenmittelpunktssystem ist viel geringer, als wenn man im Laborsystem rechnet.

Da bei einem elastischen Stoss im Massenmittelpunktssystem sich die Impulse und, da die Massen erhalten bleiben, die Geschwindigkeiten ihr Vorzeichen wechseln, ist die Relativgeschwindigkeit nach dem Stoss gleich gross wie vorher. Wir haben also

\[v_1 = u_1 + v_s \]
\[v_2 = u_2 + v_s \]

Nach dem Stoss haben wir

\[v'_1 = -u_1 + v_s \]
\[v'_2 = -u_2 + v_s \]

Das bedeutet, dass bei einer Frontalkollision von einem Auto \(v_1 = 36 \text{km/h} = 10 \text{m/s} \) mit einem Fussgänger \(v_2 = 3.6 \text{km/h} = 1 \text{m/s} \) die Relativgeschwindigkeit vorher \(v_1 - v_2 = 9 \text{m/s} \) gleich dem negativen der Relativgeschwindigkeit nach dem Stoss ist. Da das Auto aber (siehe unten) nur unwesentlich abgebremst wird, fliegt der Fussgänger nach dem Stoss mit \(v'_2 = 19 \text{m/s} = 68.4 \text{km/h} \) durch die Gegend.

Die Grösse \(\mu = \frac{m_1 m_2}{m_1 + m_2} \) heisst auch die reduzierte Masse. Mit ihr können Zweikörper-Probleme im Massenmittelpunktssystem einfacher gelöst werden.

4.5.2. Stösse in der Ebene

Versuch zur Vorlesung:
Nicht-zentraler Stoss (Versuchskarte M-039)

Als Annäherung an den dreidimensionalen Fall betrachten wir den elastischen Stoss einer bewegten Punktmassen \(m_1 \) auf eine ruhende Punktmasse \(m_2 \) in der Ebene. Jeder Stoss im Raum mit zwei Körpern kann auf den ebenen Fall zurückgeführt werden (warum?).
Annahmen

\[v_2 = 0 \]
\[m_1 = m_2 = m \] (4.5.1)

Impulssatz:

\[m_1 v_1 = m_1 v_1' + m_2 v_2' \]
\[v_1 = v_1' + v_2' \] (4.5.2)

Energiesatz:

\[\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v_1'^2 + \frac{1}{2} m_2 v_2'^2 \]
\[v_1^2 = v_1'^2 + v_2'^2 \] (4.5.3)

Zusammengesetzt erhalten wir

\[(v_1' + v_2')^2 = v_1'^2 + 2v_1'v_2' + v_2'^2 \]
\[= v_1'^2 + v_2'^2 \] (4.5.4)

oder

\[v_1'v_2' = 0 \] (4.5.5)

Da das Skalarprodukt zweier Vektoren null ist, ist der Zwischenwinkel bei jedem elastischen ebenen Stoss (und damit bei jedem elastischen Stoss) gleicher Massen

\[\alpha = \frac{\pi}{2} \] (4.5.6)

4.5.2.1. Ebene Stösse bei ungleichen Massen

Im Falle der ungleichen Massen setzen wir \(m_2 = a \cdot m_1 = a \cdot m \) mit \(a \in [0, \infty] \). Impulssatz Gleichung (4.5.2) und Energiesatz Gleichung (4.5.2) lauten dann
\[m_1 v_1 = m_1 v'_1 + m_2 v'_2 \quad \Rightarrow v_1 = v'_1 + a v'_2 \quad (4.5.7) \]
\[\frac{m_1}{2} v_1^2 = \frac{m_1}{2} v'_1^2 + \frac{m_2}{2} v'_2^2 \quad \Rightarrow v_1^2 = v'_1^2 + a v'_2^2 \quad (4.5.8) \]

Wir quadrieren Gleichung (4.5.7) und subtrahieren von Gleichung (4.5.8).

\[v_1^2 - v'_1^2 = 0 = v'_1^2 + a v'_2^2 - \left(v'_1^2 + 2 a v'_1 v'_2 + a^2 v'_2^2 \right) \]
\[0 = a v_2^2 - 2 a v'_1 v'_2 + a^2 v'_2^2 \]
\[v'_1 v'_2 = |v'_1| |v'_2| \cos (\alpha) = \frac{1 - a}{2} v'_2^2 \quad (4.5.9) \]

Mit \(\alpha = \angle v'_1, v'_2 \), \(a \) ist durch das Massenverhältnis gegeben. \(a = 1 \) führt auf das Resultat in Gleichung (4.5.6). Bei gegebenem \(a \) hängt der Zwischenwinkel von \(v'_1 \) und \(v'_2 \) ab, also von der Art des Stosses.

4.5.3. Stösse im Raum

Wir betrachten Stösse, bei denen der zweite Stosspartner ruht. Die Geschwindigkeit des ersten Stosspartners (\(m_1 \)) definiert eine Richtung. Der Abstand des Strahls definiert durch \(v_1 \) von der Masse \(m_2 \) wird mit \(b \) (Stossparameter) bezeichnet.

![Abbildung 4.36.: Definition des Stossparameters b](image1)

nach dem Stoss:

![Abbildung 4.37.: Situation nach einem ebenen Stoss](image2)

Unbekannte sind \(v'_1 \), \(v'_2 \), \(\theta_1 \) und \(\theta_2 \).
Impulserhaltung: in der x-Richtung

$$m_1 v_1 = m_1 v'_1 \cos \theta_1 + m_2 v'_2 \cos \theta_2 \quad (4.5.10)$$

Impulserhaltung in der y-Richtung

$$0 = m_1 v'_1 \sin \theta_1 - m_2 v'_2 \sin \theta_2 \quad (4.5.11)$$

Energieerhaltung

$$\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v'_1^2 + \frac{1}{2} m_2 v'_2^2 \quad (4.5.12)$$

Eine 4. Relation ist durch den Stossparameter b und die Physik der Wechselwirkung gegeben.

Experimentelle Stossverteilungen werden mit b parametriert.

4.5.4. Raketen oder Tintenfische

Grundlage: 2. Newton’sches Gesetz

$$F = \frac{dp}{dt} \quad (4.5.13)$$

4.5.4.1. Rückstoss einer Armbrust

Versuch zur Vorlesung:

Russische Kanone: Impuls- und Drehimpulserhaltung (Versuchskarte M-154)

Länge: d (für Beschleunigung Beschleunigungsstrecke)
Masse: m (Pfeil)
Endgeschwindigkeit: v_0
Antriebszeit: t_0
Rückstosskraft: F_R

Wir erhalten die Betragsgleichung

$$F_R = \frac{m}{t_0} v_0 = \frac{m}{2} \frac{v_0^2}{d} \quad (4.5.14)$$
4.5.4.2. Schub

Versuch zur Vorlesung:
Rakete (Versuchskarte M-147)

Die Masse des wegfliegenden Gases trägt einen mit der Zeit grösser werdenden Impuls. Dieser Impulsänderung entspricht eine äussere Kraft \(F_a \) und einer Schubkraft \(F_s = -F_a \). Wir beachten weiter, dass wir Vektoren mit den dem Koordinatensystem angepassten Komponenten verwenden müssen. Hier hat also \(v_{Gas} \) eine negative \(x \)-Komponente.

\[
F_s = \frac{dm}{dt} v_{Gas} = - \left| \frac{dm}{dt} \right| v_{Gas} \tag{4.5.17}
\]

wobei mit \(v_{Gas} \) die Relativgeschwindigkeit zur Düse gemeint ist.

Beweis mit Newton

\[
F_a = -F_s = \frac{dp}{dt} = \frac{d}{dt} (m_{Gas}(t)) v_{Gas} = -\frac{dm(t)}{dt} \cdot v_{Gas} \tag{4.5.18}
\]
4.5.4.3. Raketengleichung

\[m(t) \frac{dv(t)}{dt} = -\left| \frac{dm(t)}{dt} \right| \cdot v_{\text{Gas}} + F \] (4.5.19)

Beweis:

\[\frac{dm}{dt} m_{\text{Gas}} = -\frac{d}{dt} m(t) \] (4.5.20)

Wenn ein Massenelement \(dm \) die Düse verlässt, hat es in diesem Augenblick die Geschwindigkeit \(v(t) + v_{\text{Gas}} \). Es trägt also den Impuls \(dm \cdot (v(t) + v_{\text{Gas}}) \) weg. Auch hier verwenden wir die Vektoren mit den durch das Koordinatensystem gegebenen richtigen Vorzeichen. Infinitesimal gilt

\[F(t) \, dt + dp_{\text{Gas}}(t) = F(t) \, dt + dm(t) \cdot (v(t) + v_{\text{Gas}}) = dp_{\text{Rakete}}(t) \]

und damit

\[
F(t) = \frac{dp_{\text{Rakete}}(t)}{dt} - \frac{dm(t)}{dt} (v(t) + v_{\text{Gas}})
= \left\{ m(t) \frac{dv(t)}{dt} + \frac{dm(t)}{dt} v(t) \right\} - \left\{ \frac{dm(t)}{dt} [v(t) + v_{\text{Gas}}] \right\}
= m(t) \frac{dv(t)}{dt} - \frac{dm(t)}{dt} v_{\text{Gas}} \quad (4.5.21)
\]

Bewegung der kräftefreien Rakete:

\[m(t) \frac{dv(t)}{dt} = \frac{dm(t)}{dt} \cdot v_{\text{Gas}} \] (4.5.22)

\[dv(t) = \frac{dm(t)}{m(t)} \cdot v_{\text{Gas}} \] (4.5.23)

\[
\int_{0}^{t_0} dv(t) = v_{\text{Gas}} \int_{0}^{t_0} \frac{dm(t)}{m(t)}
= v(t_0) - v(0)
= v_{\text{Gas}} \cdot (\ln(m(t_0)) - \ln m_0(0)) \quad (4.5.24)
\]
Also haben wir
\[\mathbf{v}(t) = \mathbf{v}_0 - \mathbf{v}_\text{Gas} \ln \frac{m(0)}{m(t)} \]
(4.5.25)
das heißt, die Endgeschwindigkeit einer Rakete kann man steigern, indem man die Ausströmgeschwindigkeit des Gases \(\mathbf{v}_\text{Gas} \) erhöht, oder indem man die Endmasse \(m(t) \) im Vergleich zur Anfangsmasse \(m(0) \) möglichst klein macht. Die zweite Lösung ergibt aber strukturelle Probleme.

4.6. Zentralbewegung

4.6.1. Winkelgeschwindigkeit

\[d\theta = \frac{v(r)}{r} dt \]
(4.6.1)
\[d\theta = \frac{ds}{r} \]
(4.6.2)
\[= \frac{vdt}{r} \]
(4.6.3)

Der Umfang (Weg für 1 Umdrehung) im Bogenmass ist \(2\pi \)
Def: \(\frac{d\theta}{dt} = \omega \): Winkelgeschwindigkeit

4.6.2. Winkelbeschleunigung

\[\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} = \ddot{\theta} \]
(4.6.4)
Bemerkung: Es gilt

\[
\omega(t) = \omega_0 + \alpha t \quad (4.6.5)
\]
\[
\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \quad (4.6.6)
\]
\[
\omega = \sqrt{2 \alpha \theta} \quad (4.6.7)
\]

wenn \(\omega(0) = 0; \theta(0) = 0 \) und \(\alpha = \text{const.} \).

Die Gleichungen für die Zentralbewegung sind analog zu denen der Kinematik in einer Dimension.

4.6.3. Vektorcharakter der Drehbewegung

Eine Drehbewegung ist durch die Richtung ihrer Drehachse definiert.

Abbildung 4.42.: Definition des Winkelgeschwindigkeitsvektors \(\omega \)

Definition: \(\omega \) zeigt in Richtung des Daumens der rechten Hand, wenn die Finger in die Drehrichtung zeigen. „Rechte Handregel“

Abbildung 4.43.: Transformation eines Drehvektors an einem Spiegel
Der gespiegelte Drehvektor entspricht dem Original: Diese Art Vektoren heissen „Axialvektoren“.

Drehvektoren (auch axiale Vektoren genannt) transformieren anders als Ortsvektoren.

4.6.4. Drehmoment

Versuch zur Vorlesung:
Drehmomentenscheibe (Versuchskarte M-071)

Definition:

\[M = r_0 \times F \]

Abbildung 4.44.: Definition des Drehmomentes

heisst mechanisches *Drehmoment*.

Wir betrachten das Drehmoment für eine Zentralbewegung bei einer konstanten punktförmigen Masse. Dann ist

\[M = r \cdot F \]

und

\[F = m \dot{v} = mr \dot{\omega} \]

oder

\[M = r \cdot mr \dot{\omega} = \left(mr^2 \right) \dot{\omega} = I \dot{\omega} \]

wobei \(I = mr^2 \) das *Trägheitsmoment* eines Massenpunktes \(m \) im Abstand \(r \) von der Drehachse ist.
Beispiel: Anwendung Hebelgesetz

Abbildung 4.45.: Hebelgesetz

Im Gleichgewicht ist

\[0 = M = M_1 + M_2 = r_{01} \times F_1 + r_{02} \times F_2 \] \hspace{1cm} (4.6.9)

Abbildung 4.46.: Eindimensionale Formulierung des Hebelgesetzes

im eindimensionalen Falle gilt

\[0 = x_1 (-F_1) + (-x_2) (-F_2) \] \hspace{1cm} (4.6.10)

und

\[F_1 x_1 = F_2 x_2 \] \hspace{1cm} (4.6.11)
4.6.5. Drall, *Drehimpuls*

Versuch zur Vorlesung:
Drehimpulssatz (Versuchskarte M-063)

Abbildung 4.47.: Definition des Dralls oder des Drehimpulses.

\[
L_0 = r_{0m} \times p = r_{0m} \times mv
\] (4.6.12)

Drallsatz

\[
M_0 = \frac{d}{dt} L_0
\] (4.6.13)

Voraussetzung \(M_0\) und \(L_0\) beziehen sich auf das gleiche Zentrum 0

Beweis:

\[
\frac{d}{dt} L_0 = \frac{d}{dt} (r_{0m} \times p) = \frac{d}{dt} r_{0m} \times p + r_{0m} \times \frac{dp}{dt}
\] (4.6.14)

\[
= r_{0m} \times F_m = M_0
\] (4.6.15)

da \(\frac{d}{dt} r_{0m} = \nu\) ist.

Drehmoment von Zentralkräften

Definition: Wenn \(F \parallel r_{0m}\) dann ist \(M_0 = r_{0m} \times F = 0\)

Bei Zentralkräften ist: \(L_0\) = konstant, da \(M_0 = 0 = \frac{dL_0}{dt}\)
4.7. **Gravitation**

Unter *Gravitation* versteht man die gegenseitige *Anziehung* der Körper durch ihre Massen.

4.7.1. Die Keplerschen Gesetze

- Nikolaus Kopernikus (1473-1543) postuliert heliozentrisches System
- Tycho Brahe: (1546-1601) erste präzise Messungen
- Johannes Kepler (1571-1630) Interpretation und Gesetze

1. **Gesetz (1609)** Die Planeten bewegen sich auf Ellipsen mit der *Sonne* in einem Brennpunkt.

2. **Gesetz (1609)** Jeder Strahl von der *Sonne* zu den Planeten überstreicht in gleichen Zeiten gleiche Flächen

3. **Gesetz (1619)** Die Quadrate der Umlaufzeiten der Planeten verhalten sich wie die Kuben der grossen Halbachsen ihrer Bahnen um die *Sonne*.

Der Beweis des 2. Gesetzes geht wie folgt: Es gibt keine äusseren Kräfte, deshalb gibt es auch keine Drehmomente. Aus $M_0 = 0$ bekommt man: $L_0 = \text{const.}$

Abbildung 4.48.: 2. Keplersches Gesetz

Behauptung: Für die Fläche $A(t)$ gilt

$$ A(t) = \frac{L_0}{2m} \cdot t \quad (4.7.1) $$

Beweis:

$$ \frac{L_0}{2m} dt = \frac{1}{2} (r \times v) dt $$
$$ = \frac{1}{2} (r \times v dt) $$
$$ = \frac{1}{2} (r \times dr) = dA \quad (4.7.2) $$
Bemerkung: bei einer ebenen Bewegung ist immer

\[dr \perp L \] \hspace{1cm} (4.7.3)

\[r \perp L \] \hspace{1cm} (4.7.4)

d.h. das 3. Keplersche Gesetz entspricht der Drehimpulserhaltung

Versuch zur Vorlesung:
Planetenbewegung (Versuchskarte M-109)

4.7.2. Newtonsche Gravitationsgesetz

Wir betrachten das *dritte Keplersche Gesetz* für den Spezialfall einer Kreisbahn. Eine Masse \(m \) soll um eine zentrale Masse \(M \) kreisen. Eine Kreisbahn ist eine Ellipse, bei der die grosse und die kleine Halbachse gleich sind. Wir nennen die Grösse den Radius \(r \).

Das 2.Keplersche Gesetz lautet

\[r^3 = \frac{\theta}{T^2} = \text{const} \] \hspace{1cm} (4.7.5)

\(\theta \) ist eine zunächst unbekannte Konstante. Bei einer gekrümmten Bahn mit dem Krümmungsradius \(r \) muss immer eine physikalische Kraft existieren, deren Grösse durch die *Zentripetalkraft* gegeben ist.

\[F_z = m \frac{v^2}{r} = m \omega^2 r = m \frac{(2\pi)^2}{T^2} r \] \hspace{1cm} (4.7.6)

Wir haben \(v = \omega r \) und \(\omega = \frac{2\pi}{T} \) verwendet, wobei \(T \) die Umlaufszeit ist. Wenn wir Gleichung (4.7.5) und Gleichung (4.7.6) kombinieren, erhalten wir

\[F_z = 4\pi^2 mr \frac{1}{T^2} = 4\pi^2 mr \frac{\theta}{r^3} = \frac{(4\pi^2 \theta) m}{r^2} \] \hspace{1cm} (4.7.7)

Wie gesagt, zeigt die Zentripetalkraft \(F_z \) an, dass eine physikalisch begründete Kraft \(F_G \) existieren muss mit \(F_z = F_G \). Diese Kraft, von Newton die *Schwerkraft* oder die *Gravitation* genannt, hat die Eigenschaften

- Die Kraft ist proportional zu \(r^{-2} \), wobei \(r \) der Abstand der Masse \(m \) zur Zentralen Masse \(M \) ist.

- Für eine gerichtete Strecke von \(M \) zu \(m \) zeigt die Zentripetalkraft \(F_z \) entgegen der Richtung der Strecke.

- Die Kraft ist proportional zur Masse \(m \).

- Die Kraft ist proportional zu einer Konstante \(4\pi^2 \theta \), deren Grösse wiederum nur von der zentralen Masse \(M \) abhängen kann.
Zum letzten Punkt ist zu bemerken: bei einem Zweikörperproblem ist es unsere Wahl, ob wir \(m \) oder \(M \) als zentrale Masse anschauen. Die Gleichung für die Gravitationskraft muss also \(m \) und \(M \) gleich behandeln. Um dies zu berücksichtigen, hat Newton Gleichung (4.7.7) so geschrieben

\[
F_G = -G\frac{mM}{r^2}
\]

(4.7.8)

wobei \(4\pi^2 G = GM \) ist.

Das **dritte Keplersche Gesetz** lautet also

\[
\frac{r^3}{T^2} = \frac{GM}{4\pi^2}
\]

(4.7.9)

Die obigen Argumente gelten nur für *Kreisbahnen*. Ausgefeiltere mathematische Methoden aus der theoretischen Mechanik zeigen aber, dass Gleichung (4.7.9) auch gilt, wenn wir \(r \) durch die Länge der *grossen Halbachse* ersetzen.

Abbildung 4.49.: Newtonsches Gravitationsgesetz

Die Kraft der Masse 1 auf die Masse 2 ist \(F_{21} \), also

\[
F_{21} = -F_{12} = -Gm_1m_2\frac{r_{12}}{r_{12}^3}
\]

(4.7.10)

Betragsmässig:

\[
F_{12} = F_{21} = G\frac{m_1m_2}{r_{12}^2}
\]

(4.7.11)

Dabei ist \(G = 6.6742 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2} \) die Gravitationskonstante. Das Newtonsche Gravitationsgesetz definiert die schweren *Masse*, im Gegensatz zum 2. Newtonschen Gesetz der Bewegung (\(F = \frac{dp}{dt} \)), das die träge *Masse* definiert.

Versuch zur Vorlesung:
Gravitationswaage (Versuchskarte M-005)
Im Gravitationsgesetz nach Newton (Gleichung (4.7.10)) steht als unbekannte Konstante die Gravitationskonstante G. Aus den Keplerschen Gesetzen kann die Gültigkeit des Gravitationsgesetzes Gleichung (4.7.10) abgeleitet werden. Wenn man jedoch wissen will, wie schwer die zentrale Masse ist, muss G bekannt sein. Mit der Gravitationswaage nach Abbildung 4.50 kann diese im Labor gemessen werden. Zwei kleine identische Massen $m_1 = m_2$ sind im Abstand D an einem feinen Faden (Torsionswaage) aufgehängt. Die beiden grossen identischen Massen $M_1 = M_2$ sind auf einem äusseren beweglichen Halter montiert. Im Ruhezustand ist das Drehmoment auf dem Faden kompensiert durch das Drehmoment der Gravitationskräfte F_G. Non werden die grossen Massen M_i mit ihrem Gestell so gedreht, dass sie auf der anderen Seite der kleinen Massen m_i platziert sind. Die Gravitationskräfte sind nun F'_G und erzeugen ein dem Betrage nach gleich grosses, aber in die umgekehrte Drehrichtung zeigendes Drehmoment.

$$\Delta M_0 = 2[2D F_G] = 4DF_G$$

Dieses Drehmoment führt zu einer Winkelbeschleunigung $\alpha = M_0/I$, wobei I das Trägheitsmoment der beiden kleinen Massen m_i ist. Der Torsionswinkel φ ändert dann wie

$$\varphi(t) = \frac{1}{2}\alpha t^2$$

Der Torsionswinkel wird mit einem Lichtzeiger der Länge ℓ gemessen, der um $x(t) = 2\varphi(t)\ell$ ausgelenkt wird. Damit kann aus der Auslenkung $x(t)$ der Torsionswinkel $\varphi(t)$ über α das Drehmoment M_0 und damit F_G bestimmt werden. Da die Massen bekannt sind, folgt letztlich G.

Abbildung 4.50.: Gravitationswaage
4.7.2.1. **Gravitationsfeld** eines Massenpunktes

Testmasse m_0

\[m_0 \Rightarrow F(r) = -Gm_0 \frac{r}{r^3} m_0 \quad (4.7.12) \]

Feldvektor

\[g(r) = \frac{F(r)}{m_0} = -Gm_0 \frac{r}{r^3} \quad (4.7.13) \]

$g(r)$ ist der Feldvektor des Gravitationsfeldes. Seine Einheit ist $[g] = \frac{m}{s^2}$. Der Feldvektor des Gravitationsfeldes gibt die Stärke der Gravitation pro Einheitsmasse an. Mit dem Feldvektor kann also das Gravitationsfeld der Masse m charakterisiert werden, ohne dass eine zweite Masse spezifiziert werden muss, das heisst, $g(r)$ ist unabhängig von der Testmasse m_0.

4.7.2.1.1. g ist ein konservatives Vektorfeld: einfacher Beweis

Abbildung 4.51.: Wegunabhängigkeit der Arbeit im Gravitationsfeld

Die potentielle Energie des Gravitationsfeldes existiert dann, wenn die Arbeit um eine Masse m_2 im Gravitationsfeld der Masse m_1 von A nach B zu bringen unabhängig vom Weg ist. In Abbildung 4.51 sind exemplarisch die beiden Wege s_1 und s_2 eingetragen. Wir stellen uns vor, dass der Raum zwischen der Masse m_1 und der Masse m_2 mit radial gleichabständigen Kugelschalen unterteilt wird. Den realen Weg s_1 ersetzen wir durch den Weg A, f, e, d, b, c, a, B, wobei die Abschnitte Af, ed, cb und aB radial verlaufen und die Abschnitte fe, dc und ba auf der Kugelschale liegen.

Analog wird der Weg s_2 durch den Weg A, f, j, i, h, g, a, B ersetzt, wobei die Abschnitte Af, ji, hg und aB radial verlaufen und die Abschnitte jf, ih und ga auf der Kugelschale liegen.

Die Arbeit im Gravitationsfeld um die Masse m_1 entlang A, f, e, d, b, c, a, B von A nach B zu bringen, ist die Summe der Arbeit auf den radialen Abschnitten plus der Summe der Arbeit auf den Abschnitten auf den Kugelschalen.
\[W(A, f, e, d, b, c, a, B) = W(A, f) + W(f, e) + W(e, d) + W(d, c) + W(c, b) + W(b, a) + W(a, B) \]
\[= [W(A, f) + W(e, d) + W(c, b) + W(a, B)] + [W(f, e) + W(d, c) + W(b, a)] \]
\[= W(\text{radial}) + W(\text{Kugelschalen}) \] (4.7.14)

Nun gilt für alle Wege auf einer Kugelschale, dass für jedes Wegelement \(ds \) gilt:

\[F(r) \cdot ds = 0 \] (4.7.15)
da \(F(r) \) immer senkrecht auf \(ds \) steht. Wir erhalten also

\[W(A, f, e, d, b, c, a, B) = [W(A, f) + W(e, d) + W(c, b) + W(a, B)] \] (4.7.16)

Andererseits erhalten wir

\[W(A, f, j, i, h, g, a, B) = W(A, f) + W(j, i) + W(h, g) + W(a, B) \]
\[= [W(A, f) + W(j, i) + W(h, g) + W(a, B)] + [W(j, i) + W(h, g) + W(a, B)] \]
\[= W(\text{radial}) + W(\text{Kugelschalen}) \] (4.7.17)

und

\[W(A, f, j, i, h, g, a, B) = [W(A, f) + W(j, i) + W(h, g) + W(a, B)] \] (4.7.18)

In einem Zentralfeld, bei dem die Kraft radial ist und nur vom Abstand \(r \) vom Zentrum abhängt sind die folgenden Arbeiten gleich

\[W(e, d) = W(j, i) \]
\[W(c, b) = W(h, g) \] (4.7.19)

Deshalb gilt auch

\[W(A, f, e, d, b, c, a, B) = [W(A, f) + W(e, d) + W(c, b) + W(a, B)] \]
\[= [W(A, f) + W(j, i) + W(h, g) + W(a, B)] \]
\[= W(A, f, j, i, h, g, a, B) \] (4.7.20)

Die Arbeit, um \(m_2 \) von \(A \) nach \(B \) zu bringen, ist also für die Wege \(A, f, e, d, b, c, a, B \) und \(A, f, j, i, h, g, a, B \) gleich.
Wenn wir nun den Abstand der Kugelschalen gegen Null gehen lassen, sehen wir, dass

\[W(A, B, s_1) = W(A, B, s_2) \] (4.7.21)
für beide Wege gleich sind. Da wir keine besonderen Anforderungen an die Wahl der Wege gestellt haben, gilt diese Aussage auch für alle Wege zwischen A und B. Das heisst:

Zentralfelder sind konservative Felder.

Das Gravitationsfeld als zentrales Kraftfeld ist konservativ.

4.7.2.1.2. g ist ein konservatives Vektorfeld: eleganten Beweis*

Behauptung: $g(r)$ ist konservativ

\[
\begin{align*}
\text{rot } g(r) &= \text{rot } \left(-Gm \frac{r}{r^3} \right) \\
&= -Gm \cdot \nabla \times \left(\frac{r}{r^3} \right) \\
&= -Gm \cdot \nabla \times \left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right) \\
&= \left(-3z \frac{\partial}{\partial y} + 3y \frac{\partial}{\partial x}, -3x \frac{\partial}{\partial z} + 3z \frac{\partial}{\partial x}, -3y \frac{\partial}{\partial x} + 3x \frac{\partial}{\partial y} \right) \\
&= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad (4.7.22)
\end{align*}
\]

da gilt

\[
\begin{align*}
\frac{\partial}{\partial x} \frac{y}{r^3} &= \frac{1}{r^3} \frac{\partial y}{\partial x} + y \frac{1}{r^3} \frac{\partial}{\partial x} \frac{1}{r^3} \\
&= 0 - 3y \frac{1}{r^4} \frac{\partial y}{\partial x} \\
&= -3y \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} \\
&= -3y \frac{1}{r^4} 2x \\
&= -3y \frac{x}{r^4} \\
\end{align*}
\]

Damit ist

\[
\begin{align*}
\frac{-3z}{r^3} \frac{\partial r}{\partial y} &= \frac{-3z}{r^3} \cdot \frac{y}{r} = \frac{-3y z}{r^3} \frac{\partial r}{\partial z} = \frac{-3y z}{r^3} \frac{1}{r} \quad \text{und zyklisch} \quad (4.7.23) \\
\end{align*}
\]
4.7.2.2. Potentielle Energie des Gravitationsfeldes eines Massenpunktes

Weil das Kraftfeld der Gravitation konservativ ist, existiert eine potentielle Energie, die potentielle Energie der Gravitation.

\[E_{\text{pot}}(r) = -Gmm_0 \frac{1}{r} \]

(4.7.25)

ist die potentielle Energie der Gravitation, bezogen auf einen unendlich weit entfernten Punkt.

Als Referenz nehmen wir

\[E_{\text{pot}}(\infty) = 0 \]

(4.7.26)

Beweis: Berechnung der Arbeit gegen die Feldkraft längs einer Feldlinie

Bei der Berechnung der potentiellen Energie muss man berücksichtigen, dass die Kraft \(F \) und \(dr \) entgegengesetzt angeordnet sind. Da das Gravitationsfeld konservativ ist, können wir eine ganz spezielle Bahn verwenden. Zwischen zwei beliebigen Punkten \(r \) und \(r_0 \) lassen wir die Bahn von \(r \) bis zu der Kugelschale um den Massenpunkt \(m \), auf der \(r_0 \) liegt, laufen und führen sie dann auf der Kugelschale zu \(r_0 \). Auf dem auf der Kugelschale liegenden Teil ist \(F_G \) senkrecht auf \(dr \), so dass \(F_G \cdot dr = 0 \) ist: dieser Bahnabschnitt trägt nichts zur potentiellen Energie bei. Also haben wir

\[
E_{\text{pot}} = W(r_0, r, b) = - \int_r^{r_0} -F(r) \, dr = - \int_r^{r_0} Gmm_0 \frac{r}{r^3} \, dr = - \int_r^{r_0} \frac{Gmm_0}{r} \, dr \\
= \left[-Gmm_0 \frac{1}{r} \right]_r^{r_0} = -Gmm_0 \frac{1}{r} \bigg|_r^{r_0}
\]

(4.7.27)
Es ist üblich, den Referenzpunkt \(r_0 \to \infty \) zu setzen:

\[
E_{\text{pot}}(r) = E_{\text{pot}}(r) = \lim_{r_0 \to \infty} \left(-\frac{Gmm_0}{r} + \frac{Gmm_0}{r_0} \right) = -\frac{Gmm_0}{r}
\]

(4.7.28)

Damit ist die Behauptung gezeigt.

4.7.2.2.1. Gravitationspotential einer Punktmasse

Die potentielle Energie hängt nicht nur von der zu untersuchenden Masse \(m \), sondern auch von der Testmasse \(m_0 \) ab.

Wir definieren das Testmassen-unabhängige Gravitationspotential

\[
\phi(r) = \frac{E_{\text{pot}}(r)}{m_0}
\]

(4.7.29)

Die Einheit des Gravitationspotentials ist

\[
[\phi(r)] = \frac{Nm}{kg} = \frac{m^2}{s^2}
\]

dann gilt:

\[
\phi(r) = -G \frac{m}{r}
\]

\[
g(r) = -\nabla \phi(r)
\]

\[
F(r) = -\nabla E_{\text{pot}}(r)
\]

(4.7.30)

Wir erhalten die folgenden Zusammenhänge:

\[
E_{\text{pot}}(r) = -\frac{Gmm_0}{r} \quad /m_0 \quad \Rightarrow \quad \phi(r) = -G \frac{m}{r}
\]

\[
\nabla \downarrow \quad \int \frac{ds}{S} \quad \int \frac{ds}{S} \quad \nabla \downarrow \quad / \quad \nabla
\]

\[
F(r) = -\frac{Gmm_0}{r} \quad /m_0 \quad \Rightarrow \quad g(r) = -G \frac{m}{r^2} \quad \cdot m_0
\]

4.7.2.2.2. Oberflächenintegral über eine Kugel*
Abbildung 4.53.: Oberflächenintegrale: Definition der Grössen

Normalenvektor \(n = \frac{\mathbf{r}}{r} \)

Oberflächenelement in Kugelkoordination

\[
da = r \sin \theta d\phi \, r \, d\theta
\]

(4.7.31)

dabei ist \(r \sin \theta d\phi \) die horizontale Seite des Flächenelementes, \(r \, d\theta \) die vertikale Seite.

Abbildung 4.54.: Koordinaten des Oberflächenelementes

\[
\int_{Kugel} g(r) \cdot n \cdot da = \int_{Kugel} -Gm \frac{r}{r^3} \cdot r^2 \sin \theta d\theta d\phi
\]

\[
= -Gm \int_{Kugel} \sin \theta d\theta d\phi
\]

\[
= -2\pi Gm \int_{0}^{\pi} \sin \theta d\theta
\]

\[
= -4\pi Gm
\]

(4.7.32)

also

\[
\int_{Kugel} g(r) \cdot n \, da = -4\pi Gm
\]

(4.7.33)
Die in einer Kugel (beliebigen Fläche) eingeschlossene *Masse* kann aus dem Integral über \(g(\mathbf{r}) \) an der Oberfläche bestimmt werden. Damit kann man über die Keplerschen Gesetze mit einer Testmasse (Satellit) die *Masse* eines Himmelskörpers bestimmen!

4.7.2.3. Gravitation eines Ensembles von Massenpunkten

Betrachte \(n \) Massenpunkt mit \(m_k \) an den Orten \(\mathbf{r}_k \)

Wir nehmen das folgende Postulat an

Die Gravitationskräfte sind additiv.

Damit sind auch die Gravitationsfelder additiv. Deshalb gilt

\[
\begin{align*}
g(\mathbf{r}) &= -G \sum_{k=1}^{n} m_k \frac{\mathbf{r} - \mathbf{r}_k}{|\mathbf{r} - \mathbf{r}_k|^3} \\
\phi(\mathbf{r}) &= -G \sum_{k=1}^{n} m_k \frac{1}{|\mathbf{r} - \mathbf{r}_k|}
\end{align*}
\]

(4.7.34)

Da die einzelnen Teilfelder konservativ sind, ist auch das Gesamtfeld konservativ. Bei Kräften zwischen Atomen und Molekülen gibt es viele Beispiele nichtadditiver Kraftfelder.

4.7.2.3.1. Oberflächenintegral*

\[
\int_S g(\mathbf{r}) \mathbf{n}(S, \mathbf{r}) \, dA(S, \mathbf{r}) = -4\pi G \sum_k m_k \text{ (innerhalb von } S) \\
= -4\pi G m
\]

(4.7.35)

wobei \(m \) die *Masse* innerhalb \(S \) ist
4.7.2.4. Kontinuierliche Massenverteilung *

Kontinuierliche Massenverteilung: gegeben durch Massendichte $\rho(r)$

$$\rho(r) = \lim_{\Delta V \to 0} \frac{\Delta m(r)}{\Delta V(r)} \quad (4.7.36)$$

Berechnung der Gesamtmasse aus Dichte:

$$m = \int_V \rho(r) \, dV = \int \int \int_V \rho(x,y,z) \, dx \, dy \, dz \quad (4.7.37)$$

In Kugelkoordinaten wäre

$$m = \int \int \int_V \rho(r,\theta,\phi) \, r^2 \sin(\theta) \, dr \, d\theta \, d\phi \quad (4.7.38)$$

Oberflächenintegral

$$\int_S \mathbf{g}(r) \cdot \mathbf{n}(r) \, da(r) = -4\pi G m \, (\text{in } S) = -4\pi G \int_V \rho(r) \, dV \quad (4.7.39)$$

Für kontinuierliche Massenverteilungen gilt die Feldgleichung der \textit{Gravitation}

$$\text{div } \mathbf{g}(r) = -4\pi G \rho(r) \quad (4.7.40)$$

Def:

$$\text{div } \mathbf{r} = \nabla \cdot \mathbf{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} \quad (4.7.41)$$

Beweis: Nach Gauss gilt:

$$\int_S \mathbf{g}(r) \, \mathbf{n}(r) \, da(r) = \int_V \text{div } \mathbf{g}(r) \, dV = \int_V -4\pi G \rho(r) \, dV \quad (4.7.42)$$

Die Lösung der Feldgleichung ist

$$\mathbf{g}(r) = -G \int_{\text{Raum}} \rho(r') \left(\frac{r - r'}{|r - r'|^3} \right) \, dV' \quad (4.7.43)$$
Dabei ist \(dV' \) das Volumenelement am Ort \(r' \). Die Lösung hat die gleiche Struktur wie das Gesetz für den Feldvektor der Gravitation, Gleichung (4.7.13). Die ist leicht zu sehen, wenn man die Variablen wie folgt umschreibt:

\[
\begin{align*}
 m & \rightarrow \rho(r)dV' \\
 r & \rightarrow r - r' \\
 r & \rightarrow |(r - r')|
\end{align*}
\]

Da \(g(r) = -\mathbf{grad} \phi(r) \) gilt

\[
-4\pi G \rho(r) = \text{div} g(r) = -\text{div} \mathbf{grad} \phi(r) = -\nabla \cdot \nabla \phi(r) = -\Delta \phi(r) \tag{4.7.44}
\]

also

\[
\Delta \phi(r) = 4\pi G \rho(r) \tag{4.7.45}
\]

heisst Poisson-Gleichung

\(\Delta\) heisst Laplace-Operator:

\[
\nabla \cdot \nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \tag{4.7.46}
\]

Formal ist die Lösung der Poisson-Gleichung

\[
\phi(r) = -G \int_{\text{Raum}} \rho(r') \frac{1}{|r - r'|} dV' \tag{4.7.47}
\]

4.7.2.5. Gravitationsfeld einer Kugel

Masse einer Kugel

\[
m = \frac{4}{3} \pi R^3 \rho_0 \tag{4.7.48}
\]

bei konstanter Dichte \(\rho_0 \)
Wir unterscheiden die folgenden Fälle:

- Falls \(r > R \)
 \[
g(r) = -\frac{Gm}{r^2} \quad \phi(r) = -\frac{Gm}{r}
\]

- Falls \(r = R \)
 \[
g(R) = -\frac{Gm}{R^2} \quad \phi(r) = -\frac{Gm}{R}
\]

- Falls \(r < R \)
 \[
g(r) = -\frac{Gm}{R^3}r \quad \phi(r) = -\frac{Gm}{R^2} \left(\frac{3}{2}R^2 - \frac{1}{2}r^2 \right)
\]

Im Folgenden werden drei Beweisarten gezeigt:

a) Behauptung: Nur die Masse innerhalb der Kugelschale beeinflusst die Gravitationskraft. Wir berechnen zuerst die Gravitationskraft einer Kugelschale mit dem Radius \(R \) und der Dicke \(dR \) auf eine Masse \(m \) im Inneren. Die Gesamtmasse der Kugelschale ist

\[
dM = 4\pi R^2 \rho dR
\]

wenn \(\rho \) die Massendichte ist. Wir betrachten die folgende Situation:
Wir betrachten in der Abbildung 4.59 die beiden Flächen dA_1 und dA_2. Die von den Massen in diesen beiden Flächen auf m ausgeübten Kräfte zeigen entlang der gleichen Gerade, aber in entgegengesetzte Richtungen. Die Massen in dA_1 und dA_2 sind jeweils

\[
dm_1 = dM \frac{dA_1}{4\pi R^2} \\
dm_2 = dM \frac{dA_2}{4\pi R^2}
\]

(4.7.50)

Dabei ist $4\pi R^2$ die Oberfläche einer Kugel mit dem Radius R. Die Beträge der Kräfte F_1 und F_2 sind

\[
F_1 = -G \frac{m \, dm_1}{r_1^2} = -G \frac{m \, dM \, dA_1}{4\pi R^2 \, r_1^2} \\
F_2 = -G \frac{m \, dm_2}{r_2^2} = -G \frac{m \, dM \, dA_2}{4\pi R^2 \, r_2^2}
\]

(4.7.51)

Nach dem Strahlensatz gilt (beachte dass dA_1 und dA_2 Flächen sind)

\[
\frac{dA_1}{r_1^2} = \frac{dA_2}{r_2^2}
\]

(4.7.52)

Kombinieren wir Gleichung (4.7.51) und Gleichung (4.7.52), so sehen wir sofort, dass

\[
|F_1| = |F_2|
\]

(4.7.53)

Da wir über die Lage von dA_1 und dA_2 nichts vorausgesetzt hatten, außer dass beide mit der Masse auf einer Linie liegen, können wir folgern:
Auf Massenpunkte im Inneren einer Hohlkugel mit einer homogenen Massenverteilung wirken keine Kräfte.

Genauere Rechnungen zeigen, dass dies bei allen genügend symmetrischen Hohlkörpern der Fall ist.

Ausserhalb einer Massenverteilung wirkt die Gravitationskraft immer so, wie wenn sie vom Massenmittelpunkt käme.

Ausserhalb der kugelförmigen homogenen Massenverteilung können wir die Gravitationskraft so ausrechnen, wie wenn sie am Massenmittelpunkt konzentriert wäre (siehe Gleichung (4.7.13)).

\[g(r) = -Gm \frac{r}{r^3} \quad \text{für} \quad r > R \quad (4.7.54) \]

An der Oberfläche der Masse gilt Gleichung (4.7.54) gerade noch.

\[g(R) = -Gm \frac{R}{R^3} \quad \text{an der Oberfläche} \quad (4.7.55) \]

Im Inneren \((r < R)\) der homogenen kugelförmigen Massenverteilung können wir die Masse in zwei Bereiche einteilen, eine Hohlkugel mit \(r < r' \leq R\) sowie eine homogene Kugel mit \(r' \leq r\). Die Hohlkugel trägt, wie gezeigt, nichts zum Gravitationsfeld bei. Nur Masse der Kugel mit dem Radius \(r\) erzeugt das Gravitationsfeld. Wenn \(m\) die Gesamtmasse ist, ist die relevante Masse

\[m'(r) = m \frac{V(r)}{V(R)} = m \frac{\frac{4}{3} \pi r'^3}{\frac{4}{3} \pi R^3} = m \frac{r^3}{R^3} \quad (4.7.56) \]

Der Feldvektor der Gravitation an der Oberfläche der inneren Masse ist dann

\[g(r) = -Gm'(r) \frac{r}{r^3} = -Gm \frac{r^3}{R^3} \frac{r}{r^3} = -Gm \frac{r}{R^3} \quad (4.7.57) \]

\[-4\pi G \int_{\text{Kugel, Radius } R} \rho(r) \, dV = \int_{\text{Kugeloberfläche}} g(r) \cdot n(r) \, da \quad (4.7.58) \]

mit

\[g(r) \cdot n(r) = g(r) \]

©2001-2014 Ulm University, Othmar Marti
da \(n \parallel r \parallel g \) ist. Also ist
\[
-4\pi G \rho_0 \frac{4\pi}{3} r^3 = g(r) \int_{\text{Kugeloberfläche}} da = g(r) \cdot 4\pi r^2 \tag{4.7.59}
\]

Innerhalb der kugelförmigen Masse gilt also
\[
g(r) = -\frac{4\pi}{3} G \rho_0 r = -\frac{4\pi}{3} \frac{G \rho_0 R^3}{R^3} r = -mG \frac{r}{R^3} \tag{4.7.60}
\]

Ausserhalb erhalten wir
\[
-4\pi G \rho_0 \frac{4\pi}{3} R^3 = g(r) \int_{\text{Kugeloberfläche}} da = g(r) \cdot 4\pi r^2 \tag{4.7.61}
\]
oder
\[
-4\pi G m = g(r) \cdot 4\pi r^2 \tag{4.7.62}
\]
\[
g(r) = -\frac{G m}{r^2} \tag{4.7.63}
\]

Aus diesen Gleichungen kann das Potential berechnet werden.

Dazu verwendet man die Definition der potentiellen Energie für ein radial-symmetrisches Potential
\[
\phi(r) = -\int_{\infty}^{r} g(r') dr'
\]

Für ausserhalb bekommt man
\[
\phi(r) = -\int_{\infty}^{r} \frac{G m}{r^2} d\hat{r} = -\left(-\left(\frac{G m}{\hat{r}} \right) \right) \bigg|_{\infty}^{r} = -\frac{G m}{r}
\]

Innerhalb der Kugel verwendet man den Radius der Kugel \(R \) als Referenz
\[
\phi(r) = -\int_{R}^{r} g(r') dr'
\]
und damit
\[
\phi(r) = -\int_{R}^{r} -mG \frac{r}{R^3} d\hat{r} = -\left(-mG \frac{\hat{r}}{2R^3} \right) \bigg|_{R}^{r} = \frac{mG}{2R^3} (r^2 - R^2)
\]
Für die Distanz R muss das Potential kontinuierlich sein. Wir führen eine Konstante K ein und setzen

$$\frac{Gm}{R} = K - \frac{mG}{2R^3} \left(R^2 - R^2 \right) = K$$

Also ist für Innen das Resultat

$$\phi(r) = \frac{mG}{2R^3} \left(r^2 - R^2 \right) - \frac{Gm}{R} = \frac{mG}{2R^3} \left(3R^2 - r^2 \right)$$

Das Schlussresultat ist

$$\phi(r) = \begin{cases}
-\frac{Gm}{s^2} & \text{für } r \geq R; \\
-\frac{mG}{2R^3} \left(3R^2 - r^2 \right) & \text{für } r < R.
\end{cases} \quad (4.7.64)$$

c)* zu Fuss

Gravitationskraft eines Kreisringes

Abbildung 4.60.: Berechnung des Kreisringes

Symmetrie: nur x-Komponente betrachten

$$dF = -\frac{Gm_0 \left(dm \right)}{s^2} \quad (4.7.65)$$

$$dF_x = dF \cos \alpha = -\frac{Gm_0}{s^2} \cos \alpha \ dm \quad (4.7.66)$$

Die x-Komponente des Feldvektors der \textit{Gravitation} ist nun (betragsmässig):

$$dg_x = \frac{dF_x}{m_0} = -\frac{G}{s^2} \cos \alpha \ dm \quad (4.7.67)$$
Die Integration über den Feldvektor ergibt das totale Feld

\[g_x = - \int_{\text{Kreisring}} \frac{G \cos \alpha}{s^2} \, dm = - \frac{G m_0 \cos \alpha}{s^2} \int_{\text{Kreisring}} dm = - \frac{G m_0 \cos \alpha}{s^2} m \]

(4.7.68)

Dabei ist \(m \) die Masse des Kreisringes. \(\frac{G}{s^2} \cos \alpha \) ist unabhängig vom Azimut. Mit

\[\cos \alpha = \frac{x}{s} = \frac{x}{\sqrt{x^2 + a^2}} \]

(4.7.69)

wird

\[g_x = - \frac{G m x}{(x^2 + a^2)^{3/2}} \]

(4.7.70)

Als nächstes berechnen wir eine Kugelschale zusammengesetzt aus Kreisringen.

Abbildung 4.61.: Berechnung einer Kugelschale zusammengesetzt aus Kreisringen

Umfang eines Kreisringes: \(2\pi R \sin \theta \)
Breite: \(R d\theta \)
Oberfläche: \(4\pi R^2 \)

Tabelle 4.4.: Parameter des Kreisringes

Daraus ergibt sich:

\[dM = M \frac{dA}{A} = M \frac{2\pi R^2 \sin \theta d\theta}{4\pi R^2} = \frac{M}{2} \sin \theta d\theta \]

(4.7.71)
und mit

\[dg_R = - \frac{Gdm}{s^2} \cos \alpha = - \frac{Gm \sin \theta d\theta}{2s^2} \cos \alpha \] \hspace{1cm} (4.7.72)

Es gilt weiter:

\[
\begin{align*}
\theta &= 0 \ldots \pi \\
\int s = r - R \cdot r + R \\
\int s^2 &= r^2 + R^2 - 2rR \cos \theta
\end{align*}
\] \hspace{1cm} (4.7.73)

oder

\[2s ds = 2rR \sin \theta d\theta \] \hspace{1cm} (4.7.74)

Für \(\cos \alpha \) gilt:

\[R^2 = s^2 + r^2 - 2sr \cos \alpha \] \hspace{1cm} (4.7.75)

oder

\[\cos \alpha = \frac{s^2 + r^2 - R^2}{2sr} \] \hspace{1cm} (4.7.76)

also

\[dg_R = - \frac{GM}{2s^2} \frac{s^2 + r^2 - R^2}{rR} \frac{2sr}{2sr} = - \frac{GM}{4r^2R} \left(1 - \frac{r^2 - R^2}{s^2} \right) ds \] \hspace{1cm} (4.7.77)

Die Integration über \(ds \) liefert

\[g_R = - \frac{GM}{4r^2R} \int_{r-R}^{r+R} \left(1 - \frac{r^2 - R^2}{s^2} \right) ds = - \frac{GM}{4r^2R} \left[s - \frac{r^2 - R^2}{s} \right]_{r-R}^{r+R} \] \hspace{1cm} (4.7.78)

Nach dem Einsetzen erhält man

\[g_R = - \frac{GM}{r^2} \] \hspace{1cm} (4.7.79)

Wenn wir innerhalb der Kreisschale sind muss von \(R - r \) bis \(R + r \) integriert werden. Dann ist \(g_R = 0! \)

Eine Kugelschale trägt zum Feldvektor der \textit{Gravitation} für Punkte innerhalb nichts bei.

Den Feldvektor der \textit{Gravitation} für einen Punkt innerhalb einer Volkschale kann jetzt noch durch Integration über alle eingeschlossenen Unterschalen erhalten werden, deren Radien kleiner sind als der Radius des betrachteten Punktes. An der Form des Resultates ändert sich nichts mehr.
4.7.3. Gewicht

Das Gewicht oder die Gewichtskraft F_G einer Masse m wird durch die Gravitation zwischen der Erde und m bewirkt.

Modell: Die Erde entspricht einer Kugel. Dann gilt an der Oberfläche

$$\frac{F_G}{m} = g(r = R) = -GM \frac{R}{R^3} \quad (4.7.80)$$

Im Labor ist $g = \text{konst.}$

und $E_{pot} = mgh = m\phi$

4.7.3.1. Gewichtsbedingte Bewegung

Freier Fall:

$$\frac{d^2r}{dt^2} = \frac{dv}{dt} = g \quad (4.7.81)$$

mit $r(t = 0) = r_0$ und $v(t = 0) = v_0$ bekommt man

$$r(t) = r_0 + v_0t + \frac{1}{2}gt^2 \quad (4.7.82)$$

Mathematisches Pendel

Abbildung 4.62.: Mathematisches Pendel

Versuch zur Vorlesung:
Fadenpendel (Versuchskarte M-077)

F_a beschleunigt die Masse, also gilt:

$$|F_a| = |F_G| \cdot \sin \phi \quad (4.7.83)$$
4.7.4. Schwere und träge Masse

Beispiel: Freier Fall
von \(m_T \) träge Masse \((\text{Beschleunigung})\)
von \(m_S \) schwere Masse \((\text{Gravitation})\)

\[
F = m_T a = - G m_s \frac{M_s}{R^3} R
\]
\[
\Rightarrow a = - G \frac{m_s}{m_t} \left(\frac{M_s}{R^3} \right) R
\]

Beobachtung \(\alpha = \frac{m_s}{m_t} = \text{const} \) ist unabhängig vom Material
Experimentell: \(|\alpha - 1| < 10^{-12} \)

4.7.5. Satelliten und Ähnliches

Herleitung des 3. Keplerschen Gesetzes, mit Kreisbahnen
Zentripetalkraft $F_z = \frac{mv_1^2}{r_1}$

$$F_z' = \frac{mv_2^2}{r_2}$$ \hfill (4.7.94)

$$F_z = F_{\text{Gravitation}}$$

$$\frac{Gm_sm_m}{r_1^2} = m_1 \frac{v_1^2}{r_1}$$ \hfill (4.7.95)

nun ist die Umlaufszeit $T_1 = \frac{2\pi r_1}{v_1}$ oder $v_1 = \frac{2\pi r_1}{T_1}$

also ist

$$\frac{Gm_s}{r_1^2} = \frac{4\pi r_1^2}{T_1^2 r_1}$$ \hfill (4.7.96)

$$\Rightarrow \frac{T_1^2}{r_1^3} = \frac{4\pi^2}{Gm_s}$$ \hfill (4.7.97)

Beispiel: Maximale Höhe eines Satelliten

Wir wissen

$$E_{\text{pot}} = -\frac{Gm_sm_m}{r}$$ \hfill (4.7.98)

Energiesatz:

$$\frac{1}{2}mv_0^2 - \frac{Gm_sm_m}{R} = \frac{1}{2}mv^2 (r) - \frac{Gm_sm_m}{r}$$

wobei R der Erdradius ist.

$$v^2 (r) = v_0^2 - 2Gm \left(\frac{1}{R} - \frac{1}{r} \right)$$ \hfill (4.7.99)

$$r (v) = \frac{2Gm_R}{2Gm - R(v_0^2 - v^2)}$$ \hfill (4.7.100)
Im Scheitel ist \(v = 0 \), also

\[
r_{\text{max}} = \frac{R \cdot 2Gm_e}{2Gm_e - v_0^2 R}
\]

(4.7.101)

Die erreichbare Höhe \(r_{\text{max}} \) divergiert wenn \(v_0^2 = \frac{2Gm_e}{R} \) ist. Anders ausgedrückt: Mit \(\frac{Gm_e}{R^2} = g \) bekommt man die *Fluchtgeschwindigkeit* aus dem Schwerefeld der Erde

\[
v_0 = \sqrt{2gR} = 11.2 \text{ km s}^{-1}
\]

Gesamtenergie eines Satelliten

\[
E_{\text{pot}} = -\frac{Gm_e m}{r}
\]

(4.7.102)

Zentripetalkraft

\[
m \frac{v^2}{r} = \frac{Gm'_em}{r^2} \Rightarrow mv^2 = \frac{Gm_e m}{r}
\]

(4.7.103)

Kinetische Energie

\[
E_{\text{kin}} = \frac{1}{2} mv^2 = \frac{1}{2} \frac{Gm_e m}{r} = -\frac{1}{2} E_{\text{pot}}
\]

(4.7.104)

\[
E_{\text{total}} = \frac{1}{2} E_{\text{pot}}
\]

(4.7.105)
5. Relativität

Das Ziel: Beziehungen zwischen den physikalischen Gesetzen in gegeneinander bewegten Bezugssystemen.

5.1. Klassische Relativität gleichförmig bewegter Bezugssysteme

Die klassische Relativität beruht auf den folgenden drei Grundlagen:

- Relativitätsprinzip (Newton)
- Transformation (Galilei)
- klassische Mechanik (Newton)

Abbildung 5.1.: 2 Koordinatensysteme

x, y, z, t heisst Inertialsystem, wenn ein kräftefreier Massepunkt sich gleichförmig bewegt.

Relativitätsprinzip

Wenn x, y, z, t ein Inertialsystem ist und x', y', z', t' sich mit $u = \text{const}$ dazu bewegt, ist x', y', z', t' auch ein Inertialsystem.
5.1.1. Galileitransformation

Versuch zur Vorlesung:
Freier Fall im bewegten Bezugssystem (Versuchskarte M-151)

Für das Folgende setzen wir \(\mathbf{u} = (u, 0, 0) \). Diese Bedingung kann immer erfüllt werden: wir müssen nur das Koordinatensystem drehen. Dann haben wir

\[
\begin{align*}
\text{Laborsystem} & \quad \text{bewegtes Inertialsystem} \\
x = x' + ut & \quad x' = x - ut \\
y = y' & \quad y' = y \\
z = z' & \quad z' = z \\
t = t' & \quad t' = t
\end{align*}
\]

Tabelle 5.1.: Galileitransformation

Die Geschwindigkeiten addieren sich

\[\mathbf{v} = \mathbf{v}' + \mathbf{u} \quad (5.1.1) \]

Die Gesetze der klassischen Mechanik sind invariant unter der Galileitransformation

\[
\begin{align*}
m &= m' \quad (5.1.2) \\
\mathbf{F} &= \mathbf{F}' \quad (5.1.3) \\
\mathbf{F} &= m \frac{d\mathbf{v}}{dt} \quad (5.1.4) \\
\mathbf{F}' &= m' \frac{d\mathbf{v}'}{dt'} \\
\end{align*}
\]

Beweis:

\[
\mathbf{F} = m \frac{d\mathbf{v}}{dt} = m(\mathbf{v}' + \mathbf{u}) \frac{dt}{dt} = m' \frac{d\mathbf{v}'}{dt'} + m \frac{d\mathbf{u}}{dt} = 0 \quad \text{da } \mathbf{u} = \text{const.} \quad (5.1.6)
\]

5.2. Klassische Relativität beschleunigter Bezugssysteme

5.2.1. Trägheitskräfte

\(x', y', z', t' \) sei gegen das Inertialsystem \(x, y, z, t \) mit \(\mathbf{a}_T \) beschleunigt. Die Trägheitsbeschleunigung \(\mathbf{a}_T \) ist durch

\[\mathbf{a} = \mathbf{a}' + \mathbf{a}_T \quad (5.2.1) \]

Wir fordern: Massen und Zeiten sollen in beiden Systemen gleich sein. Die Gesetze der Mechanik sollen in beiden Systemen die gleiche Form haben.
119 5.2 Klassische Relativität beschleunigter Bezugssysteme

\[t = t' \]
\[m = m' \] \hspace{1cm} (5.2.2)
\[F = m \frac{dv}{dt} \] \hspace{1cm} (5.2.3)
\[F' = m' \frac{dv'}{dt'} \] \hspace{1cm} (5.2.4)

Dabei ist \(F \neq F' \). Die Differenz nennen wir eine Trägheitskraft: \(F_T \), also

\[F + F_T = F' \]
\[F_T = -ma_T \] \hspace{1cm} (5.2.5)

Beispiel: Bus: \textit{Beschleunigung} \(a_T \)
\(-ma_T \) ist die \textit{Kraft}, die einen nach hinten drückt.
Beweis:

\[m = m' \]
\[t = t' \]
\[a = a' + a_T \]
\[F = ma \]
\[F' = m'a' \]

\[F = ma \]
\[= m(a' + a_T) \]
\[= m'a' + ma_T \]
\[= F' + ma_T \]
\[F' = F - ma_T \] \hspace{1cm} (5.2.6)

Beispiel: Schwerelosigkeit im fallenden Aufzug
Behauptung

\[F'_G = 0 \]
\[F'_G = mg \]
\[a_T = g \]
\[F'_G = F_G + F_T = mg - ma_T = 0 \] \hspace{1cm} (5.2.7)

5.2.2. Das Prinzip von d’Alembert

Versuch zur Vorlesung:
d’Alembertsches Prinzip (Versuchskarte M-070)
Wir wollen das folgende Problem lösen:

Ein System von Massenpunkten m_i bewegt sich unter Einfluss externer Kräfte F_{ai} und interner Kräfte F_{ji}. Es gibt deshalb äußerst komplexe Bewegungsgleichungen.

Prinzip: Ersetzt man die *Beschleunigung* a_i der Masse m_i durch die Trägheitskraft

$$F_T = -m_i a_i$$ \hspace{1cm} (5.2.8)

so wird das Problem der Dynamik auf ein statisches Problem zurückgeführt.

Situation für einen ruhenden Beobachter

Abbildung 5.2.: Situation für einen ruhenden Beobachter

$$m_i a_i = F_{ai} + \sum_j F_{ji}$$

ist die Gleichung, die das System aus der Dynamik beschreibt.

Abbildung 5.3.: Situation für einen mitbewegten Beobachter

Nach dem Prinzip von d’Alembert gilt

$$m_i a_i = -F_{Ti} = F_{ai} + \sum_j F_{ji}$$ \hspace{1cm} (5.2.9)

oder

$$F_{Ti} + F_{ai} + \sum_j F_{ji} = 0$$ \hspace{1cm} (5.2.10)
5.2.3. Gleichförmig rotierende Bezugssysteme

In diesem Abschnitt untersuchen wir Trägheitskräfte in rotierenden Bezugssystemen mit konstanter Winkelgeschwindigkeit \(\omega = \text{const} \): es sind dies die Zentrifugalkraft und die Corioliskraft. Dabei seien \(x, y, z, t, \mathbf{r} \) die Koordinaten und Vektoren des Inertialsystems \(x', y', z', t', \mathbf{r}' \) das rotierende Bezugssystem, das mit um \(e = \frac{\omega}{c} \) rotiert. Die Nullpunkte beider Koordinatensysteme seien identisch. Der Vektor der Winkelgeschwindigkeit sei \(\omega = |\omega| \mathbf{e} \).

Um die Form der Ableitung und die Transformationsgesetze zu bestimmen, betrachten wir die Vektoren als Objekt, ohne deren Darstellung in einem Koordinatensystem zu verwenden.

Abbildung 5.4.: Berechnung einer Ableitung im Laborsystem

Abbildung 5.4 zeigt die Berechnung einer Ableitung im Laborsystem. Wie üblich haben wir

\[
\frac{d\mathbf{r}(t)}{dt} = \lim_{dt \to 0} \frac{\mathbf{r}(t + dt) - \mathbf{r}(t)}{dt} \quad (5.2.11)
\]

Abbildung 5.5.: Berechnung der Ableitung im rotierenden Bezugssystem.

Im rotierenden Bezugssystem (Abbildung 5.5) dreht sich der Referenzpunkt \(P \) um
den Winkel ϕ. Wenn zur Zeit t $\mathbf{r}(t) = \mathbf{r}_P(t)$ ist, ist zur Zeit $t + dt$

$$\mathbf{r}_P(t + dt) = \mathbf{r}_P(t) + d\mathbf{r}$$ \hspace{1cm} (5.2.12)

Der Betrag des Verschiebungsvektors berechnet sich über die zurückgelegte Bogenlänge, die vom Radius R und der Winkeländerung $d\phi = \omega \cdot dt$ abhängt. Dieser wiederum kann aus der Länge von $\mathbf{r}(t) = \mathbf{r}_P(t)$ mit dem Winkel γ bestimmt werden

$$d\mathbf{r} = R \cdot d\phi = R \cdot \omega \cdot dt = r_P \sin(\phi) \cdot \omega \cdot dt = |\omega \times \mathbf{r}| dt$$ \hspace{1cm} (5.2.13)

Die Reihenfolge von ω und \mathbf{r} hängt von der gewünschten Richtung ab. Die Ableitung im rotierenden Bezugsystem ist durch den Vektor $\mathbf{r}(t + dt)$ und der Lage von P zur Zeit $t + dt$, also $\mathbf{r}_P(t + dt)$ gegeben

$$\frac{\partial \mathbf{r}(t)}{\partial t} = \lim_{dt \to 0} \frac{\mathbf{r}(t + dt) - \mathbf{r}_P(t + dt)}{dt}$$ \hspace{1cm} (5.2.14)

da der Bezugspunkt weiter gewandert ist.

Abbildung 5.6.: Beziehung zwischen den Ableitungen

Abbildung 5.6 zeigt, wie die Ableitungen im rotierenden Bezugssystem mit denen im Laborsystem zusammenhängen.

$$d\mathbf{r} = \partial \mathbf{r} + d\mathbf{r} = \partial \mathbf{r} + \omega \times r dt$$ \hspace{1cm} (5.2.15)

Wir teilen durch dt und erhalten, im Limit $dt \to 0$

$$\frac{d\mathbf{r}}{dt} = \frac{\partial \mathbf{r}}{\partial t} + \omega \times \mathbf{r}$$ \hspace{1cm} (5.2.16)

Dabei ist \mathbf{r} irgend ein Vektor, nicht notwendigerweise ein Ortsvektor. Die Ableitungen in den beiden Koordinatensystemen werden durch die folgende Notation unterschieden:

| in x, y, z, t | $\frac{\partial}{\partial t} \beta$ |
| in x', y', z', t' | $\frac{\partial}{\partial t'} \beta$ |

Tabelle 5.2.: Ableitungen in zwei Koordinatensystemen
wobei $t' = t$ und $z' = z$ sein soll. Wichtig ist, dass $\frac{\partial \beta}{\partial t}$ die im rotierenden Koordinatensystem durchgeführte Ableitung ist, aber wieder zurücktransformiert in das lokale Koordinatensystem (siehe auch J).

Beispiel:
Wir verwenden r und daraus folgend: $v = \frac{dr}{dt}, \; v' = \frac{dr}{dt}$ und damit

$$v' = v' + (\omega \times r) \quad (5.2.17)$$

wobei v' in das Laborsystem zurücktransformiert ist.
Geschwindigkeiten (und auch Beschleunigungen) sind in den beiden Bezugssystemen nicht gleich, wohl aber Ortsvektoren. Diese haben zwar unterschiedliche Komponenten, zeigen aber immer auf den gleichen Punkt im Raum. Geschwindigkeiten und Beschleunigungen sind unterschiedlich, haben also eine unterschiedliche Länge und/oder eine unterschiedliche Richtung.

Wir betrachten die *Beschleunigung*. Wir haben für die Beschleunigung im Laborsystem

$$a = \frac{dv}{dt}$$

Im bewegten System ist die Relativbeschleunigung

$$a' = \frac{\partial v'}{\partial t'}$$

Wieder ist a' die ins Laborsystem zurücktransformierte Größe. Dann ist

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + (\omega \times v)$$

$$= \frac{\partial}{\partial t} (v' + (\omega \times r)) + (\omega \times (v' + \omega \times r))$$

$$= \frac{\partial}{\partial t} v' + \omega \times \frac{\partial r}{\partial t} + \omega \times v' + \omega \times (\omega \times r)$$

$$= \frac{\partial}{\partial t} v' + 2 (\omega \times v') + \omega \times (\omega \times r) \quad (5.2.18)$$

also haben wir

$$a = a' + (\omega \times (\omega \times r)) + 2 (\omega \times v') \quad (5.2.19)$$

In Gleichung (5.2.1) ist die Trägheitsbeschleunigung definiert. Wir setzen

$$a + a_z + a_C = a' \quad (5.2.20)$$

wobei a_z die negative Trägheitsbeschleunigung namens Zentrifugalbeschleunigung und a_C die negative Trägheitsbeschleunigung namens Coriolisbeschleunigung ist.
Wir haben also

\[a_z = -\omega \times (\omega \times r) \]
(5.2.21)

\[a_C = -2(\omega \times v') = 2(v' \times \omega) \]
(5.2.22)

Wir können die Gleichung für die vereinfachen, indem wir

\[r = r^* + R \]

setzen, wobei \(r^* \parallel \omega \) und \(R \perp \omega \) sein soll.

![Abbildung 5.7.: Lage von \(r^* \) und \(R \) relativ zu \(\omega \).](image)

Wir verwenden die Vektoridentität aus Gleichung (K.1.7)

\[a \times (b \times c) = (a \cdot c)b - (a \cdot b)c \]

und setzen \(a = \omega \), \(b = \omega \) und \(a = R \) und erhalten

\[\omega \times (\omega \times R) = (\omega \cdot R)\omega - (\omega \cdot \omega)R \]

Mit \(\omega \cdot R = 0 \) bekommen wir dann

\[a = a' - \omega^2 R + 2(\omega \times v') \]
(5.2.23)

Also können wir die Bewegung durch Trägheitskräfte beschreiben

\[F + F_T = F' \]
(5.2.24)

und

\[F_T = -m(\omega \times (\omega \times r)) - 2m\omega \times v' \]
(5.2.25)
Wieder erhalten wir die Trägheitskräfte

\[F_{\text{zentrifugal}} = -m (\omega \times (\omega \times \mathbf{r})) = +m\omega^2 \mathbf{R} \]
\[F_{\text{coriolis}} = -2m (\omega \times \mathbf{v}') = 2m (\mathbf{v}' \times \omega) \]

Tabelle 5.3.: Trägheitskräfte

Versuch zur Vorlesung:

Corioliskraft (Versuchskarte M-185)

Die Zentrifugalkraft ist nur von der Position, nicht aber von der Geschwindigkeit \(\mathbf{v}' \) im gleichförmig rotierenden Bezugssystem abhängig. Die Corioliskraft andererseits hängt nur von \(\mathbf{v}' \) ab, aber nicht von \(\mathbf{R} \).

Abbildung 5.8.: Zentrifugalkraft und Corioliskraft
5.2.3.1. Drehratensensor mit Corioliskräften

Heutige Mobiltelefone verwenden Drehratensensoren um zum Beispiel Lageänderungen des Gerätes zu detektieren [Vog11]. Analoge Sensoren werden verwendet, wenn in einem Auto das elektronische Stabilitätsprogramm (ESP) katastrophale Änderungen der Fahrzeuglage verhindern soll. Abbildung 5.9 zeigt das Prinzipschaltbild eines solchen Sensors. Die Masse \(m \) in der Mitte wird mit der Frequenz \(\omega_0 \) und der Amplitude \(x_0 \) zum Schwingen gebracht. Wenn der Sensor um die \(z \)-Achse mit der Winkelgeschwindigkeit \(\omega \) rotiert, entsteht durch die Coriolisbeschleunigung \(2v \times \omega \) in die \(y \)-Richtung eine periodische Auslenkung. Deren Größe ist proportional zu den Designgrößen des Systems (Federkonstanten \(k_1 \) und \(k_2 \), Masse \(m \) und der Oszillationsfrequenz \(\omega_0 \)) und der Winkelgeschwindigkeit \(\omega \). Typischerweise ist die Kantenlänge eines solchen Drehratensensors etwa 1 mm. Die Schwingungsfrequenz ist \(\omega_0/(2\pi) = 1500 \text{ Hz} \).

Abbildung 5.9.: Prinzipbild eines mikromechanischen Drehratensensors basierend auf der Corioliskraft

5.2.4. Allgemeines beschleunigtes und rotierendes Bezugssystem

Der folgende Abschnitt folgt Ideen aus Leisi, Klassische Physik [Lei98]. Wir betrachten ein System mit den Koordinateneinheitsvektoren \(e'_x(t) \), \(e'_y(t) \) und \(e'_z(t) \), das mit der Winkelgeschwindigkeit \(\omega(t) \) rotiert. Die Winkelgeschwindigkeit \(\omega \) gehe durch den Ursprung \(0' \) des gestrichenen Koordinatensystems. Der Ortsvektor \(r_{0'}(t) \) des Ursprungs sei auch zeitabhängig.

Die Lage eines beliebigen Massenpunktes im Laborsystem sei \(r(t) \). Seine Koordinate im gestrichenen (rotierenden und beschleunigten) System sei \(r'(t) \). Wir haben den Zusammenhang

\[
r(t) = r_{0'}(t) + r'(t) \tag{5.2.26}
\]
Da die aufspannenden Koordinateneinheitsvektoren zeitabhängig sind, können wir schreiben

\[r'(t) = \sum_{k \in \{x, y, z\}} r_k'(t) \cdot e^*_k(t) \] (5.2.27)

Die Geschwindigkeit \(v(t) \) im Laborsystem ist dann

\[
v(t) = \frac{dr(t)}{dt} = \frac{d(r'_{\omega}(t) + r'(t))}{dt} = \frac{dr'_{\omega}(t)}{dt} + \frac{d}{dt} \left(\sum_{k \in \{x, y, z\}} r_k'(t) \cdot e^*_k(t) \right)
\]

\[= \frac{dr'_{\omega}(t)}{dt} + \sum_{k \in \{x, y, z\}} \frac{dr_k'(t)}{dt} \cdot e^*_k(t) + \sum_{k \in \{x, y, z\}} R_k'(t) \cdot \frac{de^*_k(t)}{dt} \] (5.2.28)

Bei Vektoren, die fest mit einem rotierenden System verbunden sind, gilt

\[\frac{df}{dt} = \omega(t) \times f \Rightarrow \frac{de^*_k(t)}{dt} = \omega(t) \times e^*_k(t) \quad k \in \{x, y, z\} \] (5.2.29)

Damit wird

\[
v(t) = \frac{dr'_{\omega}(t)}{dt} + \sum_{k \in \{x, y, z\}} \frac{dr_k'(t)}{dt} \cdot e^*_k(t) + \sum_{k \in \{x, y, z\}} r_k'(t) \cdot \omega \times e^*_k(t)
\]

\[= \frac{dr'_{\omega}(t)}{dt} + v'(t) + \omega \times \sum_{k \in \{x, y, z\}} r_k'(t) \cdot e^*_k(t) \]

\[= \frac{dr'_{\omega}(t)}{dt} + v'(t) + \omega \times r'(t) \] (5.2.30)

Die Beschleunigung ist entsprechend

\[
a(t) = \frac{dv(t)}{dt} = \frac{d}{dt} \left(\frac{dr'_{\omega}(t)}{dt} + \sum_{k \in \{x, y, z\}} \frac{dr_k'(t)}{dt} \cdot e^*_k(t) + \sum_{k \in \{x, y, z\}} r_k'(t) \cdot \frac{de^*_k(t)}{dt} \right)
\]

\[= \frac{d^2r'_{\omega}(t)}{dt^2} + \sum_{k \in \{x, y, z\}} \frac{d^2r_k'(t)}{dt^2} \cdot e^*_k(t) + 2 \sum_{k \in \{x, y, z\}} \frac{dr_k'(t)}{dt} \cdot \frac{de^*_k(t)}{dt} + \sum_{k \in \{x, y, z\}} r_k'(t) \frac{d^2e^*_k(t)}{dt} \] (5.2.31)

Mit

\[
\frac{d^2e^*_k(t)}{dt^2} = \frac{d}{dt} \left(\frac{de^*_k(t)}{dt} \right) = \frac{d}{dt} (\omega(t) \times e^*_k(t))
\]

\[= \frac{d\omega(t)}{dt} \times e^*_k(t) + \omega(t) \times \frac{de^*_k(t)}{dt}
\]

\[= \frac{d\omega(t)}{dt} \times e^*_k(t) + \omega(t) \times (\omega(t) \times e^*_k(t)) \] (5.2.32)
Wir setzen Gleichung (5.2.32) und Gleichung (5.2.29) in Gleichung (5.2.31) ein und erhalten
\[
\begin{align*}
\mathbf{a}(t) &= \frac{d^2 \mathbf{r}(t)}{dt^2} = \frac{d^2 \mathbf{r}'(t)}{dt^2} + \sum_{k \in \{x,y,z\}} \frac{d^2 r'_k(t)}{dt^2} \cdot e'_k(t) \\
&\quad + 2 \sum_{k \in \{x,y,z\}} \frac{dr'_k(t)}{dt} \cdot \frac{de'_k(t)}{dt} + \sum_{k \in \{x,y,z\}} r'_k(t) \frac{d^2 e'_k(t)}{dt} \\
&= \frac{d^2 \mathbf{r}(t)}{dt^2} + \frac{d^2 \mathbf{r}'(t)}{dt^2} + 2 \sum_{k \in \{x,y,z\}} \frac{dr'_k(t)}{dt} \cdot (\mathbf{\omega}(t) \times e'_k(t)) \\
&\quad + \sum_{k \in \{x,y,z\}} r'_k(t) \left[\frac{d\mathbf{\omega}(t)}{dt} \times e'_k(t) + \mathbf{\omega}(t) \times (\mathbf{\omega}(t) \times e'_k(t)) \right] \\
&= \frac{d^2 \mathbf{r}(t)}{dt^2} + \frac{d^2 \mathbf{r}'(t)}{dt^2} + 2 \mathbf{\omega}(t) \times \frac{dr'(t)}{dt} \\
&\quad + \frac{d\mathbf{\omega}(t)}{dt} \times \mathbf{r}'(t) + \mathbf{\omega}(t) \times (\mathbf{\omega}(t) \times \mathbf{r}'(t))
\end{align*}
\]

(5.2.33)

Aus der Newtonschen Bewegungsgleichung
\[
m \mathbf{a} = m \frac{d^2 \mathbf{r}(t)}{dt^2} = \mathbf{F}
\]
folgt im beschleunigten und bewegten Bezugssystem (dem gestrichenen System)
\[
m \frac{d^2 \mathbf{r}'(t)}{dt^2} = \mathbf{F} + \mathbf{F}_T
\]
\[
\mathbf{F}_T = -m \left[\frac{d^2 \mathbf{r}'(t)}{dt^2} + \mathbf{\omega}(t) \times (\mathbf{\omega}(t) \times \mathbf{r}'(t)) + 2 \mathbf{\omega}(t) \times \frac{dr'(t)}{dt} + \frac{d\mathbf{\omega}(t)}{dt} \times \mathbf{r}'(t) \right]
\]

(5.2.34)

Die vier Summanden in Gleichung (5.2.34) sind

<table>
<thead>
<tr>
<th>Kraft</th>
<th>Gleichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraft aufgrund der linearen Beschleunigung des Bezugssystems</td>
<td>(\mathbf{F}_B(t) = m \mathbf{a}_B(t) = -m \frac{d^2 \mathbf{r}(t)}{dt^2})</td>
</tr>
<tr>
<td>Zentrifugalkraft</td>
<td>(\mathbf{F}_Z(t) = m \mathbf{a}_Z(t) = -m \mathbf{\omega}(t) \times (\mathbf{\omega}(t) \times \mathbf{r}'(t)))</td>
</tr>
<tr>
<td>Corioliskraft</td>
<td>(\mathbf{F}_C(t) = m \mathbf{a}_C(t) = -2m \mathbf{\omega}(t) \times \frac{dr'(t)}{dt})</td>
</tr>
<tr>
<td>Kraft aufgrund der Winkelbeschleunigung</td>
<td>(\mathbf{F}\omega(t) = m \mathbf{a}\omega(t) = -m \frac{d\mathbf{\omega}(t)}{dt} \times \mathbf{r}'(t))</td>
</tr>
</tbody>
</table>

Tabelle 5.4.: Trägheitskräfte

Wenn wir dieses Resultat mit dem früheren Ergebnis Gleichung (5.2.25) , so ist der Unterschied, dass in Gleichung (5.2.25) \(\mathbf{r} \) in der Corioliskraft auftaucht. Da in
Gleichung (5.2.25) \(\omega = \text{const} \) war und der Nullpunkt des rotierenden Koordinatensystems ortsfest war, gilt dass \(r \triangleq r' \) ist. Wenn diese Bedingung wegfällt, muss nach Tabelle 5.4 vorgegangen werden.

5.2.5. Die Erde als rotierendes Bezugssystem

Raumfestes Koordinatensystem

Abbildung 5.10.: Raumfestes und mitbewegtes Koordinatensystem auf der Erde

mitbewegtes Koordinatensystem:

- \(x' \): nach E
- \(y' \): nach N
- \(z' \): nach oben

\(r_0 = 6 \cdot 36 \cdot 10^6 \) m

\(\omega = \frac{2 \pi}{1 d} = 0.727 \cdot 10^{-4} \) s\(^{-1} \)

\(\vartheta = \frac{\pi}{2} - \theta \) die geographische Breite.

Die Winkelgeschwindigkeit ist im gestrichenen Bezugssystem

\[
\omega = \omega (0, \cos \vartheta, \sin \vartheta) \tag{5.2.35}
\]

Der Vektor \(R_0 \) hat die Länge

\[
R_0 = r_0 \sin(\pi/2 - \vartheta) = r_0 \cos(\vartheta) \tag{5.2.36}
\]

Im gestrichenen Bezugssystem hat \(R_0 \) die Koordinaten

\[
R_0 = R_0 (0, - \sin(\vartheta), \cos(\vartheta)) = r_0 (0, - \sin(\vartheta) \cos(\vartheta), \cos^2(\vartheta)) \tag{5.2.37}
\]

Zentrifugalkraft:

\[
F_{\text{zentrifugal}} = m \omega^2 R_0 = m \omega^2 r_0 (0, - \sin \vartheta \cos \vartheta, \cos^2 \vartheta) \tag{5.2.38}
\]

oder betragsmässig

\[
|F_{\text{zentrifugal}}| = F_{\text{zentrifugal}} = m \omega^2 r_0 \cos(\vartheta) \tag{5.2.39}
\]
Die Komponente parallel zum Boden (also in der \(y \)-Richtung) ist
\[
|F_{zentrifugal,y}| = F_{zentrifugal,y} = -m\omega^2 r_0 \sin(\vartheta) \cos(\vartheta) = -\frac{m\omega^2 r_0}{2} \sin(2\vartheta)
\]
(5.2.40)

Wenn \(v' \) die Relativgeschwindigkeit ist, gilt in \(x',y',z',t' \) für die Corioliskraft:
\[
\mathbf{F}_{coriolis} = 2m\omega \begin{pmatrix}
 v'_x \\
 v'_y \\
 v'_z
\end{pmatrix} \times \begin{pmatrix}
 0 \\
 \cos \vartheta \\
 \sin \vartheta
\end{pmatrix} = 2m\omega \begin{pmatrix}
 v'_y \sin \vartheta - v'_z \cos \vartheta \\
 -v'_z \sin \vartheta \\
 v'_x \cos \vartheta
\end{pmatrix}
\]
(5.2.41)

5.2.5.1. Anwendung: Foucault-Pendel

Versuch zur Vorlesung:
Foucault-Pendel (Versuchskarte SW-015)

Das Foucault-Pendel ist an einem Punkt mit der Erde verbunden.
\(-\omega\) projiziert auf \(z' \), dies entspricht der Drehgeschwindigkeit gegen \(x',y',z' \) also
\[
\omega_{Foucault} = -\omega'_z = -\omega \sin \vartheta
\]
(5.2.42)

Rotationsperiode
\[
|T| = \frac{2\pi}{\omega_{Foucault}} = \frac{2\pi}{\omega \sin \vartheta} = \frac{1 \text{ d}}{\sin \vartheta}
\]
(5.2.43)
5.2.5.2. Anwendung: Gezeiten *

Abbildung 5.12.: Erde und Mond

Erde
\[m_E = 5.98 \cdot 10^{24} \text{ kg} \]
\[r_E = 6.38 \cdot 10^6 \text{ m} \]

Mond
\[m_M = 7.3 \cdot 10^{22} \text{ kg} \]
\[r_M = 1.74 \cdot 10^6 \text{ m} \]

Abstand \[r_{EM} = 3.84 \cdot 10^8 \text{ m} \]

Tabelle 5.5.: Parameter von Erde und Mond

Schwerpunkt des Systems Erde-Mond:

\[
 r_S = \frac{r_{EM} m_M}{m_E + m_M}
 = \frac{3.8 \cdot 10^8 \cdot 7.3 \cdot 10^{22}}{6 \cdot 10^{24}} \text{ m}
 = \frac{3.8}{6} \cdot 7.3 \cdot 10^6 \text{ m}
 = 6.3 \cdot 7.3 \cdot 10^5 \text{ m}
 \approx 4.6 \cdot 10^6 \text{ m}
\] (5.2.44)

Erde und Mond drehen sich um den gemeinsamen Schwerpunkt.
Bezogen auf den Erdmittelpunkt herrscht die Gravitationskraft

\[\frac{Gm_M}{r_{em}^2} = a_z \]

des Mondes, die in diesem Punkt auch gleich der Zentrifugalkraft der Erdmasse (konzentriert auf den Schwerpunkt der Erde) ist. Wir rechnen alle Beschleunigungen nach rechts, also in der Richtung des Mondes, positiv.

Weiter ist die Geschwindigkeit des Punktes A bezogen auf die Geschwindigkeit \(v_S \) des Schwerpunktes \(S \) gegeben durch

\[v_A = v_S \frac{r_E - r_S}{r_S} \]

Ebenso gilt für den Punkt B

\[v_B = v_S \frac{r_E + r_S}{r_S} \]

Die Zentrifugalbeschleunigungen berechnen sich dann für A aus

\[a_{z,A} = \frac{v_A^2}{r_E - r_S} \]

und

\[a_{z,B} = \frac{v_B^2}{r_E + r_S} \]

Wenn man die Werte einsetzt, bekommt man
5.2 Klassische Relativität beschleunigter Bezugssysteme

<table>
<thead>
<tr>
<th>Punkt A</th>
<th>Punkt B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldvektor der Gravitation des Mondes g_M</td>
<td>$Gm_M \left(\frac{r_{EM}}{r_{EM} - r_E} \right)^2$</td>
</tr>
<tr>
<td>Zentrifugalschleunigung a_z</td>
<td>$a_z \cdot \frac{r_E - r_S}{r_S} = \frac{Gm_M r_E - r_S}{r_{EM}^2}$</td>
</tr>
<tr>
<td>Summe der Beschleunigungen a</td>
<td>$\frac{Gm_M}{r_{EM}^2} \left(\frac{2r_E}{r_{EM}} + \frac{r_E}{r_S} \right)$</td>
</tr>
</tbody>
</table>

In C gibt es die Zentrifugalschleunigung

$$a_z \approx \frac{Gm_M}{r_{EM}^2} \cdot \frac{r_E}{r_S}$$

Zwischen C und A sowie B gibt es die Differenz der Beschleunigungen

$$|a_{Gez}| = \frac{2Gm_M r_E}{r_{EM}^3}$$ \hspace{1cm} (5.2.45)

Vergleich mit g

$$\frac{a_{Gez}}{g} = \frac{2Gm_M r_E^2}{(r_{EM})^3 Gm_E} = 2 \frac{m_M}{m_E} \left(\frac{r_E}{r_M} \right)^3 \sim 10^{-7}$$ \hspace{1cm} (5.2.46)

Anwendung Schwerkraft in einem Raumschiff

Abbildung 5.14.: „Schwerkraft“ in einem Raumschiff

Nur im Schwerpunkt ist die Zentrifugalkraft gleich der Gravitationskraft
in A ist die Gravitation zu gross
in B ist die Gravitation zu klein

Abbildung 5.15.: „Schwerkraft“ in einem Raumschiff in radialer Richtung

Im Raumschiff ist die Gravitationskraft nicht „Null“.

5.3. Spezielle Relativitätstheorie

5.3.1. Widersprüche zur klassischen Relativität

- Phänomene der Elektrizität widersprechen der Galileischen Relativität. Die Maxwellgleichungen sind nicht invariant gegenüber der Galileischen Relativität.

- Es wurde postuliert, dass Licht sich in einem Äther sich fortpflanzt. Was passiert bei der Fortpflanzung im Äther? Das Beispiel eines Schwimmers in der Donau zeigt:

Jeder Schwimmer habe die Geschwindigkeit v_s gegen das Wasser, beide schwimmen die Strecke s_0 hin und zurück
Schwimmer 1) schwimmt vom Pfeiler zur Boje und zurück.

$$t_1 = \frac{s_0}{v_s + v_D} + \frac{s_0}{v_s - v_D} = \frac{s_0}{v_s - v_D} \left(v_s + v_D + v_s + v_D \right) = \frac{2v_s s_0}{v_s^2 - v_D^2} = \frac{2s_0}{v_s \left(1 - \frac{v_D^2}{v_s^2} \right)}$$

Schwimmer 2) schwimmt vom Pfeiler ans Ufer und zurück. Damit er wieder beim Pfeiler ankommt, muss er seine Schwimmrichtung um den Winkel α gegen die Strömung vorhalten.
Der Vorhaltewinkel wird gegeben durch

\[\sin \alpha = \frac{v_D}{v_s} \]
(5.3.1)

Dann ist die effektive Geschwindigkeit

\[v_{eff} = v_s \cos \alpha \]
(5.3.2)

\[t_2 = \frac{2s_0}{v_{eff}} = \frac{2s_0}{v_s \cos \alpha} = \frac{2s_0}{v_s \sqrt{1 - \frac{v_D^2}{v_s^2}}} \]
(5.3.3)

Die beiden Schwimmer brauchen unterschiedlich lange. Das Verhältnis ihrer Schwimmzeiten ist

\[\frac{t_1}{t_2} = \frac{2v_s s_0 \sqrt{v_s^2 - v_D^2}}{(v_s^2 - v_D^2) 2s_0} = \frac{v_s}{\sqrt{v_s^2 - v_D^2}} = \frac{1}{\sqrt{1 - \frac{v_D^2}{v_s^2}}} \]
(5.3.4)

unabhängig von \(s_0 \).

Der Zeitunterschied ist, andererseits

\[\Delta t = t_1 - t_2 \]

\[\approx \frac{2s_0}{v_s \left(1 - \frac{v_D^2}{v_s^2}\right)} - \frac{2s_0}{v_s \sqrt{1 - \frac{v_D^2}{v_s^2}}} \]

\[\approx \frac{2s_0}{v_s \left(1 - \frac{v_D^2}{v_s^2}\right)} \left(1 - \sqrt{1 - \frac{v_D^2}{v_s^2}}\right) \]

\[\approx \frac{2s_0}{v_s \left(1 - \frac{v_D^2}{v_s^2}\right)} \left(1 - \left(1 - \frac{v_D^2}{2v_s^2} + O\left(\frac{v_D^4}{v_s^4}\right)\right)\right) \]

\[\approx \frac{2s_0 \frac{v_s^2}{v_D}}{v_s \frac{2v_s^2}{v_s^2}} \]

\[= \frac{s_0 v_D^2}{v_s^3} \]
(5.3.5)

Wir machen nun die folgende Identifikation.
• Schwimmer → Licht
• Donau → Äther
• \(v_s \rightarrow c\)
• \(v_D \rightarrow v_{\text{Äther}}\)

Wir erhalten also

\[
\Delta t = \frac{s_0v_{\text{Äther}}^2}{c^3}
\]

(5.3.6)

Die maximale Geschwindigkeitsdifferenz durch den Äther ist im Laufe eines Jahres zwei mal die Bahngeschwindigkeit der Erde um die Sonne, also 60 km s\(^{-1}\).

Der zu \(\Delta t\) gehörende Weglängenunterschied \(\Delta x\) ist

\[
\Delta x = c\Delta t = \frac{s_0v_{\text{Äther}}^2}{c^2}
\]

(5.3.7)

Im Michelson-Morley-Versuch erwartet man für die verwendeten Parameter

\[
\begin{align*}
L &= 10 \text{ m} \\
\lambda &= 300 \text{ nm} \\
v_{\text{Äther}} &= 30 \text{ km s}^{-1} \\
c &= 300000 \text{ km s}^{-1}
\end{align*}
\]

\[
\begin{cases}
L = 10 \text{ m} \\
\lambda = 300 \text{ nm} \\
v_{\text{Äther}} = 30 \text{ km s}^{-1} \\
c = 300000 \text{ km s}^{-1}
\end{cases}
\]

eine Verschiebung um knapp einen Interferenzring.

Wenn man eine Verschiebung um einen Viertel Interferenzring beobachten kann, dann gilt für die Äthergeschwindigkeit

\[
v_{\text{Äther}} \geq c \sqrt{\frac{\Delta x}{s_0}} = 3 \cdot 10^8 \text{ m s}^{-1} \sqrt{(3 \cdot 10^{-7} \text{ m})/4/10 \text{ m}} = 18000 \text{ m s}^{-1}
\]

(5.3.8)

Wie die Rechnung zeigt, ist das Michelson-Morley-Experiment an der Grenze der Signifikanz. Der aufgrund der Messdaten durchaus zweifelhafte Befund der beiden
wurde später glänzend bestätigt. Heute wird eine äquivalente Technik zur Gravi-
tationswellendetektion angewandt.
Es wurde aber kein Gangunterschied beobachtet über eine Jahreszeit. Es gibt nun
zwei Lösungen:

1. Äther wird durch die Erde mitgeführt, aber: die Lichtgeschwindigkeit in Flüssigkeiten zeigt einen verminderten Mitführeffekt

\[v = \frac{(c/n) + u}{1 + (u/cn)} \]

wobei \(u \) die Geschwindigkeit des Mediums mit dem Brechungsindex \(n \) ist. (Siehe Leonhardt und Piwnicki [LP00] und Fizeau [Fiz51]).

2. Lorentz und Fitzgerald sagen, dass der in die Richtung der Ätherbewegung stehende Arm um \(\sqrt{1 - \frac{v^2}{c^2}} \) kürzer wird und so die Laufzeit kompensiert.

Experimente mit elektrischen Ladungen zeigen diese Längenkontraktion

Das Experiment kann so interpretiert werden: Das Interferometer bewegt sich gleich schnell gegenüber dem Äther, unabhängig von der Position auf der Erd-
bahn.

5.3.2. Theorie von Einstein

(Siehe Tipler, Physik [TM04, pp. 1156]) (Siehe Gerthsen, Physik [Mes06, pp. 838])

1. Es gibt kein physikalisch bevorzugtes Inertialsystem. Die Naturgesetze nehmen in allen Inertialsystemen dieselbe Form an.

2. Die Lichtgeschwindigkeit im Vakuum ist in jedem beliebigen Inertialsystem konstant unabhängig vom Bewegungszustand der Quelle.

Eine andere Formulierung des 2. Postulates ist

\[\text{Jeder Beobachter misst für die Lichtgeschwindigkeit } c \text{ im Vakuum den gleichen Wert.} \]

Anders kann man auch sagen

- Relativitätsprinzip: Es gibt keine Möglichkeit, eine absolute Geschwindigkeit zu messen.
- Lichtgeschwindigkeit \(c \) ist unabhängig von der Bewegung der Lichtquelle.
- Licht breitet sich mit \(c = 3 \cdot 10^8 \text{ m s}^{-1} \) aus in jeden Inertialsystem.
- Information bewegt sich nicht schneller als mit \(c \)

Eine sehr gut lesbare Einführung in die Relativitätstheorie bietet das Buch von Jürgen Freund, „Spezielle Relativitätstheorie für Studienanfänger“, [Fre04].
5.3.2.1. Punktereignisse

(Siehe Gerthsen, Physik [Mes06, pp. 838])

Ereignisse sind durch einen Ort und eine Zeit gegeben. Dies kann so ausgedrückt werden, dass 4 Koordinaten zur Angabe eines Ereignisses notwendig sind.

\[\begin{pmatrix} x \\ y \\ z \\ ct \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \]

(5.3.9)

Wir multiplizieren hier die Zeit mit der Lichtgeschwindigkeit, um ihr die Einheit einer Länge zu geben.

Zwei Ereignisse sind in jedem Inertialsystem gleichzeitig, wenn sie am Ort und zur gleiche Zeit (an dem betreffenden Ort) stattfinden.

Ein Bezugssystem ist allgemein formuliert ein System von Mechanismen und materiellen Körperrn, (Z.B. Uhren und Massstäbe), mit deren Hilfe die Lage anderer Körper zu einem bestimmten Zeitpunkt relativ zu den Massstäben angegeben werden kann (das Punktereignis).

Ein Körper ist also eine Folge von Punktereignissen. Man nennt diese Linie die Weltlinie des Körpers.

All das was sich auf mich wirkt, oder auf was ich wirken kann, muss sich in einem Gebiet befinden, von dem aus ein Punktereignis mit dem jetzt mit einer Geschwindigkeit \(v < c \) verbunden werden kann. In einem Koordinatensystem mit den Achsen \(x, y, z \) und \(ct \) bedeutet dies, dass nur Punktereignisse aufeinander einwirken können, bei denen die Steigung der Verbindungs linie steiler als \(\pi/4 \) ist.

5.3.2.2. Rückdatierung

(Siehe Gerthsen, Physik [Mes06, pp. 839])

Um die Lage eines Punktereignisses in einer für alle möglichen Beobachter nachvollziehbaren Weise anzugeben, muss das Hilfsmittel der Rückdatierung angewandt werden.

Im Regelfall werden bei der Diskussion der speziellen Relativitätstheorie Licht- oder Radiosignale verwendet. Sie haben den Vorteil, dass ihre Ausbreitungsgeschwindigkeit in allen Inertialsystemen c ist. Natürlich könnten wir auch Schall, oder jedes andere Medium verwenden: die Berechnungen wären durch die niedrigere Geschwindigkeit bedingt aber komplizierter.
Abbildung 5.20.: Die Zeitachse wird mit ct bezeichnet, um die gleiche Einheit wie die x-Achse zu haben. Die x-Achse fasst alles zusammen, was **jetzt** geschieht. Die ct-Achse fasst alles zusammen, was am Ort des Beobachters, **hier** geschieht. Zum dargestellten Zeitpunkt hat der Beobachter bei $x = 0$ und $ct = 0$ Kenntnis über alles was im zeitartigen Gebiet unterhalb der x-Achse liegt. Alles was im zeitartigen Gebiet über der x-Achse liegt, kann beeinflusst werden. Zum dargestellten Zeitpunkt gibt es keine gegenseitige Beeinflussung von Punkten im raumartigen Gebiet.

5.3.2.3. Relativistisches Mass

Wir definieren als Mass (verallgemeinerte Längenmessung)

$$s_{1,2}^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 - c^2(t_2 - t_1)^2 \quad (5.3.10)$$

Dies ist analog zum Euklidischen Mass

$$s_{1,2, Euklid}^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$

Zwei Ereignisse heissen **zeitartig**, wenn

$$s_{1,2}^2 < 0$$

Zwei Ereignisse heissen **raumartig**, wenn

$$s_{1,2}^2 > 0$$

5.3.2.4. Gleichzeitigkeits

Zwei Novae explodieren im Weltall. Wir betrachten diese Ereignisse in zwei Bezugssystemen, dem Bezugssystem von A und dem dazu mit der Geschwindigkeit
Abbildung 5.21.: Die zwei Novae sollen an den angegebenen Orten und Zeiten ausbrechen. „B“ befindet sich in einem Inertialsystem, das sich mit der Geschwindigkeit \(v \) gegenüber dem Inertialsystem von „A“ bewegt.

In der Abbildung stellt die horizontale Achse alle drei Raumkoordinaten zusammen dar. Am Ort \(r = 0 \) befindet sich \(A \) in Ruhe. Deshalb ist die Zeitachse von \(A \) sein „hier“. Andererseits haben alle Punkte auf der \(r \)-Achse die gleich Zeit wie \(A \), sie befinden sich also „jetzt“. Die „hier“ und „jetzt“ eines sich in einem mit der Geschwindigkeit \(v \) gegenüber \(A \)s Inertialsystem bewegenden Beobachters \(B \) sind gekippt gegenüber meinen Koordinatenachsen, wobei der Kippwinkel \(\alpha \) der Zeitachse (\(ct' \), „hier“) durch die Geschwindigkeit gegeben ist. Unbekannt ist der Kippwinkel \(\beta \) der Raumachse (\(r' \), „jetzt“). \(B \) soll gleichzeitig die Explosion von je einer Nova links und rechts von ihm beobachten. Beide Novae sollen den gleichen Abstand von \(B \) haben. Sie sollen, als \(B \)s Weltlinie die von \(A \) kreuzte ausgebrochen sein. Dies kann wie folgt eingesehen werden:

- Licht breitet sich mit \(c \) in jedem Inertialsystem aus. Ich kann also, auch wenn ich nicht weiss, wie die Geschwindigkeiten in \(B \)s System zu transformieren sind, die Weltlinie des Lichtes angeben.

- Die Zeitachse von \(B \) ist seine Geschwindigkeit \(u \). Die beiden Weltlinien des Lichtes aus jedem der beiden Ereignisse müssen sich auf \(B \)s Weltlinie, seiner \(ct' \)-Achse, schneiden.

- Der Winkel \(PRQ \) ist ein rechter Winkel, da beide Lichtgeraden die \(x \)-Achse von \(A \) unter \(\pi/4 \) schneiden. Also ist \(PQR \) ein rechtwinkliges Dreieck.
• Da B die beiden Novae gleichzeitig sieht, muss der Abstand gleich zur Zeitachse von B (ct') gleich sein. Also ist der Schnittpunkt der Orts- und der Zeitachse in B's System der Mittelpunkt des Thaleskreises des rechtwinkligen Dreiecks RPQ. Deshalb sind die Strecken $0P = 0Q = 0R$ gleich.

Zwischenbeobachtung: Die beiden roten Linien unter $\pi/4$ stellen die Ausbreitung des Lichtes dar, die *Lichtgeraden*: die Lichtgeschwindigkeit bei unserer Wahl der Koordinaten ist 1. Die beiden roten Linien durch die beiden Ereignisse zeigen, dass B beide Novae gleichzeitig wahrnimmt. A hingegen sieht zuerst die Nova 1, dann die Nova 2, da der Schnittpunkt der ersten roten Linie mit der ct-Achse unter dem der zweiten Linie liegt.

Der Begriff der Gleichzeitigkeit hängt vom betrachteten Inertialsystem ab.

• B's Geschwindigkeit gegenüber A legt den Winkel α fest. Gesucht ist der Winkel β

• Aus dem Winkel PRQ liest man ab:

\[\frac{\pi}{2} = \phi + \gamma. \]

• Da das Dreieck $Q0R$ gleichschenklig ist, ist auch

\[\epsilon = \gamma \]

• Aus dem Dreieck $0RT$ und dem Winkel der beiden Lichtgeraden zur ct-Achse beziehungsweise zur r-Achse von $\pi/4$ folgt

\[\alpha + 3\pi/4 + \phi = \pi \]

oder

\[\alpha = \pi/4 - \phi. \]

• Aus dem Dreieck $0SQ$ und dem Winkel der beiden Lichtgeraden zur ct-Achse beziehungsweise zur r-Achse von $\pi/4$ folgt

\[\beta + \pi/4 + [\pi - \epsilon] = \pi \]

und mit $\epsilon = \gamma = \pi/2 - \phi$ folgt

\[\beta = \epsilon - \pi/4 = \pi/4 - \phi. \]

Also ist

\[\alpha = \beta \] (5.3.11)
Diagramme wie das aus der Abbildung 5.21 heissen *Minkowski-Diagramme*.

Je schneller B ist, desto mehr werden, von A aus gesehen, seine Achsen gegen die $\pi/4$ Linie gekippt.

Abbildung 5.22.: Die beiden Novae aus der Sicht von B.

Ereignisse, die aus Bs Sicht gleichzeitig sind, sind für A nicht gleichzeitig, und umgekehrt.

Relationen zwischen Ereignissen sind nur dann sinnvoll zu beschreiben, wenn gleichzeitig auch das Bezugssystem angegeben wird.

In jedem Inertialsystem gibt es konsistente Masseinheiten, die aber von Inertialsystem zu Inertialsystem verschieden sind.
5.3.3. Längenkontraktion

Wir betrachten zwei Massstäbe, einer der im Ruhesystem von A entlang der x-Achse liegt und in Ruhe ist, mit einem Ende bei $(0, 0)$ und einer, der sich entlang der x-Achse oder der r-Achse mit der Geschwindigkeit v bezüglich des Bezugs-systems von A bewegt. Im Bezugs-system von B (gekennzeichnet durch die Koordinaten x', t') ist der zweite Massstab in Ruhe.

Abbildung 5.23.: Massstabsvergleich

Da kein Bezugs-system bevorzugt ist, muss meine Beschreibung der Situation und seine äquivalent sein.

Mein Massstab ist für B verkürzt, während seiner für mich kürzer ist. Der Verkürzungsfaktor f muss für beide der gleiche sein:

$$f = \frac{0P}{0Q} = \frac{0Q'}{0P'}$$

und damit auch

$$f^2 = \frac{0P}{0Q} \cdot \frac{0Q'}{0P'}$$

Nun ist

$$\frac{0Q'}{0Q} = \frac{1}{\cos \alpha}$$
und nach dem Sinussatz

\[
\frac{0P}{0P'} = \frac{\sin(\pi/2 - 2\alpha)}{\sin(\pi/2 + \alpha)} = \frac{\cos(2\alpha)}{\cos \alpha}
\]

Damit ist

\[
f^2 = \frac{\cos(2\alpha)}{\cos^2 \alpha} = \frac{\cos^2 \alpha - \sin^2 \alpha}{\cos^2 \alpha} = 1 - \tan^2 \alpha
\]
(5.3.13)

\(f\) ist die Steigung der Weltline eines Punktes mit der Geschwindigkeit \(v\).

\[
v = \frac{x}{t} = \frac{cx}{ct}
\]

Die Steigung ist dann

\[
\frac{v}{c} = \frac{x}{ct} = \tan \alpha
\]

Wir erhalten also

\[f = \sqrt{1 - \frac{v^2}{c^2}} \]
(5.3.14)

Die in ihrem Ruhesystem gemessene Länge \(\ell\) erscheint in einem dazu in Richtung der Länge bewegten Bezugssystem mit der Länge

\[\ell' = \ell \sqrt{1 - \frac{v^2}{c^2}} \]
(5.3.15)

In jedem gegen das Inertialsystem des Beobachters mit \(v\) bewegten Inertialsystem erscheinen die in Richtung der Bewegung zeigenden Längen um \(f = \sqrt{1 - \frac{v^2}{c^2}}\) verkürzt.

In mehreren Dimensionen entstehen durch die Laufzeiten vom Bildpunkt zum Auge zusätzliche Verzerrungen, so dass Objekte nicht einfach verkürzt erscheinen.

Als Beispiel betrachten wir eine Länge. \(a\) sei die Länge gemessen im ruhenden System. \(a'\) sei die Länge gemessen im bewegten System. Dann ist

\[a = f \cdot a' = a' \sqrt{1 - \frac{v^2}{c^2}}\]
5.3.4. Uhrenvergleich

Aus R, beziehungsweise R' kann das Punkteignis „Uhr zeigt 1“ im anderen Bezugssystem rekonstruiert werden. Die Argumentation ist analog wie beim Längenvergleich. Wir fordern:

\[f = \frac{0P}{0Q} = \frac{0Q'}{0P'} \]

und damit
\[f^2 = \frac{\overline{0P} \overline{0Q'}}{\overline{QQ'} \overline{0P'}} \]

0QQ' ist ein rechtwinkliges Dreieck. Also ist

\[\frac{\overline{0Q}}{\overline{QQ'}} = \cos \alpha \]

Das Dreieck 0PP' ist ein allgemeines Dreieck, bei dem der Sinussatz

\[\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R \]

angewendet werden kann, wobei b die \(\beta \) gegenüberliegende Seite ist, und analog weiter.

Wenn wir den Schnittpunkt \(\overline{PP'} \) mit \(\overline{QQ'} \) mit \(U \) bezeichnen, so ist das rechtwinklige Dreieck \(UQP \) kongruent zu 0QQ'. Also ist \(\angle PUQ = \alpha \) und \(\angle UPQ = \pi/2 - \alpha \). Der Aussenwinkel dazu ist \(\angle 0PP' = \pi/2 + \alpha \). Dieser Winkel liegt \(\overline{UP} \) gegenüber. Aus der Winkelsumme im Dreieck bekommt man schliesslich \(\angle 0PP' = \pi - \alpha - (\pi/2 + \alpha) = \pi/2 - 2\alpha \). Dieser Winkel liegt \(\overline{UP} \) gegenüber. Also ist

\[\frac{\overline{0P}}{\sin(\pi/2 - 2\alpha)} = \frac{\overline{0P'}}{\sin(\pi/2 + \alpha)} \]

und

\[\frac{\overline{0P}}{\overline{0P'}} = \frac{\sin(\pi/2 - 2\alpha)}{\sin(\pi/2 + \alpha)} = \frac{\cos(2\alpha)}{\cos \alpha} \]

sowie

\[f^2 = \frac{\overline{0P} \overline{0Q'}}{\overline{0Q} \overline{0P'}} = \frac{\overline{0P} \overline{0Q'}}{\overline{0P'} \overline{0Q}} = \cos(2\alpha) \frac{1}{\cos \alpha} \frac{1}{\cos \alpha} = 1 - \tan^2 \alpha \]

tan \(\alpha \) ist die Steigung der Weltlinie. Also bekommen wir wieder

\[f = \sqrt{1 - \frac{v^2}{c^2}} \] \hspace{1cm} (5.3.16)

Jeder Beobachter sieht die Uhr des anderen erst später die 1 erreichen. Bewegte Uhren gehen also langsamer wegen der Zeitdilatation.

Link zur Vorlesung: [Zeitdilatation](#)
Zwischen zwei Punktereignissen misst derjenige den kürzesten Abstand, für den sie gleichzeitig erfolgen (bei ihm ist der Massstab am längsten!).

Da wir keine Aussage über die Natur der Uhren gemacht haben, müssen wir schließen, dass die obige Aussage für alle Prozesse gilt.

Wir können das oben gesagte auch so formulieren:

Im bewegten System \((\text{Geschwindigkeit } v)\) am Punkt 0 gibt es zwei Ereignisse \(A\) und \(B\) im Abstand \(t'\)

Im Ruhesystem \(x,y,z,t\) misst man

\[
 t (x = vt, 0, 0) = \frac{t' (x' = 0, y' = 0, z' = 0)}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{5.3.17}
\]

Der Vollständigkeit halber steht unten noch das in den Lehrbüchern übliche, kaum verständliche Diagramm.

Abbildung 5.26.: Traditionelle Darstellung des Uhrenvergleichs nach (Siehe Gertshen, Physik [Mes06, pp. 842])
5.3.5. Der relativistische Dopplereffekt

Abbildung 5.27.: Der longitudinale relativistische Dopplereffekt. Links ist mein Standpunkt, rechts der von B.

Die obige Skizze soll die Frage klären, welche Periode T' B misst für ein Signal, für das ich die Periode T messe. Die Berechnung läuft wie folgt:

- B's Weltlinie läuft schräg zu der meinen.
- Sinussatz:
 \[\overline{OQ} = \overline{OP} \frac{\sin \pi/4}{\sin(\pi/4 - \alpha)} = \overline{OP} \frac{1}{\cos \alpha - \sin \alpha} \]
- Die Zeitdifferenz ist durch den vertikalen Abstand gegeben:
 \[\overline{OQ} \cos \alpha = \overline{OP} \frac{1}{\tan \alpha} = \overline{OP} \frac{1}{1 - v/c} \]
- Damit ist
 \[T' = \frac{T}{1 - v/c} \]
 der normale Dopplereffekt, der für $v \ll c$ gilt.
- Die Zeiteinheit ist auf B's Zeitachse um \(1/\sqrt{1-v^2/c^2}\) grösser.
- Also muss
 \[T' = T \sqrt{\frac{1-v^2/c^2}{1-v/c}} \]
 sein.
- Mit der Frequenz $\nu = 1/T$ bekommt man:
 \[\nu' = \nu \frac{1-v/c}{\sqrt{1-v^2/c^2}} = \nu \sqrt{\frac{1-v/c}{1+v/c}} \]
B würde anders argumentieren (rechte Seite von Abbildung 5.27)

- Ohne Berücksichtigung der Zeitdilatation wäre:
 \[T' = T \frac{\sin(3\pi/4 - \alpha)}{\sin(\pi/4)} = T \left(1 + \frac{v}{c}\right) \]

- Die Zeitdilatation, die nach Bs Ansicht für mich gilt:
 \[T' = T \frac{1 + v/c}{\sqrt{1 - v^2/c^2}} \]

- Frequenz:
 \[\nu' = \nu \frac{\sqrt{1 - v^2/c^2}}{1 + v/c} = \nu \frac{1 - v/c}{1 + v/c} \]

Der Dopplereffekt wird also durch die spezielle Relativitätstheorie für alle Inertialsysteme konsistent beschrieben.

Longitudinaler relativistischer Dopplereffekt:

\[\nu' = \nu \frac{\sqrt{1 - \frac{v}{c}}}{1 + \frac{v}{c}} \quad (5.3.18) \]

wenn im ungestrichenen System mit der *Frequenz* \(\nu \) Strahlung ausgesendet wird und in dem mit \(v \) sich dazu bewegenden gestrichenen System \(\nu' \) gemessen wird.

Abbildung 5.28.: Bewegungsrichtung beim transversalen relativistischen Dopplereffekt.
Wenn eine Bewegung im Winkel α schräg zur zur Beobachtungsrichtung verläuft, ist der relevante Längenunterschied nicht $\Delta\ell'$ sondern $\Delta\ell' \cos \alpha$. Sei T' die Periodendauer im bewegten Bezugssystem und $\Delta\ell'$ die Distanz, um die sich das bewegte Bezugssystem in T' bewegt. Die Zeitdilatation ist unabhängig von der Bewegungsrichtung, die Längenkontraktion jedoch nicht!

Wir erhalten die Beziehungen

\[
\Delta\ell \cos \alpha = -\frac{vT}{\sqrt{1 - v^2/c^2}} \cos \alpha \quad (5.3.19)
\]

\[
\Delta t' = \frac{T}{\sqrt{1 - v^2/c^2}} \quad (5.3.20)
\]

\[
T' = \Delta t' + \frac{\Delta\ell \cos \alpha}{c} \quad (5.3.21)
\]

\[
T' = \frac{T}{\sqrt{1 - v^2/c^2}} + \frac{vT}{c \sqrt{1 - v^2/c^2}} \cos \alpha = \frac{T}{\sqrt{1 - v^2/c^2}} \left(1 + \frac{v}{c} \cos \alpha\right) \quad (5.3.22)
\]

Eingesetzt ergibt sich

\[
T' = \frac{T}{\sqrt{1 - v^2/c^2}} + \frac{vT}{c \sqrt{1 - v^2/c^2}} \cos \alpha = \frac{T}{\sqrt{1 - v^2/c^2}} \left(1 + \frac{v}{c} \cos \alpha\right)
\]

Für die Frequenzen ($\nu = 1/T$) gilt dann

\[
\nu' = \nu \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 + \frac{v}{c} \cos \alpha} \quad (5.3.23)
\]

Für $\alpha = \frac{\pi}{2}$ bekommt man den transversalen Dopplereffekt

\[
\nu' = \nu \sqrt{1 - \frac{v^2}{c^2}} \quad (5.3.24)
\]

Dies ist nichts anderes als ein Ausdruck der Zeitdilatation. Bei Schallwellen gibt es keinen transversalen Dopplereffekt.

Für $\alpha = 0$ erhalten wir den longitudinalen Dopplereffekt.

\[
\nu' = \nu \sqrt{\frac{1 - \frac{v}{c}}{1 + \frac{v}{c}}} \quad (5.3.25)
\]

5.3.6. Addition von Geschwindigkeiten

Mit diesem Gedankenexperiment soll die folgende Frage beantwortet werden:

Wenn ein Inertialsystem 1 gegenüber dem Inertialsystem 2 die Geschwindigkeit u hat und dieses wiederum gegenüber dem Inertialsystem 3 die Geschwindigkeit v hat, was ist dann die Geschwindigkeit des Inertialsystems 1 gegenüber dem Inertialsystem 3.
Abbildung 5.29.: Drei gegeneinander sich bewegende Inertialsysteme

Wir berechnen die Geschwindigkeit w anhand eines Gedankenexperimentes. In diesem Gedankenexperiment soll ein Meteorit das Inertialsystem 1 darstellen, „ich“ das Inertialsystem 2 und B das Inertialsystem 3. Wir haben

- B's Geschwindigkeit gegen mein Bezugssystem sei v. (Inertialsystem 2 gegen Inertialsystem 3). Diese Geschwindigkeit zeigt (Reihenfolge!) in die positive x-Richtung.

- Die Geschwindigkeit des Meteoriten gegen mein Bezugssystem sei u in die negative x-Richtung (Inertialsystem 1 gegen Inertialsystem 2).

- Die Weltlinie des Meteoriten, die Weltlinie von B sowie meine Weltlinie kreuzen alle im Punkte 0.

- Zum Zeitpunkt der Kreuzung aller drei Weltlinien werden alle Uhren auf Null gesetzt.

Abbildung 5.30.: Addition von Geschwindigkeiten
Im Punkte R' misst B durch Rückdatierung, dass der Meteorit zur Zeit t' in P und er in R gewesen sind.

Die Länge einer Einheit auf $Bs\ ct'$-Achse und die Länge einer Einheit von Bs Ortsachse x' sind gleich, unabhängig von Bs Geschwindigkeit v. Wäre das nicht so, dann wäre eine Achse, die ct'-Achse vor den anderen Achsen ausgezeichnet.

In dem durch R gegebenen Zeitpunkt t' bestimmt B die Geschwindigkeit des Meteoriten durch

$$ w = \frac{PR}{0R} = \frac{cPR}{0R} \quad (5.3.26) $$

Damit berechnet man mit dem Sinussatz

$$ w = \frac{PR}{0R} = c \sin(\alpha + \delta) = \frac{c}{\cos(\alpha - \delta)} \sin(\alpha \cos \delta + \cos \alpha \sin \delta) = c \frac{\cos \alpha \cos \delta + \sin \alpha \sin \delta}{1 + \tan \alpha \tan \delta} = \frac{v + u}{1 + \frac{uv}{c^2}} \quad (5.3.27) $$

Die relativistische Summe zweier Geschwindigkeiten ist

$$ w = \frac{u + v}{1 + uv/c^2} \quad (5.3.28) $$

ein Wert, der um $(1 + uv/c^2)^{-1}$ kleiner ist als bei der klassischen Addition von Geschwindigkeiten.

Es gibt die folgenden Spezialfälle:

- $v = c$: $w = \frac{u+c}{1+uv/c^2} = c \frac{2u+c}{c+u} = c$ unabhängig von u
- $u = v$: $w = \frac{2u}{1+u^2/c^2}$
- $u = 0$: $w = \frac{0+v}{1+0v/c^2} = v$. Dies bedeutet, dass in dem Falle die klassischen Gleichungen wieder gelten sollten.
- $uv \ll c^2$: $w = \frac{u+v}{1+uv/c^2} \approx (u+v)(1-uv/c^2) \approx u+v$

Aus den Spezialfällen lernt man
c ist die maximal mögliche Geschwindigkeit.

Drei Beispiele:

- \(u = v = 0.5c \): \(w = \frac{c}{1+0.25} = \frac{4}{5}c \)
- \(u = v = 0.9c \): \(w = \frac{1.8c}{1+0.81} = \frac{180}{181}c \)
- \(u = v = 8900 \text{ m} \text{s}^{-1} \): \(w = 17799.99998 \text{ m} \text{s}^{-1} \)

5.3.7. Messung von Beschleunigungen

(Siehe Gerthsen, Physik [Mes06, pp. 845])
Das folgende Gedankenexperiment soll zur Ableitung des Messverfahrens für relativistische Beschleunigungen dienen.

- \(B \) soll im Moment des Zusammentreffens mit \(A \) einen Körper \(K \) beschleunigen lassen.
- die Anfangsgeschwindigkeit für \(B \) ist \(u'(t' = 0) = 0 \).
- Nach der Zeit \(\Delta t' \to 0 \) misst \(B \) die Geschwindigkeit \(u' \) und bestimmt die Beschleunigung aus
 \[a' = \frac{u'}{\Delta t'} \]
- Für \(A \) sieht die Situation folgendermassen aus:
 - Die Anfangsgeschwindigkeit des Körpers \(K \) ist diejenige von \(B \), also \(u(t = 0) = v \).
 - Nach der Zeit \(\Delta t = \frac{\Delta t'}{\sqrt{1-v^2/c^2}} \) wird die Geschwindigkeit \(u \) gemessen.
 - Zur Zeit der zweiten Messung hat \(K \) für mich nach dem Additionstheorem die Geschwindigkeit
 \[w = \frac{v + u'}{1 + vu'/c^2} \]
Die Geschwindigkeit von K nimmt nach

\[\Delta w = \frac{v + u'}{1 + vu'/c^2} - v \]
\[\approx (v + u') \left(1 - \frac{vu'}{c^2} \right) - v \]
\[= v - \frac{v^2 u'}{c^2} + u' - \frac{vu'^2}{c^2} - v \]
\[\approx -\frac{v^2 u'}{c^2} + u' \]
\[= u' \left(1 - \frac{v^2}{c^2} \right) \]
zu.

Die Beschleunigung, die A misst, ist

\[a = \frac{\Delta w}{\Delta t} = \frac{u'}{\Delta t} \left(1 - \frac{v^2}{c^2} \right) = \frac{u'}{\Delta t'} \left(1 - \frac{v^2}{c^2} \right)^{3/2} = a' \left(1 - \frac{v^2}{c^2} \right)^{3/2} \]

Die von B gemessene longitudinalen Beschleunigung \(a' \) ist grösser als die von A gemessene Beschleunigung

\[a = a' \left(1 - \frac{v^2}{c^2} \right)^{3/2} \] \hspace{1cm} (5.3.29)

5.3.8. Bewegte Masse

(Siehe Tipler, Physik [TM04, pp. 1176]) \hspace{1cm} (Siehe Gerthsen, Physik [Mes06, pp. 846])

Abbildung 5.31.: Gedankenexperiment zur Bestimmung der relativistischen Masse

Von dem Startturm aus werden zwei identische Raketen in kurzer Zeit auf die Geschwindigkeit \(v \) oder \(-v\) beschleunigt. Wir betrachten die Situation nach der
Relativität

Beschleunigung. Im Ruhesystem des Startturms ist klar, dass der Schwerpunkt S am Ort bleibt, da wir eine bezüglich des Startturms symmetrische Situation haben. Für den Reisenden in der Rakete A sieht die Situation so aus:

- Der Startturm bewegt sich mit v nach rechts.
- B bewegt sich bezüglich des Startturms mit v nach rechts.
- Für A ist Bs Geschwindigkeit

$$w = \frac{2v}{1 + v^2/c^2} \quad (5.3.30)$$

nach rechts nach Gleichung (5.3.28).

Für den Reisenden in der Rakete B sieht die Situation so aus:

- Der Startturm bewegt sich mit v nach links.
- A bewegt sich bezüglich des Startturms mit v nach links.
- Für B ist As Geschwindigkeit

$$w = \frac{2v}{1 + v^2/c^2}$$

nach links nach Gleichung (5.3.28).

Daraus würden A und B mit klassischer Mechanik gegenseitig schliessen, dass der Schwerpunkt des Systems sich vom Startturm wegbewegt.

Nach dem 1. Einsteinschen Postulat muss die Beschreibung sowohl für das Ruhesystem des Startturms wie auch für A (und für B) konsistent sein. **Der Schwerpunkt S kann sich nur dann für A immer über dem Startturm befinden, wenn die Masse von B, m_B, zunimmt.** Der Abstand (für grosse Zeiten) von B zum Startturm im Bezugssystem von A geht wie

$$\ell_B = (w - v) \cdot t = \left(\frac{2v}{1 + v^2/c^2} - v \right) t \quad (5.3.31)$$

Der Abstand des Startturms von A ist in dessen Bezugssystem $\ell_A = v \cdot t$. Wir können uns auch vorstellen, dass wir das System aus den beiden Raketen am Schwerpunkt unterstützen, die Situation ist analog zu einer Balkenwaage. Bezuglich des Schwerpunktes muss die Summe aller Drehmomente null sein. Dies geht offensichtlich nur, wenn die Masse von B, m_B nicht konstant, sondern von der Geschwindigkeit w abhängt. Also ist

$$m_A \ell_A = m_B(w) \ell_B = m_B(w) \left(\frac{2v}{1 + v^2/c^2} - v \right) t = m_A v \cdot t \quad (5.3.32)$$

Wir erhalten deshalb
\[m_B(w) = m_A \frac{v}{1 + v^2/c^2 - v} \]

\[= m_A \frac{1}{1 + v^2/c^2 - 1} \]

\[= m_A \frac{1}{2 - (1 + v^2/c^2)} \]

\[= \frac{1 + v^2/c^2}{1 - v^2/c^2} \]

\[= m_A \frac{c^2 + v^2}{c^2 - v^2} \] \hspace{1cm} (5.3.33)

Diese Gleichung sollte nun mit \(w \) ausgedrückt werden. Wir verwenden den Trick, dass

\[c^2 - v^2 = \sqrt{(c^2 - v^2)^2} \]

\[= \sqrt{c^4 - 2c^2v^2 + v^4} \]

\[= \sqrt{c^4 + 2c^2v^2 + c^4 - 4c^2v^2} \]

\[= \sqrt{(c^2 + v^2)^2 - 4c^2v^2} \]

ist\(^1\). Dann ist

\[\frac{c^2 + v^2}{c^2 - v^2} = \frac{1}{\sqrt{\frac{(c^2 - v^2)^2}{(c^2 + v^2)^2}}} \]

\[= \frac{1}{\sqrt{\frac{(c^2 + v^2)^2 - 4c^2v^2}{(c^2 + v^2)^2}}} \]

\[= \frac{1}{\sqrt{1 - \frac{4c^2v^2}{(c^2 + v^2)^2}}} \]

\[= \frac{1}{\sqrt{1 - \frac{4v^2}{c^4(1 + v^2/c^2)^2}}} \] \hspace{1cm} (5.3.34)

Nun ist aber mit der Gleichung (5.3.30) für \(w \) gerade \(\frac{4v^2}{(1 + v^2/c^2)^2} = w^2 \) und damit

\[m_B(w) = m_A \frac{1}{\sqrt{1 - w^2/c^2}} \] \hspace{1cm} (5.3.35)

\(^1\)Das Auflösen der Gleichung (5.3.30) für \(w \) nach \(v \) und das nachfolgende Einsetzen führen auf schwierigste quadratische Gleichungen. Man kann von diesem Rechenweg nur abraten.
Die mit der Geschwindigkeit \(v \) bewegte Masse (in ihrem Ruhesystem mit \(m_0 \), Ruhemasse) hat den Wert

\[
m(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}} \tag{5.3.36}
\]

Der Rechenweg mit dem Startturm diente dazu, eine Markierung für den Schwerpunkt zu haben. **Der Startturm ist eine Hilfkonstruktion.**

Die zu einem Inertialsystem mit der Geschwindigkeit \(v \) bewegte Masse ist immer schwerer als eine im Inertialsystem ruhende Masse.

\[
m' = \frac{m}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{5.3.37}
\]

Beispiel:

Ein Mensch, \(m = 60\, kg \) bewegt sich mit \(v = 1\, m/s \). Die relativistische Massenzunahme \(\Delta m = m(v) - m_0 \) ist dann

\[
\Delta m = 3.34 \cdot 10^{-16}\, kg
\]

dies entspricht der Masse von \(1.68 \cdot 10^{10} \, 12\, C \)-Atomen.

5.3.9. Masse-Energie-Äquivalenz

(Siehe Tipler, Physik [TM04, pp. 1176]) (Siehe Gerthsen, Physik [Mes06, pp. 847])

Nach Gleichung (5.3.36) wird die Arbeit (Kraft mal Weg), die in eine Masse gesteckt wurde, nicht nur zur Erhöhung der Geschwindigkeit, sondern auch zur Erhöhung der Masse verwendet. Wir können Gleichung (5.3.36) für kleine Geschwindigkeiten entwickeln

\[
m(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = m_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \approx m_0 + \frac{m_0 v^2}{2 \, c^2} + \ldots \tag{5.3.38}
\]

Diese Gleichung könnte man auch als
m(v)c² = \frac{m_0c²}{\sqrt{1 - v²/c²}}
= m_0c² \left(1 - \frac{v²}{c²}\right)^{-1/2}
≈ m_0c² + \frac{m_0}{2}v² + \ldots
= m_0c² + E_{\text{kin, klassisch}} + \ldots \quad (5.3.39)

Nach der relativistischen Mechanik entspricht einer (geschwindigkeitsabhängigen) Masse die Energie

\[E = m(v)c² \quad (5.3.40) \]

Die relativistische kinetische Energie ist

\[E_{\text{kin, rel}} = E - m_0c² = m_0c² \left(\frac{1}{\sqrt{1 - v²/c²}} - 1\right) \quad (5.3.41) \]

Der relativistische Impuls ist analog zum klassischen Impuls definiert:

\[\mathbf{p} = m(v)\mathbf{v} = \frac{m_0\mathbf{v}}{\sqrt{1 - v²/c²}} \quad (5.3.42) \]

Die relativistische Kraft ist analog zum 2. Newtonschen Gesetz durch

\[\mathbf{F} = \frac{d\mathbf{p}}{dt} = \frac{d(m(v)\mathbf{v})}{dt} \quad (5.3.43) \]

gegeben.

Die Gesamtenergie \(E \) kann wie folgt umgeformt werden
\[E = m(v)c^2 \]

\[
= \sqrt{m_0^2c^4 - m_0^2c^2v^2 + m_0^2c^2v^2} \\
= \sqrt{m_0^2c^4 + m_0^2c^2v^2} \\
= \sqrt{m_0^2c^4} \\
= \sqrt{m_0^2c^4 + c^2p^2} \]

Dieses Resultat nennt man den relativistischen Energiesatz

\[E = \sqrt{m_0^2c^4 + c^2p^2} \] \hspace{1cm} (5.3.45)

5.3.10. Relativistisches Kraftgesetz *

Wir betrachten eine Masse \(m \), die mit einer konstanten Kraft \(F = F_0 \) beschleunigt werde. Nach dem 2. Newtonschen Gesetz ist

\[
F = \frac{d}{dt}p \\
= \frac{d}{dt}(mv) \\
= \frac{dm}{dt}v + m\frac{dv}{dt} \\
= \left(\frac{d}{dt} \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \right) v + \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{dv}{dt} \\
= -\frac{1}{2} \frac{m_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{3}{2}}} \left(\frac{-2\frac{v}{c}}{c}\right) v dv + \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{dv}{dt} \\
= \frac{m_0a}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{3}{2}}} \hspace{1cm} (5.3.46)
\]

Daraus berechnet man skalar

\[
\frac{F}{m_0} dt = \frac{dv}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{3}{2}}} \hspace{1cm} (5.3.47)
\]
und

\[\int_{0}^{t} \frac{F}{m_0} \, dt = \frac{F}{m_0} t \]

\[= \frac{v(t)}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{3}{2}}} \bigg|_0^v(t) \]

\[= \frac{v(t)}{\left(1 - \frac{v(t)^2}{c^2}\right)^{\frac{3}{2}}} \]

(5.3.48)

Daraus folgt

\[v(t) = \frac{F}{m_0} t \frac{1}{\sqrt{1 + \left(\frac{F t m_0}{c^2}\right)^2}} \]

(5.3.50)

und

\[a(t) = \frac{dv(t)}{dt} \]

\[= \frac{F}{m_0} \frac{1}{\left(1 + \left(\frac{F t m_0}{c^2}\right)^2\right)^{\frac{3}{2}}} \]

(5.3.51)

Abbildung 5.32.: Zeitverlauf der relativistischen Geschwindigkeit (links) und der relativistischen Beschleunigung bei konstanter Kraft.

Die folgenden Approximationen können gemacht werden:

\[v \approx \begin{cases}
 c \left(1 - \frac{1}{2} \left(\frac{F t m_0}{m_0 c^2}\right)^{-2}\right) & \text{für } t \ll \frac{m_0 c}{F} \\
 c & \text{für } t \gg \frac{m_0 c}{F}
\end{cases} \]

(5.3.52)
Für die *Beschleunigung* erhalten wir die Approximationen

\[
a(t) \approx \begin{cases}
\frac{F}{m_0} \left(\frac{t}{c} \right)^3 & \text{für } t \ll \frac{m_0c}{F} \\
Fm_0t & \text{für } t \gg \frac{m_0c}{F}
\end{cases}
\]
(5.3.53)

Sowohl bei der *Geschwindigkeit* wie auch bei der *Beschleunigung* ist \(t \ll \frac{m_0c}{F} \) der klassische Newtonsche Bereich.

Der *Impuls* selber nimmt linear mit der Zeit zu, unabhängig, ob eine relativistische oder eine klassische Betrachtung durchgeführt wird. Im klassischen Fall beruht die Impulszunahme auf der Zunahme der *Geschwindigkeit*, im relativistischen Fall auf der Zunahme der *Masse*.

Die *kinetische Energie* ist durch Gleichung (5.3.41) gegeben. Setzen wir Gleichung (5.3.50) \(\frac{v^2}{c^2} = \frac{A^2}{1+A^2} \) mit \(A = Ft/(m_0c) \), so erhalten wir

\[
E_{\text{kin}} = m_0c^2 \left(\frac{1}{1 - \frac{A^2}{1+A^2}} \right)^{1/2} - 1 = m_0c^2 \left((1 + A^2)^{1/2} - 1 \right)
\]
(5.3.54)

oder

\[
E_{\text{kin}} = m_0c^2 \left(1 + \left(\frac{Ft}{m_0c} \right)^2 \right)^{1/2} - 1
\]
(5.3.55)

Abbildung 5.33.: Verlauf der kinetischen Energie bei konstanter *Kraft* im klassischen (rot) und relativistischen (grün) Fall.

Die Approximation ergibt

\[
E_{\text{kin}} \approx \begin{cases}
\frac{1}{2} \frac{F^2 t^2}{m_0} & \text{für } t \ll \frac{m_0c}{F} \\
\frac{Fct}{m_0c} & \text{für } t \gg \frac{m_0c}{F}
\end{cases}
\]
(5.3.56)

Die *kinetische Energie* nimmt im relativistischen Falle nur linear mit der Zeit zu.
Mit Gleichung (5.3.50) kann auch die Distanz als Funktion der Zeit berechnet werden. Wir integrieren

\[x(t) = \int_0^t v(\tau) \, d\tau = c \int_0^t \frac{Ft}{mc} \left(\frac{mt}{mc} \right)^{1/2} \, d\tau \]

(5.3.57)

Wir substituieren \(A = \frac{Ft}{mc} \) und bemerken, dass \(dA = \frac{F}{mc} \, dt \) ist, oder auch \(dt = \frac{mc}{F} \, dA \).

\[x(t) = c \frac{m_0c}{F} \int_0^{Ft/(mc)} A \left(\frac{mc}{F} \right)^{1/2} \, dA \]

\[= \frac{m_0c^2}{F} \left(\sqrt{1 + A^2} - 1 \right) \bigg|_0^{Ft/(mc)} \]

\[= \frac{m_0c^2}{F} \left(\sqrt{1 + \left(\frac{Ft}{m_0c} \right)^2} - 1 \right) \]

(5.3.58)

Abbildung 5.34.: Verlauf der zurückgelegten Distanz bei konstanter Kraft im klassischen (rot) und relativistischen (grün) Fall.

Wir können wieder approximieren

\[x(t) \approx \begin{cases} \frac{1}{2} \frac{F}{m_0c} t^2 & \text{für } t \ll \frac{mc}{F} \\ \frac{1}{2} \frac{F}{m_0c} t^2 & \text{für } t \gg \frac{mc}{F} \end{cases} \]

(5.3.59)

Die weitere Rechnung zeigt, dass die relativistische Eigenzeit \(\tau = t' \) sich in der beschleunigten Masse langsamer bewegt.

Wir verwenden Gleichung Gleichung (5.3.50) und haben dann
\[\frac{v}{c} = \frac{F t}{m_0 c} \sqrt{1 + \left(\frac{F t}{m_0 c} \right)^2} \]

\[(\frac{v}{c})^2 = \left(\frac{F t}{m_0 c} \right) \frac{1}{1 + \left(\frac{F t}{m_0 c} \right)^2} \]

\[1 - \left(\frac{v}{c} \right) = 1 - \left(\frac{F t}{m_0 c} \right) \frac{1}{1 + \left(\frac{F t}{m_0 c} \right)^2} \]

\[\sqrt{1 - \left(\frac{v}{c} \right)^2} = \frac{1}{\sqrt{1 + \left(\frac{F t}{m_0 c} \right)^2}} \]

Mit

\[d\tau = dt \sqrt{1 - \frac{v^2}{c^2}} = \frac{dt}{\sqrt{1 + \left(\frac{F t}{m_0 c} \right)^2}} \quad (5.3.60) \]

bekommt man

\[\tau = \int_0^t \frac{d\hat{t}}{\sqrt{1 + \left(\frac{F \hat{t}}{m_0 c} \right)^2}} = m_0 c \frac{F}{F^*} \text{arcsinh} \left(\frac{F \tau}{m_0 c} \right) \quad (5.3.61) \]

Abbildung 5.35.: Verlauf der Eigenzeit bei konstanter Kraft im klassischen (rot) und relativistischen (grün) Fall.

Wir kehren Gleichung (5.3.61) um und erhalten

\[t = \frac{m_0 c}{F} \sinh \left(\frac{F \tau}{m_0 c} \right) \]
und setzen dies in den Weg ein.

\[x(\tau) = \frac{m_0 c^2}{F} \left(\sqrt{1 + \left(\sinh \left(\frac{F \tau}{m_0 c} \right) \right)^2} - 1 \right) = \frac{m_0 c^2}{F} \left(\cosh \left(\frac{F \tau}{m_0 c} \right) - 1 \right) \] (5.3.62)

Abbildung 5.36.: Zurückgelegte Strecke als Funktion der Eigenzeit.

5.3.11. Lorentz-Transformation

Link zur Vorlesung: [Lorentz-Transformation]

(Siehe Tipler, Physik [TM04, pp. 1157]) (Siehe Gerthsen, Physik [Mes06, pp. 853])

Die im vorherigen Abschnitt besprochenen Transformationen der Zeit und der Länge lassen sich in der sogenannten Lorentz-Transformation zusammenfassen.
Abbildung 5.37.: Beschreibung eines Punkteneignisses in zwei gegeneinander bewegten Bezugssystemen

Das Punkteneignis P soll im gestrichenen *Koordinatensystem* (B) sowie im ungestrichenen *Koordinatensystem* (A) ausgemessen werden.

Im gestrichenen Koordinatensystem mit den Einheitsvektoren $e_{x'}$ und $e_{ct'}$ hat der Punkt P die Koordinaten

$$r'_P = x'e_{x'} + (ct')e_{ct'}$$

(5.3.63)

Andererseits hat dieser gleiche Punkt im ungestrichenen (Labor-)System mit den Einheitsvektoren e_x und e_{ct} die Koordinaten

$$r_P = xe_x + (ct)e_{ct}$$

(5.3.64)

Um die Transformation zu berechnen betrachten wir zuerst einen Punkt auf der x'-Achse und dann einen auf der ct'-Achse. Wegen der Linearität der Relativitätstheorie kann die Lorentz-Transformation aus diesen beiden Resultaten zusammengesetzt werden.

Abbildung 5.38.: Transformation eines Punktes auf der x'-Achse in das ungestrichene Koordinatensystem
Aus der Längenkontraktion (5.3.15) erhält man für einen Punkt auf der x'-Achse

$$x = \frac{x'}{\sqrt{1 - \frac{v^2}{c^2}}} \quad (5.3.65)$$

Gleichzeitig hat der Punkt P_x im ungestrichenen Laborsystem auch eine nicht-verschwindende ct-Koordinate

$$ct = \frac{x'}{\sqrt{1 - \frac{v^2}{c^2}}} \cdot \tan \alpha = \frac{v}{c} \cdot \frac{x'}{\sqrt{1 - \frac{v^2}{c^2}}} \quad (5.3.66)$$

Zusammen haben wir also die Abbildung

$$r'_{P_x} = x' e_x' \rightarrow r_{P_x} = \left(\frac{x'}{\sqrt{1 - \frac{v^2}{c^2}}} \right) e_x + \left(\frac{v}{c} \cdot \frac{x'}{\sqrt{1 - \frac{v^2}{c^2}}} \right) e_{ct} \quad (5.3.67)$$

![Abbildung 5.39.: Transformation eines Punktes auf der ct'-Achse in das ungestrichene Koordinatensystem](image)

Aus der Zeitdilatation 5.3.17 erhält man für einen Punkt auf der ct'-Achse

$$ct = \frac{ct'}{\sqrt{1 + \frac{v^2}{c^2}}} \quad (5.3.68)$$

Gleichzeitig hat der Punkt P_{ct} im ungestrichenen Laborsystem auch eine nicht-verschwindende x-Koordinate

$$x = \frac{ct'}{\sqrt{1 - \frac{v^2}{c^2}}} \cdot \tan \alpha = \frac{v}{c} \cdot \frac{ct'}{\sqrt{1 - \frac{v^2}{c^2}}} \quad (5.3.69)$$

Zusammen haben wir also die Abbildung

$$r'_{P_{ct}} = ct' e_{ct'} \rightarrow r_{P_{ct}} = \left(\frac{v}{c} \cdot \frac{ct'}{\sqrt{1 - \frac{v^2}{c^2}}} \right) e_x + \left(\frac{ct'}{\sqrt{1 - \frac{v^2}{c^2}}} \right) e_{ct} \quad (5.3.70)$$
Aus den Beziehungen
\[r'_P = r'_{P_x} + r'_{P_{ct}} \quad \text{und} \quad r_P = r_{P_x} + P_{P_{ct}} \] (5.3.71)

erhalten wir die Lorentztransformation für eine Bewegung in die \(x \)-Richtung mit der Geschwindigkeit \(v_x \)

\[
\begin{align*}
 r'_P &= x' e_{x'} + (ct') e_{ct'} \\
 r_P &= x e_x + (ct) e_{ct}
\end{align*}
\]

In Koordinatenschreibweise lautet die

\[\begin{align*}
 x &= \left(x' + \frac{v_x}{c} (ct') \right) \frac{1}{\sqrt{1 - \frac{v_x^2}{c^2}}} \\
 y &= y' \\
 z &= z' \\
 ct &= \left(ct' + \frac{v_x}{c} x' \right) \frac{1}{\sqrt{1 - \frac{v_x^2}{c^2}}}
\end{align*} \] (5.3.72)

In Worten können diese Überlegungen auch so ausgedrückt werden:

- Jede Längeneinheit von \(B \) bringt \(A \) um \(1/\sqrt{1 - \frac{v_x^2}{c^2}} \) ihrer Einheiten nach rechts und um \((v_x/c)/\sqrt{1 - \frac{v_x^2}{c^2}} \) in der „Zeitachse“ \(ct \) nach oben.

- Jede „Zeiteinheit“ auf der \(ct' \)-Achse bringt \(A \) um \(1/\sqrt{1 - \frac{v_x^2}{c^2}} \) „Zeiteinheiten“ auf der \(ct \)-Achse nach oben und um \((v_x/c)/\sqrt{1 - \frac{v_x^2}{c^2}} \) nach rechts.

Wenn wir die obigen Beobachtungen zusammenfassen, erhalten wir

\[\begin{align*}
 x &= \left(x' + \frac{v_x}{c} (ct') \right) \frac{1}{\sqrt{1 - \frac{v_x^2}{c^2}}} \\
 ct &= \left(\frac{v_x}{c} x' + (ct') \right) \frac{1}{\sqrt{1 - \frac{v_x^2}{c^2}}}
\end{align*} \] (5.3.77)

Dies ergibt die Lorentztransformation für zwei sich entlang der \(x \)-Achse gegeneinander bewegende Inertialsysteme (siehe Gleichungen (5.3.73) bis (5.3.76)). Wenn wir nun nicht mehr mit \(ct \) rechnen sondern mit der Zeit \(t \) direkt und erhalten wir die (sich schlechter zu merkende) die Lorentz-Transformation.
Spezielle Relativitätstheorie

\[x = \frac{x' + v_x t'}{\sqrt{1 - v_x^2/c^2}} \quad y = y' \quad z = z' \quad t = \frac{v_x x' + c^2 + t'}{\sqrt{1 - v_x^2/c^2}} \]

(5.3.78)

Die Lorentz-Transformation kann auch in Matrix-Schreibweise dargestellt werden:

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 c t
\end{pmatrix} = \frac{1}{\sqrt{1 - v_x^2/c^2}} \begin{pmatrix}
 1 & 0 & 0 & v_x/c \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 v_x/c & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 x' \\
 y' \\
 z' \\
 c t'
\end{pmatrix}
\]

(5.3.79)

5.3.11.1. Einheitslängen auf gegeneinander bewegten Inertialsystemen

Mit Hilfe der Lorentztransformation (5.3.77) kann man auch die Massstabsmarkierungen auf den Achsen des bewegten \((x', ct')\)-Bezugssystems angeben.

Wir berechnen im \((x, ct)\)-Bezugssystem die Lage der Punkte \(r_1' = (e, 0)\) und \(r_2' = (0, e)\) im \((x', ct')\)-System. \(e\) ist dabei die Einheitslänge. Wir haben für \(r_1'\)

\[
x = \frac{e + \frac{v}{c} \cdot 0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \cdot e
\]

und für \(r_2'\)

\[
ct = \frac{\frac{v}{c} \cdot e + 0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{\frac{v}{c} \cdot e}{\sqrt{1 - \frac{v^2}{c^2}}} \cdot e
\]

(5.3.80)
\[x = \frac{0 + \frac{v}{c} \cdot e}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{\frac{v}{c} \cdot e}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[ct = \frac{\frac{v}{c} \cdot 0 + e}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \cdot e \quad (5.3.81) \]

Mit den Gleichungen (5.3.80) und (5.3.81) wurden die Einheitsmarkierungen auf der \(x' \)- und der \(ct' \)-Achse in Abbildung 5.40 berechnet.

5.3.11.2. Lorentz-Transformation in drei Raumdimensionen *

Nach Freund [Fre04] definiert man üblicherweise

\[\beta = \frac{v}{c} \quad (5.3.82) \]
\[\gamma = \left(1 - \beta \cdot \beta\right)^{-1/2} = \left(1 - \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)\right)^{-1/2} \quad (5.3.83) \]
\[\alpha = \frac{E_{\text{kin}}}{m_0 c^2} = \gamma - 1 \quad (5.3.84) \]

Damit kann nach Freund [Fre04] die Lorentz-Transformation geschrieben werden als

\[r' = r + \frac{\alpha (\beta \cdot r) \beta}{\beta^2} - \gamma \beta (ct) \quad r = r' + \frac{\alpha (\beta \cdot r') \beta}{\beta^2} + \gamma \beta (ct') \]
\[(ct') = \gamma ((ct) - \beta \cdot r) \quad (ct) = \gamma ((ct') + \beta \cdot r') \quad (5.3.85) \]

Ausgeschrieben lautet die Hinttransformation nach (5.3.85)

\[
\begin{pmatrix}
x' \\
y' \\
z' \\
ct'
\end{pmatrix} = \begin{pmatrix}
1 + \frac{\alpha}{\beta^2} & \frac{\alpha}{\beta^2} & \frac{\alpha}{\beta^2} & -\gamma \beta_x \\
\frac{\alpha}{\beta^2} & 1 + \frac{\alpha}{\beta^2} & \frac{\alpha}{\beta^2} & -\gamma \beta_y \\
\frac{\alpha}{\beta^2} & \frac{\alpha}{\beta^2} & 1 + \frac{\alpha}{\beta^2} & -\gamma \beta_z \\
-\gamma \beta_x & -\gamma \beta_y & -\gamma \beta_z & \gamma
\end{pmatrix} \begin{pmatrix}
x \\
y \\
z \\
ct
\end{pmatrix} \quad (5.3.86)
\]

Setzt man \(\beta_y = \beta_z = 0 \) bekommt man wieder das Resultat von Gleichung (5.3.77).

Die allgemeinen Geschwindigkeitstransformationen nach Freund [Fre04] lauten

\[
\begin{align*}
u' &= \frac{1}{1 - \frac{u \cdot v}{c^2}} \left[u + \frac{\alpha}{\gamma} \frac{u \cdot v}{v^2} - 1 \right] v \\
u &= \frac{1}{1 - \frac{u' \cdot v}{c^2}} \left[u' - \frac{\alpha}{\gamma} \frac{u' \cdot v}{v^2} - 1 \right] v
\end{align*} \quad (5.3.87)
\]
5.3.11.3. Lorentz-Transformation als Drehung *

Wir erproben, was wäre, wenn wir die Lorentz-Transformation als Drehung auffassen würden. Die x-Achse würde positiv (im Gegenuhrzeigersinn) um α gedreht, die ct-Achse würde negativ (im Uhrzeigersinn) um den gleichen Winkel α gedreht. Wir verwenden die Definition $\tan \alpha = v/c$ sowie $\cos \alpha = (1 + \tan^2 \alpha)^{-1/2}$ und $\sin \alpha = \tan \alpha \cdot (1 + \tan^2 \alpha)^{-1/2}$.

Dann ist

\[
\begin{align*}
a &= \cos \alpha = \frac{1}{\sqrt{1 + \tan^2 \alpha}} = \frac{1}{\sqrt{1 + v^2/c^2}} \\
cb &= \sin \alpha = \tan \alpha \sqrt{1 + \tan^2 \alpha} = \frac{v}{c \sqrt{1 + v^2/c^2}} \\
cA &= 1 \cdot c \cos \alpha = \frac{c}{\sqrt{1 + \tan^2 \alpha}} = \frac{c}{\sqrt{1 + v^2/c^2}} \\
b &= 1 \cdot c \sin \alpha = \frac{c \tan \alpha}{\sqrt{1 + \tan^2 \alpha}} = \frac{v}{\sqrt{1 + v^2/c^2}}
\end{align*}
\]

und damit

\[
\begin{align*}
a &= \frac{1}{\sqrt{1 + \frac{v^2}{c^2}}} \\
A &= \frac{1}{\sqrt{1 + \frac{v^2}{c^2}}} \\
b &= \frac{v}{c^2 \sqrt{1 + \frac{v^2}{c^2}}} \\
B &= \frac{v}{\sqrt{1 + \frac{v^2}{c^2}}}
\end{align*}
\]

(5.3.88)

Eingesetzt, würde man eine Transformation erhalten, die formal wie die Lorentztransformation aussieht, die aber unter der Wurzel ein $+$-Zeichen anstelle des geforderten $-$-Zeichens besitzt. Die Drehgleichungen wären dann

Abbildung 5.41.: Lorentztransformation als Drehung
Relativität 172

\[x = x' \cos \alpha + y' \sin \alpha = \frac{1}{\sqrt{1+v^2/c^2}} x' + \frac{v}{c \sqrt{1+v^2/c^2}} ct' \]

\[ct = -x' \sin \alpha + y' \cos \alpha = -\frac{v}{c \sqrt{1+v^2/c^2}} x' + \frac{1}{\sqrt{1+v^2/c^2}} ct' \] (5.3.89)

oder

\[x = \frac{1}{\sqrt{1+v^2/c^2}} x' + \frac{v}{\sqrt{1+v^2/c^2}} t' \]

\[t = -\frac{v}{c^2 \sqrt{1+v^2/c^2}} x' + \frac{1}{\sqrt{1+v^2/c^2}} t' \]

Diese Rotation sieht unserer Lorentz-Transformation sehr ähnlich. Die Vorzeichen unter den Wurzeln beim Cosinus und beim Sinus sowie bei der Gleichung für \(t \) stimmen nicht.

Wenn man jedoch nicht \(ct \) als Zeitachse verwendet, sondern \(ict \), wobei \(i = \sqrt{-1} \) die imaginäre Einheit ist, bekommt man mit den obigen Drehgleichungen die Lorentz-Transformation. Dabei müssen alle Vorkommnisse von \(c^2 \) durch \(-c^2\) ersetzt werden. Wir erhalten also

\[x = \frac{1}{\sqrt{1+v^2/(-c^2)}} x' + \frac{v}{\sqrt{1+v^2/(-c^2)}} t' = \frac{1}{\sqrt{1-v^2/c^2}} x' + \frac{v}{\sqrt{1-v^2/c^2}} t' \]

\[t = -\frac{v}{-c^2 \sqrt{1+v^2/(-c^2)}} x' + \frac{1}{\sqrt{1+v^2/(-c^2)}} t' = \frac{v}{c^2 \sqrt{1-v^2/c^2}} x' + \frac{1}{\sqrt{1-v^2/c^2}} t' \]

Der Vergleich mit Gleichung (5.3.77) zeigt, dass dies die Lorentztransformation ist. In einem Raum mit den Koordinaten \((x; y; z; ict)\) ist die Lorentz-Transformation nichts anderes als eine Rotation des Koordinatensystems.

5.3.11.4. Relativistisches Abstandsmass

Wenn wir, analog zum klassischen dreidimensionalen Raum \(r = \sqrt{x^2 + y^2 + z^2} \) den Abstand

\[r = \sqrt{x^2 + y^2 + z^2 + (ict)^2} = \sqrt{x^2 + y^2 + z^2 - c^2 t^2} \]

5.3.12. Vergleich der Lorentz-Transformation mit der Galilei-Transformation

<table>
<thead>
<tr>
<th>Größe</th>
<th>Galilei-Transformation</th>
<th>Lorentz-Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortskoordinaten</td>
<td>$x; y; z$</td>
<td>$x; y; z$</td>
</tr>
<tr>
<td>Zeitkoordinaten</td>
<td>t</td>
<td>ict</td>
</tr>
<tr>
<td>Länge</td>
<td>$x = x' + vt'$</td>
<td>$x = \sqrt{1-v^2/c^2} x'$</td>
</tr>
<tr>
<td>Zeit</td>
<td>$t = t'$</td>
<td>$t = \sqrt{1-v^2/c^2} t'$</td>
</tr>
<tr>
<td>Abstand</td>
<td>$r = \sqrt{x^2 + y^2 + z^2}$</td>
<td>$r = \sqrt{x'^2 + y^2 + z^2 - c^2 t'^2}$</td>
</tr>
</tbody>
</table>

Tabelle 5.6.: Vergleich von Galilei- und Lorentz-Transformation

5.3.13. Das Zwillingsparadoxon

Wir nehmen an, dass B sich mit der Geschwindigkeit v bewegt. Bs Eigenzeit ist

$$\Delta t' = \Delta t \sqrt{1 - \frac{v^2}{c^2}}$$
wobei
\[\Delta t = \frac{\ell}{v} \]
Für A ist die gesamte Reisezeit
\[t_{tot} = 2 \Delta t = \frac{2\ell}{v} \]
Für B dauert die Reise
\[t'_{tot} = 2 \Delta t' = \frac{2l'}{v} \sqrt{1 - \frac{v^2}{c^2}} < t_{tot} \]
Von A aus gesehen ist B jünger nach der Reise als A. Das Paradox ist: Für B bewegt sich A, warum ist A nicht jünger als B?

Abbildung 5.43.: Zwillingsparadoxon: *Fahrplan* der Signale, die A und B austauschen

Test: A und B senden regelmässig Signale. Wir nehmen an, dass die Reise \(\ell = 8 \) ly (Lichtjahre) weit geht. Die gesamte Reise soll \(t_{tot} = 20 \) yr dauern. Die Reisegeschwindigkeit muss also \(v = 0.8c \) sein. Dann ist die Zeit für den Reisenden
\[t'_{tot} = 20 \text{ yr} \cdot \sqrt{1 - (0.8c)^2/c^2} = 12 \text{ yr} . \]
A sendet einmal pro Jahr ein Signal \((\nu = 1 \text{ yr}^{-1}) \) aus, genauso wie B. B misst auf dem Hinweg die *Frequenz* (Dopplereffekt) \(\nu' = \sqrt{\frac{c+\nu}{c+\nu}} = \sqrt{\frac{0.2}{1.8}} = \sqrt{\frac{2}{18}} = \frac{1}{3} \text{ yr}^{-1} \), also zwei Signale auf der ganzen Hinreise. Auf dem Rückweg misst B wegen dem Dopplereffekt die *Frequenz* \(\nu' = \sqrt{\frac{c-\nu}{c-\nu}} = \sqrt{\frac{0.8}{0.2}} = 3 \text{ yr}^{-1} \), also 18 Signale. Zusammen misst B auf der ganzen Reise 20 Signale.
B sendet genauso Signale mit der *Frequenz* \(\nu = 1 \text{ yr}^{-1} \) aus. A misst auf Bs Hinweg wegen dem Dopplereffekt Signale mit der *Frequenz* \(\nu' = \sqrt{\frac{c-\nu}{c-\nu}} = \frac{1}{3} \text{ yr}^{-1} \). Während 18 Jahren misst er also total 6 Signale. Auf dem Rückweg von B misst A Signale...
mit der Frequenz $\nu' = \frac{c+u}{c-u} = 3 \text{ yr}^{-1}$. Während 2 Jahren misst A total 6 Signale. Warum ist B jünger? B befindet sich während seiner Reise in 2 Inertialsystemen, A nur in einem.
6. Mechanik starrer Körper

6.1. Grundbegriffe

6.1.1. Definition

Abbildung 6.1.: Definition: ein Körper ist starr, wenn \(r_{ij} \) für beliebige \(i's \) und \(j's \) jederzeit konstant ist.

6.1.2. Masse und Dichte

Die Massendichte (auch kurz Dichte genannt) ist definiert durch

\[
\rho (\mathbf{r}) = \rho_m (\mathbf{r}) = \lim_{\Delta V \to 0} \frac{\Delta m (\mathbf{r})}{\Delta V}
\]

(6.1.1)

Die gesamte Masse ist

\[
m = \iiint_V \rho (\mathbf{r}) \, dV = \iiint_V \rho (x, y, z) \, dx \, dy \, dz
\]

(6.1.2)

6.1.3. Schwerpunkt

Der Schwerpunkt \(S \) eines starren Körpers hat bezüglich dieses Körpers eine fest Lage. Ein Körper kann in einem homogenen Kraftfeld an seinem Schwerpunkt gestützt werden, und er ist im Gleichgewicht. Der Schwerpunkt ist gegeben durch

\[
r_S = \frac{1}{m} \int_V \mathbf{r} \, dm = \frac{1}{m} \int_V \mathbf{r} \cdot \rho (\mathbf{r}) \, dV = \frac{\int_V \mathbf{r} \, dm}{\int_V dm}
\]

(6.1.3)

d.h. der Ortsvektor \(r_S \) des Schwerpunktes ist das mit der Dichte gewichtete Mittel aller Ortsvektoren des betrachteten starren Körpers.
Im Laborsystem gilt
\[\iiint_V \mathbf{r} \, dm = m \mathbf{r}_S \] (6.1.4)
Daraus folgt mit \(\mathbf{r} = \mathbf{r}_S + \mathbf{r}' \), dass
\[\iiint_V \mathbf{r} \, dm = \iiint_V (\mathbf{r}_S + \mathbf{r}') \, dm = \mathbf{r}_S \iiint_V \, dm + \iiint_V \mathbf{r}' \, dm \]
\[\iiint_V \mathbf{r}' \, dm = 0 \] (6.1.5)
d.h. im Schwerpunktsystem liegt \(S \) am Koordinatenursprung.

6.1.4. Drehungen des starren Körpers

Wir betrachten 2 Koordinatensysteme, beide mit dem Ursprung im Schwerpunkt \(S \). \(x^*, y^*, z^* \) ist das raumfeste Koordinatensystem, d.h. es dreht sich nicht mit dem Körper mit. \(x, y, z \) ist ein körperfestes Koordinatensystem, das sich mit dem Körper mitdreht. Die Koordinatensysteme werden durch die Einheitsvektoren \(\mathbf{e}_{x^*}, \mathbf{e}_{y^*}, \mathbf{e}_{z^*} \) und \(\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z \) beschrieben.

Also ist
\[\mathbf{r} (t) = x^* (t) \mathbf{e}_{x^*} + y^* (t) \mathbf{e}_{y^*} + z^* (t) \mathbf{e}_{z^*} \]
\[= x \mathbf{e}_x (t) + y \mathbf{e}_y (t) + z \mathbf{e}_z (t) \] (6.1.6)
\(e_x^*, e_y^*, e_z^* \) sind zeitunabhängige Basisvektoren, \(e_x, e_y, e_z^* \) sind zeitabhängige Basisvektoren.

6.1.4.1. Eulersche Winkel *

Das \textit{Koordinatensystem} \(e_x, e_y, e_z \) geht durch drei Drehungen aus dem \textit{Koordinatensystem} \(e_x^*, e_y^*, e_z^* \) hervor.

Abbildung 6.4.: Definition der Eulerschen Winkel

Die Eulerschen Winkel sind

1. Drehung um \(e_z^* : \alpha \)
2. Drehung um \(0A : \beta \)
3. Drehung um \(e_z^* : \gamma \)

\(0A \) steht senkrecht zur Ebene aufgespannt durch \(e_z \) und \(e_z^* \).

Die Reihenfolge der Drehungen ist

1. Drehung: Bringe \(e_z^* \) senkrecht zu \(e_z \) (In der Abbildung 6.1.4.1 zeigen die Kreise die Ebenen senkrecht zu \(e_z^* \) und senkrecht zu \(e_z \) Die Schnittlinie der beiden Kreise ist \(0A \).
2. Drehung: Bringe \(z \)-Achse in richtige Lage
3. Drehung: Bringe \(x, y \)-Achsen in die richtige Lage.

Versuch zur Vorlesung:

Nichtkommutativität von Drehungen (Versuchskarte M-108)

Die Beziehungen zwischen dem ungesternten und dem gesternten \textit{Koordinatensystem} können mit einer Matrix formuliert werden:
\begin{align*}
x^* &= R_{11}x + R_{12}y + R_{13}z \\
y^* &= R_{21}x + R_{22}y + R_{23}z \\
z^* &= R_{31}x + R_{32}y + R_{33}z \\
\end{align*}

\text{und}

\begin{align*}
x &= R_{11}x^* + R_{21}y^* + R_{31}z^* \\
y &= R_{12}x^* + R_{22}y^* + R_{32}z^* \\
z &= R_{13}x^* + R_{23}y^* + R_{33}z^* \\
\end{align*}

(6.1.7)

In Matrixschreibweise haben wir

\[
\begin{pmatrix}
x^* \\
y^* \\
z^*
\end{pmatrix} =
\begin{pmatrix}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
\]

(6.1.9)

\text{und}

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
R_{11} & R_{21} & R_{31} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{pmatrix}
\begin{pmatrix}
x^* \\
y^* \\
z^*
\end{pmatrix}
\]

(6.1.10)

Wir haben hier behauptet, dass die Transformationsmatrix

\[
T =
\begin{pmatrix}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{pmatrix}
\]

(6.1.11)

und die inverse Transformationsmatrix

\[
T^{-1} =
\begin{pmatrix}
R_{11} & R_{21} & R_{31} \\
R_{12} & R_{22} & R_{32} \\
R_{13} & R_{23} & R_{33}
\end{pmatrix}
\]

(6.1.12)

durch

\[
T^T = T^{-1}
\]

(6.1.13)

verbunden sind. Dabei ist \(T^T\) die transponierte Matrix (an der Hauptdiagonale gespiegelt) und \(T^{-1}\) die inverse Matrix.

In Matrixschreibweise haben wir

\[
\begin{pmatrix}
x^* \\
x
\end{pmatrix} = T \begin{pmatrix}
x \\
x^*
\end{pmatrix} = T^T \begin{pmatrix}
x^*
\end{pmatrix}
\]

Die Matrix \(T\) berechnet sich aus dem Matrixprodukt der drei Drehmatrizen. Dabei betrachten wir die Transformation aus dem ortsfesten System ins mitbewegte System, also die Matrix \(T^{-1} = T^T\).
Grundbegriffe

Abbildung 6.5.: Wir betrachten die die xy-Ebene von der z-Achse aus

Dann ist

\begin{align*}
x^* &= a - b = x \cos \alpha - y \sin \alpha \\
y^* &= c + d = x \sin \alpha + y \cos \alpha
\end{align*}

und

\begin{align*}
x &= a + b = x^* \cos \alpha + y^* \sin \alpha \\
y &= -c + d = -x^* \sin \alpha + y^* \cos \alpha
\end{align*}

Die Drehungen um die x folgt analog. Dann sind die Drehmatrizen gegeben durch

\begin{align*}
R_{e_z^*}(\alpha) &= \begin{pmatrix}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix} \quad \text{Drehung um α um die e_z^*-Achse} \quad (6.1.14) \\
R_{e_\pi}(\beta) &= \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \beta & \sin \beta \\
0 & -\sin \beta & \cos \beta
\end{pmatrix} \quad \text{Drehung um β um die OA} \quad (6.1.15) \\
R_{e_z}(\gamma) &= \begin{pmatrix}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{pmatrix} \quad \text{Drehung um γ um die e_z-Achse} \quad (6.1.16)
\end{align*}

Dann ist

\[T^T = T^{-1} = R_{e_z}(\gamma)R_{e_\pi}(\beta)R_{e_z^*}(\alpha) \quad (6.1.17) \]

wobei die Multiplikation von rechts durchzuführen ist. Das Resultat ist

\[T^T = \begin{pmatrix}
-\cos \beta \sin \alpha \sin \gamma + \cos \alpha \cos \gamma & \cos \beta \cos \alpha \sin \gamma + \sin \alpha \cos \gamma & \sin \beta \sin \gamma \\
-\cos \beta \sin \alpha \cos \gamma - \cos \alpha \sin \gamma & \cos \beta \cos \alpha \cos \gamma - \sin \alpha \sin \gamma & \sin \beta \cos \gamma \\
\sin \beta \sin \alpha & -\sin \beta \cos \alpha & \cos \beta
\end{pmatrix} \quad (6.1.18) \]
und damit
\[
T = \begin{pmatrix}
-\cos \beta \sin \alpha \sin \gamma + \cos \alpha \cos \gamma & -\cos \beta \sin \alpha \cos \gamma - \cos \alpha \sin \gamma & \sin \beta \sin \alpha \\
\cos \beta \cos \alpha \sin \gamma + \sin \alpha \cos \gamma & \cos \beta \cos \alpha \cos \gamma - \sin \alpha \sin \gamma & -\sin \beta \cos \alpha \\
\sin \beta \sin \gamma & \sin \beta \cos \gamma & \cos \beta
\end{pmatrix}
(6.1.19)
\]
or
\[
R_{ik} \quad k = 1 \quad k = 2 \quad k = 3
\]
\[
i = 1 \quad -\cos \beta \sin \alpha \sin \gamma + \cos \alpha \cos \gamma \quad -\cos \beta \sin \alpha \cos \gamma - \cos \alpha \sin \gamma \quad \sin \beta \sin \alpha
\]
\[
i = 2 \quad \cos \beta \cos \alpha \sin \gamma + \sin \alpha \cos \gamma \quad \cos \beta \cos \alpha \cos \gamma - \sin \alpha \sin \gamma \quad -\sin \beta \cos \alpha
\]
\[
i = 3 \quad \sin \beta \sin \gamma \quad \sin \beta \cos \gamma \quad \cos \beta
\]

Tabelle 6.1.: Form der Transformationsmatrix T

Beim einem allgemeinen rotierenden starren Körper sind die Eulerwinkel im Allgemeinen zeitabhängig!

6.1.5. Freiheitsgrade der Bewegungen

Die Lage eines starren Körpers ist gegeben durch

- Lage des Schwerpunktes x_S, y_S, z_S. Dies entspricht 3 Freiheitsgraden der Translation
- die Eulerwinkel α, β, γ. Dies entspricht 3 Freiheitsgraden der Rotation

6.2. Statik des starren Körpers

6.2.1. Kräfte am starren Körper

Zur Berechnung der Kräfte am starren Körper verwenden wir die Prinzipien des Kräfteparallelogramms und das Reaktionsprinzip.

Abbildung 6.6.: Angriffspunkt einer Kraft in einem starren Körper.
Der Angriffspunkt \(i \) einer Kraft \(F \) am starren Körper darf in der Richtung der Kraft verschoben werden. Das heisst, dass \(F_i \) in \(i \) und \(F_j \) in \(j \) äquivalent sind, wenn \(F_i = F_j = F \) ist und \(\overrightarrow{ij} \parallel F \) ist.

6.2.2. Kräftepaare

Versuch zur Vorlesung:

Drehmoment (Versuchskarte M-011)

![Abbildung 6.7.: Definition eines Kräftepaares.](image)

Ein Kräftepaar besteht aus einer Kraft \(F \) am Punkte \(j \) und einer Kraft \(-F\) am Punkte \(i \). Ein Kräftepaar bewirkt ein Drehmoment \(M = r_{ij} \times F \). \(F \) und \(-F\) dürfen beliebig entlang der Geraden \(g_i \) und \(g_j \) verschoben werden.

Zwei Kräftepaare heissen äquivalent wenn sie das gleiche Drehmoment bewirken.

\[
M = r_{ij} \times F = r'_{ij} \times F'
\]

6.2.3. Dymnae

Definition: *Dymnae = Kraft \(F \) am Punkt \(i + Drehmoment \(M \)*
Wie wirkt eine \textit{Kraft} F am Punkte i? Wir bemerken, dass Kräfte am Schwerpunkt eine reine Translation bewirken.

Rezept:

- Zeichne in S die Kräfte F und $-F$ ein. Dies ändert nichts an der Physik, da bei gleichem Angriffspunkt gilt

$$F + (-F) = 0$$

- Wir interpretieren nun die Konstruktion mit drei Kräften neu.
 - Es gibt eine \textit{Kraft} F in S, die eine reine Translation bewirkt (\textit{Kraft} auf Schwerpunkt)
 - Es gibt ein Kräftepaar mit $M = r_{Si} \times F$, das als reines \textit{Drehmoment} eine Drehung um S mit einer Achse parallel zu M bewirkt.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure.png}
\caption{Berechnung der Wirkung einer \textit{Kraft} am Punkte i.}
\end{figure}

Die Wirkung einer beliebigen \textit{Kraft} mit beliebigem Angriffspunkt auf einen starren Körper entspricht einer \textit{Kraft} im Schwerpunkt S sowie einem Kräftepaar, d.h. einer Dyname.

Bemerkung: Wenn aus anderen Gründen ein Punkt 0 fixiert ist, dann muss man in der obigen Argumentation einfach S durch 0 ersetzen.

Wenn viele Kräfte angreifen, gilt

$$F = \sum_i F_i$$

$$M_S = \sum_i M_i = \sum_i r_{Si} \times F_i$$ (6.2.1)

Das heisst, wir können den Impuls- und den Drallsatz anwenden.
6.2.4. Schwerkraft

Zur Untersuchung der Wirkung der Schwerkraft auf einen starren Körper berechnen wir die *Dyname* bezüglich des Schwerpunktes.

Abbildung 6.9.: Wirkung der Gravitationskraft auf einen starren Körper.

Die folgenden Größen müssen beachtet werden:

1. Kraft:

 \[F = \sum_i F_i = \sum_i \Delta m_i g = m g = F_G \]

 oder

 \[F = \iiint_V \rho g dV = \iiint_V \rho \rho dV = m g = F_G \]

 Die Definition des Schwerpunktes sagt ja, dass
 \[\sum_i \Delta m_i r_{Si} = 0 \]
 oder
 \[\iiint_V \rho(r_{Si}) r_{Si} dV = 0 \] (6.2.2)

2. Kräftepaar

 \[M_s = \sum_i r_{Si} \times \Delta m_i g = \sum_i \Delta m_i r_{Si} \times g \]

 \[= \left(\sum_i \Delta m_i r_{Si} \right) \times g = 0 \]

 oder

 \[M_s = \iiint_V r_{Si} \times (\rho(r_{Si}) g) dV = \iiint_V \rho(r_{Si}) r_{Si} \times g dV \]

 \[= \left(\iiint_V \rho(r_{Si}) r_{Si} dV \right) \times g = 0 \] (6.2.3)

 Die Definition des Schwerpunktes sagt ja, dass \(\sum_i \Delta m_i r_{Si} = 0 \) oder
 \[\iiint_V \rho(r_{Si}) r_{Si} dV = 0 \] ist.

Die Schwerkraft übt kein *Drehsmoment* auf einen freien Körper aus.
6.3. Der starre Rotator

6.3.1. Kinematik

Abbildung 6.10.: Bezeichnungen an einem starren Rotator

Definition: Ein starrer Rotator ist ein starrer Körper, der um eine feste Achse rotiert.

Ein starrer Rotator wird mit einem körperfesten Koordinatensystem beschrieben. Die Winkelgeschwindigkeit wird durch einen Vektor \(\omega \) beschrieben. Der Betrag der Winkelgeschwindigkeit, \(|\omega| = \omega \) gibt \(2\pi \) mal die Anzahl der Umdrehungen pro Sekunde an, die Richtung des Geschwindigkeitsvektors die Richtung der Drehachse, wobei der Daumen der rechten Hand zur Spitze des Vektors zeigt und die Finger die Drehrichtung angeben.

\[
\omega(t) = \omega(t) \cdot e \\
\omega(t) = \frac{d\phi(t)}{dt} \tag{6.3.1}
\]

Dabei ist \(\phi \) der momentane Drehwinkel. \(\omega(t) \) heisst die momentane Winkelgeschwindigkeit.

Die Geschwindigkeit des Massenpunktes \(\Delta m_i \) am Ort \(r_i = r_i + R_i \) ist

\[
v_i = \dot{r}_i = \dot{R}_i = \omega \times r_i = \omega \times R_i \tag{6.3.2}
\]

6.3.2. Trägheitsmoment

Jedes Massenelement \(\Delta m_i \) hat eine kinetische Energie \(\frac{1}{2} \Delta m_i v_i^2 \)

Dann ist die kinetische Energie eines rotierenden Körpers gegeben durch

\[
E_{kin} = \frac{1}{2} \omega^2 \\
I = \sum_i R_i^2 \Delta m_i \mathrm{ oder} \\
I = \int R^2 \rho dV = \int (e \times r)^2 \rho dV \tag{6.3.3}
\]
Beweis: Wir beginnen mit der Vektoridentität

\[(a \times b)^2 = (a \times b) \cdot (a \times b) = a^2b^2 - (ab)^2\] \hspace{1cm} (6.3.4)

mit

\[(a \times b) = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \hspace{1cm} (6.3.5)\]

\[(a \times b)^2 = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}^2 = (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 = a_2^2b_3^2 - 2a_2a_3b_2b_3 + a_3^2b_2^2 + a_3^2b_1^2 + a_1^2b_2^2 - 2a_1a_3b_1b_3 - 2a_2a_3b_2b_3 \hspace{1cm} (6.3.6)\]

\[a^2 \cdot b^2 - (a \cdot b)^2 = \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right) - (a_1b_1 + a_2b_2 + a_3b_3)^2 = a_1^2b_1^2 + a_2^2b_2^2 + a_3^2b_3^2 + a_1^2b_2^2 + a_2^2b_1^2 + a_3^2b_3^2 + a_1^2b_3^2 + a_3^2b_1^2 + a_2^2b_3^2 - a_1^2b_2^2 - a_2^2b_1^2 - a_3^2b_3^2 - 2a_1a_2b_1b_2 - 2a_1a_3b_1b_3 - 2a_2a_3b_2b_3 = a_1^2b_2^2 + a_1^2b_3^2 + a_2^2b_1^2 + a_2^2b_3^2 + a_3^2b_1^2 + a_3^2b_2^2 - 2a_1b_1a_2b_2 - 2a_1b_1a_3b_3 - 2a_2b_2a_3b_3 \hspace{1cm} (6.3.7)\]

Also ist

\[(a \times b)^2 = a^2b^2 - (ab)^2\] \hspace{1cm} (6.3.8)

Für ein Massenelement \(\Delta m_i\) ist die \textit{kinetische Energie} im Laborsystem

\[
\Delta E_{kin} = \frac{1}{2} \Delta m_i \mathbf{v}_i^2 = \frac{1}{2} \Delta m_i (\mathbf{\omega} \times \mathbf{R}_i)^2 = \frac{1}{2} \Delta m_i \left(\mathbf{\omega} \cdot \mathbf{R}_i^2 - (\mathbf{\omega} \cdot \mathbf{R}_i)^2 \right) = \frac{1}{2} \mathbf{\omega}^2 \Delta m_i R_i^2 \hspace{1cm} (6.3.9)\]

da \(\mathbf{\omega} \cdot \mathbf{R}_i = 0\) ist. Die kinetische Energie \(E_{kin}\) aller Massenpunkte ist dann
\[E_{\text{kin}} = \sum_i \frac{1}{2} \Delta m_i v_i^2 = \frac{1}{2} \sum_i \Delta m_i (\omega \times R_i)^2 \]
\[= \frac{1}{2} \sum_i \Delta m_i \left(\omega^2 \cdot R_i^2 - (\omega \cdot R_i)^2 \right) \]
\[= \frac{1}{2} \omega^2 \sum_i \Delta m_i R_i^2 \]
(6.3.10)

Versuch zur Vorlesung:
Stangen (Versuchskarte M-180)

6.3.2.1. Satz von Steiner

Der Satz von Steiner erlaubt einem, das Trägheitsmoment für eine beliebige Achse zu berechnen, wenn das Trägheitsmoment bezüglich einer dazu parallelen Achse durch den Schwerpunkt bekannt ist.

Abbildung 6.11.: Trägheitsmoment für eine beliebige Drehachse.

Versuch zur Vorlesung:
Satz von Steiner (Versuchskarte M-038)

Behauptung

\[E_{\text{kin}} = I = I_S + ma^2 \]
(6.3.11)

Beweis: Wir berechnen die kinetische Energie eines Massenelements \(\Delta m \). Es ist \(R_i = a + R_i^* \).
\[E_{\text{kin}}(e) = \frac{1}{2} \sum \Delta m_i v_i^2 = \frac{1}{2} \sum \Delta m_i (\omega \times R_i^*)^2 = \frac{1}{2} \sum \Delta m_i (\omega \times (R_i - a))^2 = \frac{1}{2} \sum \Delta m_i (\omega \times R_i - \omega \times a)^2 \]

\[= \frac{1}{2} \sum \Delta m_i (\omega \times R_i)^2 - \frac{1}{2} \sum \Delta m_i (\omega \times a) \cdot (\omega \times a) - \frac{1}{2} \sum \Delta m_i (\omega \times a) \cdot (\omega \times R_i) + \frac{1}{2} \sum \Delta m_i (\omega \times a)^2 \]

Der Mischterm kann umgeschrieben werden

\[\sum \Delta m_i (\omega \times a) \cdot (\omega \times R_i) = (\omega \times a) \cdot (\omega \times \left[\sum \Delta m_i R_i \right]) \]

(6.3.12)

Ein Ortsvektor im Schwerpunktsystem ist

\[r_i = r_i^* + R_i \]

Dabei ist \(r_i^* \) parallel zu \(\omega \). Deshalb ist

\[\omega \times r_i^* = 0 \]

Also ist auch

\[\omega \times \left[\sum \Delta m_i R_i \right] = \omega \times \left[\sum \Delta m_i (R_i + r_i^*) \right] = \omega \times \left[\sum \Delta m_i r_i \right] \]

Nun ist aber im Schwerpunktsystem

\[0 = \sum \Delta m_i r_i = \sum \Delta m_i (R_i + r_i^*) \]

Also ist der Term \(\sum \Delta m_i (\omega \times a) \cdot (\omega \times R_i) = 0 \).

Damit wird die *kinetische Energie*

\[E_{\text{kin}} = \frac{1}{2} \sum \Delta m_i (\omega \times R_i)^2 + \frac{1}{2} \sum \Delta m_i (\omega \times a)^2 \]

\[= \frac{1}{2} \omega^2 \sum \Delta m_i R_i^2 + \frac{1}{2} \omega^2 a^2 \sum \Delta m_i \]

\[= \frac{1}{2} \omega^2 I_S + \frac{1}{2} \omega^2 a^2 m \quad (6.3.13) \]
da ja $\omega \perp \mathbf{R}_i$ und $\omega \perp \mathbf{a}$ ist. Hierbei haben wir die Definitionen $m = \sum \Delta m_i$ und $I_S = \sum \Delta m_i \mathbf{R}_i^2$ verwendet.

Einige Trägheitsmomente für eine Achse durch den Schwerpunkt sind:

Kugel

$$I_S = \frac{2}{5} mr^2 \quad (6.3.14)$$

wobei r der Kugelradius ist.

Vollzyylinder Zylinderachse, Radius r, Länge z.

$$I_s = \rho \int_0^r \int_0^{2\pi} \int_0^z R^2 R \, dR \, d\varphi \, dz = 2\pi \rho \int_0^r R^3 dR$$

$$= \frac{2\pi}{4} \rho h r^4 = \frac{1}{2} mr^2 \quad (6.3.15)$$

Quader Der Quader habe die Seiten a, b und c. Er rotiere um eine zu c parallele Achse durch den Schwerpunkt.

$$I_s = \rho \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \int_{-c/2}^{c/2} (y^2 + z^2) \, dx \, dy \, dz = c \rho \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} (y^2 + z^2) \, dy \, dz$$

$$= c \rho \left[\frac{1}{3} y^3 + yz^2 \right]_{-b/2}^{b/2} \, dz = c \rho \int_{-b/2}^{b/2} \left(\frac{b^3}{12} + bz^2 \right) \, dz$$

$$= c \left(\frac{b^3}{12} \frac{z}{1} + b \frac{z^3}{3} \right) \bigg|_{-b/2}^{b/2} = c \rho \frac{b^2 + a^2}{12}$$

$$= m \frac{a^2 + b^2}{12} \quad (6.3.16)$$

Als Anwendung betrachten wir eine schiefe Ebene hinunterrollende Walze. Wir machen eine Energiebetrachtung.

Abbildung 6.12.: Rollende Walze
Versuch zur Vorlesung:
Trägheitsmoment (Versuchskarte M-052)

\[v = v_s = \omega \cdot a \]

\[E_{pol}(oben) = mgh \]
\[= E_{kin}(unten) \]
\[= \frac{1}{2} m v_s^2 + \frac{1}{2} I_s \omega^2 \]
\[= \frac{1}{2} m v_s^2 + \frac{1}{2} I_s \frac{v^2}{a^2} \]
\[= m \frac{v_s^2}{2} \left(1 + \frac{I_s}{ma^2} \right) \]

Also folgt für die Endgeschwindigkeit

\[v_s = \sqrt{2gh} \left(1 + \frac{I_s}{ma^2} \right)^{-\frac{1}{2}} \] \hspace{1cm} (6.3.17)

Punktmasse \(I_s = 0 \Rightarrow v_s = \sqrt{2gh} \)

Vollzylinder \(I_s = \frac{1}{2} ma^2 \Rightarrow v_s = 2 \sqrt{\frac{gh}{3}} \)

Hohlzylinder \(I_s = ma^2 \Rightarrow v_s = \sqrt{gh} \)

Ein Hohlzylinder rollt also langsamer eine schiefe Ebene hinunter wie ein Vollzylinder mit gleicher *Masse* und gleichem Durchmesser. Beide sind langsamer als eine Punktmasse.

6.3.3. Drehimpuls

Abbildung 6.13.: Berechnung des Drehimpulses

Analog zum Translations-Impuls eines Massenpunkts gilt für einen Massenpunkt
\[\Delta L_i = r_i \times \Delta p_i \]
\[= \Delta m_i \cdot r_i \times (\omega \times r_i) \] \hspace{1cm} (6.3.18)

Damit gilt für den ganzen Körper

\[L_0 = \sum_i \Delta m_i (r_i \times (\omega \times r_i)) = \int \rho(r) (r \times (\omega \times r)) \, dV \] \hspace{1cm} (6.3.19)

Die *kinetische Energie* eines Körpers mit dem *Dreimpuls* \(L \) ist

\[E_{kin} = \frac{1}{2} L_0 \cdot \omega \] \hspace{1cm} (6.3.20)

Beweis:

\[E_{kin} = \frac{1}{2} \sum \Delta m_i v_i^2 \]
\[= \frac{1}{2} \sum \Delta m_i (\omega \times r_i)^2 \]
\[= \frac{1}{2} \sum \Delta m_i (\omega \times r_i) \cdot (\omega \times r_i) \] \hspace{1cm} (6.3.21)

Wir verwenden das Spatprodukt \(a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b) \) und setzen \(a = (\omega \times r_i), b = \omega \) und \(c = r_i \). Dann ist \((\omega \times r_i) \cdot (\omega \times r_i) = \omega \cdot (r_i \times (\omega \times r_i)) \) und damit

\[E_{kin} = \frac{1}{2} \sum \Delta m_i \omega \cdot (r_i \times (\omega \times r_i)) \]
\[= \frac{1}{2} \omega \cdot \sum \Delta m_i (r_i \times (\omega \times r_i)) \]
\[= \frac{1}{2} \omega \cdot L_0 \] \hspace{1cm} (6.3.22)

wobei wir die Definition des Dreimpulses \(L_0 = \sum \Delta m_i (r_i \times (\omega \times r_i)) \) verwendet haben.

Bemerkung:

Der *Dreimpuls* muss nicht parallel zur Drehachse sein. Wir betrachten den *Dreimpuls* \(L_0 \) bezüglich eines Punktes 0 auf der Drehachse.
Sei $L_0 \nparallel \omega$. Dann kann der Drehimpuls in eine Komponente parallel zur Drehachse und eine senkrecht dazu aufgespalten werden, also

$$L_0 = L_s + L_p$$ \hfill (6.3.23)

Es gilt

$$L_p = I \cdot \omega$$

$$L_s = - \int (\omega r_i^* \, Rdm = -\omega \sum_i R_i (r_i^* \Delta m_i)$$ \hfill (6.3.24)

Dabei ist r_i^* die Komponente des Ortsvektors r_i parallel zur Drehachse im körperfesten Koordinatensystem.

Beweis. Wir verwenden die Vektoridentität $a \times (b \times c) = (a \cdot c) b - (a \cdot b) c$.

$$L_0 = \sum_i (r_i \times \Delta m v_i)$$

$$= \sum \Delta m_i [(r_i^* + R_i) \times (\omega \times R_i)]$$

$$= \sum \Delta m_i [r_i^* \times (\omega \times R_i)] + \sum \Delta m_i [R_i \times (\omega \times R_i)]$$

$$= \sum \Delta m_i [(r_i^* \cdot R_i) \omega - (r_i^* \cdot \omega) R_i] + \sum \Delta m_i [(R_i \cdot R_i) \omega - (R_i \cdot \omega) R_i]$$

$$= -\sum \Delta m_i (r_i^* \cdot \omega) R_i + \sum \Delta m_i R_i^2 \omega = L_s + L_p$$ \hfill (6.3.25)

Da $r_i^* \cdot R_i = 0$ und $R_i \cdot \omega = 0$ ist.

- Der Drehimpuls L_p ist unabhängig von der Lage des Bezugspunktes 0. Dieser Bezugspunkt könnte zum Beispiel bei einem Kreisel eine punktförmige Auflage sein.

- Der Drehimpuls L_s hängt im Allgemeinen von der Lage von 0 ab, d.h. von der Montage der Achse!
• Auch wenn \(\omega = \text{const} \) ist, muss \(L_0 \) nicht konstant sein. Bei einem Autorad nennt man dies Unwucht.

6.3.4. Drallsatz

Die Dynamik des starren Rotators bezüglich des Lagers 0 ist durch den Drallsatz gegeben.

\[
\frac{dL_0}{dt} = M_0
\]

(6.3.26)

Dabei ist \(M_0 \) das Drehmoment bezüglich des Lagers 0. Bei einer gleichförmigen Rotation (\(\omega = \omega_e = \text{const} \)) ist \(L_0 \) i.a. nicht konstant. Es gilt

\[
\frac{dL_0}{dt} = \frac{d}{dt}(L_p + L_s) = \frac{d}{dt}(\omega + L_s) = \frac{d}{dt}L_s = \omega \times L_s = \omega \times L_0
\]

(6.3.27)

Beweis:

\[
\frac{d}{dt}L_s = \frac{d}{dt}\left(-\int (\omega r_s^i) R dm\right) = -\int (\omega r_s^i) \frac{dR}{dt} dm = -\int (\omega r_s^i) (\omega \times R) dm = \omega \times \left(-\int (\omega r_s^i) R dm\right) = \omega \times L_s = \omega \times (L_s + L_p) = \omega \times L_0
\]

(6.3.28)

da \(\omega \times L_p = 0 \) ist.

Versuch zur Vorlesung:

Dreihimpulserhaltung (Versuchskarte M-072)

Die Dyname auf das Drehlager im Punkt 0 ist bei einem Rotator ohne äußere Kräfte oder Momente

\[
F_{\text{(reactio)}} = -m (\omega \times (\omega \times r_s)) = m\omega^2 R_s
\]

(6.3.29)

wegen dem Impulssatz. Das dazugehörige Drehmoment ist

\[
M_{\text{(reactio)}} = L_s \times \omega = L_0 \times \omega = -\frac{d}{dt}L_0
\]

(6.3.30)

Dabei ist \(r_s \) der Ortsvektor des Schwerpunktes. Wir haben also eine zeitlich veränderliche Dyname.
6.3.4.1. Anwendung: Auswuchten von Autorädern *

Versuch zur Vorlesung:
Kräfte auf Lager (Versuchskarte M-080)

statisch auswuchten Auswuchtgewichte werden angebracht bis

\[F_{\text{reactio}} = m \omega^2 R_s = 0 \]

ist. Bei einem statisch ausgewuchteten Rad liegt der Schwerpunkt auf der Drehachse.

dynamisch auswuchten Auswuchtgewichte werden angebracht bis \(L_s = 0 \) für \(\omega \neq 0 \) ist. Bei einem dynamisch ausgewuchteten Rad ist die Drehachse eine Achse des Trägheitsellipsoides, oder, der **Drehimpuls** \(L_0 \) ist parallel zur Drehachse.

6.3.4.2. Wirkung eines Drehmomentes auf den **Rotator**

Wir legen ein äußeres Drehmoment \(M_{\text{außen}} = Me \) an. Dann ist

\[M_{\text{außen}} - M_{\text{reactio}} = \frac{d}{dt} L_0 \quad (6.3.31) \]

Axialkomponente

\[M_{\text{Axial}} = \frac{d}{dt} L_p = \frac{d\omega}{dt} = \frac{d^2 \phi}{dt^2} \quad (6.3.32) \]

Radialkomponente

\[M_{\text{reactio}} = -\frac{d}{dt} L_s = - (\omega \times L_s) - \frac{\dot{\omega}}{\omega} L_s \quad (6.3.33) \]

6.3.5. Bewegungen mit Drehungen

Wirkt ein konstantes äußeres Drehmoment \(M \) so gilt

\[M = \dot{L} = I \dot{\omega} \quad (6.3.34) \]

oder

\[\dot{\omega} = \frac{1}{I} M \]

\[\omega = \frac{1}{I} Mt \quad (6.3.35) \]

und

\[\phi = \frac{1}{2} \frac{1}{I} Mt^2 \quad (6.3.36) \]

Beispiel: rollender Zylinder
A ist die momentane Drehachse des Zylinders (Warum ist die Drehachse die Auflagenlinie?). Nach dem Satz von Steiner ist \(I = I_s + mr^2 \).

Also ist \(M = m \vec{r} \times \vec{g} = mgr \sin \alpha = (I_s + mr^2) \dot{\omega} \).

Die Translationsbeschleunigung des Schwerpunktes ist

\[
a = \ddot{s} = r \ddot{\omega} = r \frac{mgr \sin \alpha}{I_s + mr^2} = \frac{1}{1 + \frac{I_s}{mr^2}} g \sin \alpha
\]

(6.3.37)

Beispiel:

- **Massivzyliner** \(I_s = \frac{1}{2} mr^2 \) \(a = \frac{2}{3} g \sin \alpha \)
- **Hohlzyliner** \(I_s = mr^2 \) \(a = \frac{1}{2} g \sin \alpha \)
- **Kugel** \(I_s = \frac{2}{5} mr^2 \) \(a = \frac{5}{7} g \sin \alpha \)
- **Rutschender Körper** \(a = g \sin \alpha \)

6.3.5.1. Kippen eines Körpers

Abbildung 6.16.: Kippen eines starren Körpers
Versuch zur Vorlesung:
Knickbruch (Versuchskarte M-171)
Hier ist für kleine Auslenkungen $T \propto \varphi$ und nicht beim Pendel $T \propto (-\varphi)$. Die Drehmomentengleichung lautet
\[M = D\varphi = I\ddot{\varphi} \quad (6.3.38) \]
Sie hat die Lösungen
\[\varphi = \varphi_0 e^{\omega t} + \tilde{\varphi} e^{-\omega t} \quad (6.3.39) \]
mit $\omega = \sqrt{\frac{D}{I}}$.
Wenn zu Beginn der Bewegung $\dot{\varphi} = 0$ ist (Anfangsbedingung) ist die Lösung
\[\varphi(t) = \frac{1}{2} \varphi_0 \left(e^{\omega t} + e^{-\omega t} \right) = \varphi_0 \cosh \omega t \quad (6.3.40) \]
Beispiel: Kippender Kamin
Das Trägheitsmoment eines Kamins, der um seinen Fuss rotiert, ist
\[I = \frac{1}{3} m \ell^2 \quad (6.3.41) \]
Dann ist die Drehmomentengleichung
\[M = m \cdot g \cdot \ell \sin \varphi \sim \frac{1}{2} m g \ell \varphi = D\varphi \quad (6.3.42) \]
Daraus folgt für den Betrag der Drehfrequenz
\[\omega = \sqrt{\frac{\frac{1}{2} m g \ell}{\frac{1}{3} m \ell^2}} = \sqrt{\frac{3 g}{2 \ell}} \quad (6.3.43) \]

6.4. Kreisel

Definition: Ein Kreisel ist ein starrer Körper, dessen Bewegung durch einen Fixpunkt festgelegt ist.

Versuch zur Vorlesung:
Stehaufkreisel (Versuchskarte M-116)
6.4.1. Kinematik des Kreisels

Die Lage der Drehachse eines Kreisels hängt von der Zeit ab

\[\omega(t) = \omega(t) e(t) \] (6.4.1)

Die Geschwindigkeit eines Massenelementes \(\Delta m_i \) ist gegeben durch

\[v_i(t) = \omega(t) \times r_i(t) \] (6.4.2)

\(\Delta v_i \) ist die momentane Geschwindigkeit von \(\Delta m_i \).

Die momentane Drehachse \(e \) bewegt sich im Raum entlang einer Kegeloberfläche, der Oberfläche des festen Polkegels \(F \).

Bezüglich des Körpers bewegt sich \(e \) auf einen beweglichen Polkegel \(G \). \(G \) (körperfest) rollt auf \(F \) ab. Die Berührungsline der beiden Polkegel ist die momentane Drehachse.

6.4.2. Drehimpuls und kinetische Energie

Wir betrachten den Zusammenhang zwischen \(\omega(t) \) und \(L_0(t) \) im körperfesten Bezugssystem.
\[L_x = l_{xx} \omega_x + l_{xy} \omega_y + l_{xz} \omega_z \]
\[L_y = l_{yx} \omega_x + l_{yy} \omega_y + l_{yz} \omega_z \]
\[L_z = l_{zx} \omega_x + l_{zy} \omega_y + l_{zz} \omega_z \]
(6.4.3)

oder
\[L = L_0 \omega \]
(6.4.4)

oder \(L_i = l_{ij} \omega_j \). \(L_0 \) heisst der Trägheitstensor des Kreisels (des starren Rotators) bezüglich dem Fixpunkt 0. Die Komponenten von \(L_0 \) sind
\[
\begin{align*}
 l_{xx} &= \int (y^2 + z^2) \, dm \\
 l_{yy} &= \int (x^2 + z^2) \, dm \\
 l_{zz} &= \int (x^2 + y^2) \, dm \\
 l_{xy} &= l_{yx} = -\int xy \, dm \\
 l_{xz} &= l_{zx} = -\int xz \, dm \\
 l_{yz} &= l_{zy} = -\int yz \, dm
\end{align*}
\]
(6.4.5)

\(L_0 \) ist symmetrisch, das heisst \(l_{ij} = l_{ji} \)

Beweis: Die Definition des Drehimpulses ist
\[L = r \times p \]

Für ein Massenelement \(dm \) gilt
\[dL = r \times (dm \, v) \]

Mit \(v = \omega \times r \) wird
\[
\begin{align*}
 dL &= r \times (\omega \times r) \, dm \\
 &= (r \cdot r) \omega dm - (r \cdot \omega) r \, dm
\end{align*}
\]

Also wird
\[L = \omega \int r^2 \, dm - \int r \, (r \cdot \omega) \, dm \]
(6.4.7)

Wir setzen \(r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \) und betrachten die \(x \)-Komponente:
\[
\begin{align*}
 L_x &= \omega_x \int r^2 \, dm - \int x \, (x \omega_x + y \omega_y + z \omega_z) \, dm \\
 &= \omega_x \int (x^2 + y^2 + z^2 - x^2) \, dm - \omega_y \int xy \, dm - \omega_z \int xz \, dm
\end{align*}
\]
(6.4.8)

also ist \(l_{xx} = \int (y^2 + z^2) \, dm \) und \(l_{xy} = -\int xy \, dm \) und \(l_{xz} = -\int xz \, dm \), wie behaup-
tet.
Die Größe \(-I_{xy} = \int xy \, dm\) heisst Deviationsmoment.
Die Spur von \(I_0\) ändert sich nicht bei einer Drehung des Koordinatensystems
\[
\text{spur}(I_0) = l_{xx} + l_{yy} + l_{zz} = 2 \int \left(x^2 + y^2 + z^2\right) \, dm = 2 \int r^2 \, dm = \text{const}
\]
(6.4.9)

Weiter gilt
\[
l_{xx} + l_{yy} - l_{zz} = 2 \int z^2 \, dm \geq 0
\]
(6.4.10)

und zyklisch.
Frage: gibt es ein Koordinatensystem, in dem die Deviationsmomente verschwinden?
Diese Frage ist äquivalent zur Frage nach den Eigenvektoren einer Matrix.
Aus der Mathematik weiss man, dass, da \(I_0 = I_0^T\) gilt, ein Hauptachsensystem existiert, in dem \(I_0\) diagonal ist.
Wir nennen die Hauptträgheitsmomente: \(l_{ii} = l_i\)
Seien \(e_x, e_y, e_z\) körperfeste Basisvektoren, die so nummeriert werden, dass \(l_x \geq l_y \geq l_z\) ist.
Sei \(e(t)\) die momentane Drehachse und \(\omega(t) = \omega(t) \, e(t)\) die momentane Winkelgeschwindigkeit. Dann gilt
\[
L_0 = \begin{pmatrix}
l_x & 0 & 0 \\
0 & l_y & 0 \\
0 & 0 & l_z
\end{pmatrix} \quad \omega = \begin{pmatrix}
l_x \omega_x \\
l_y \omega_y \\
l_z \omega_z
\end{pmatrix}
\]
(6.4.11)

Der Drehimpulsvektor entlang der \(x\)-Achse ist dann
\[
L_x(t) = l_x \omega_x(t) = l_x \omega(t) \, e_x(t)
\]
(6.4.12)

und zyklisch.
Die Spur des Trägheitstensors ist \(\text{spur}(I) = l = l_x + l_y + l_z\).

6.4.2.1. Kinetische Energie des Kreisels

Es gilt \(E_{\text{kin}} = \frac{1}{2} L_0 \cdot \omega\), da der Kreisel ein starrer Rotator ist. Im Hauptachsensystem haben wir
\[
E_{\text{kin}} = \frac{1}{2} \left(\frac{L_x^2(t)}{l_x} + \frac{L_y^2(t)}{l_y} + \frac{L_z^2(t)}{l_z} \right)
= \frac{1}{2} \left(l_x \omega_x^2(t) + l_y \omega_y^2(t) + l_z \omega_z^2(t) \right)
\]
(6.4.13)
Beweis

\[E_{\text{kin}} = \frac{1}{2} \mathbf{L}_0 \cdot \mathbf{\omega} \]
\[= \frac{1}{2} \begin{pmatrix} l_x \omega_x \\ l_y \omega_y \\ l_z \omega_z \end{pmatrix} \cdot \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} \]
\[= \frac{1}{2} \left(l_x \omega_x^2 + l_y \omega_y^2 + l_z \omega_z^2 \right) \]
\[= \frac{1}{2} \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} \cdot \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} \]
\[= \frac{1}{2} \begin{pmatrix} L_x^2 \\ L_y^2 \\ L_z^2 \end{pmatrix} \]

Die momentane Drehachse ist durch \(\mathbf{\omega}(t) \) gegeben. Wir definieren die momentane Drehachse durch einen zeitabhängigen Einheitsvektor \(\mathbf{e}(t) \) mit \(|\mathbf{e}(t)| = 1 \). Dann ist

\[\mathbf{\omega}(t) = \mathbf{\omega}(t) \mathbf{e}(t) = \mathbf{\omega}(t) \begin{pmatrix} e_x(t) \\ e_y(t) \\ e_z(t) \end{pmatrix} \] (6.4.14)

Durch Umstellen erhalten wir

\[E_{\text{kin}} = \frac{1}{2} \left(l_x \omega_x^2(t) + l_y \omega_y^2(t) + l_z \omega_z^2(t) \right) \] (6.4.15)
\[= \frac{1}{2} \left(l_x \omega_x^2(t) e_x^2(t) + l_y \omega_y^2(t) e_y^2(t) + l_z \omega_z^2(t) e_z^2(t) \right) \]
\[= \frac{\omega^2(t)}{2} \left(l_x e_x^2(t) + l_y e_y^2(t) + l_z e_z^2(t) \right) \]
\[= \frac{\omega^2(t)}{2} l(t) \] (6.4.16)

wobei wir

\[l = l_x e_x^2(t) + l_y e_y^2(t) + l_z e_z^2(t) \] (6.4.17)

gesetzt haben. \(l \) ist das Trägheitsmoment bezüglich der momentanen Drehachse \(\mathbf{e} \). Wenn die kinetische Energie des Kreisels erhalten ist, ist auch \(l \) eine Konstante.

Versuch zur Vorlesung:
Kreiselbewegungen (Versuchskarte M-041)

6.4.2.2. Trägheitsellipsoid

Wir möchten den Körper mit einer allgemeinen Form, der durch den Trägheits-
tensor \(\mathbf{I}_0 \) charakterisiert ist, durch den einfachst möglichen Körper mit den glei-
chen Rotationseigenschaften ersetzen. Dies ist das Trägheitsellipsoid charakteri-
siert durch den Vektor \(\mathbf{u} \). Wir verwenden zur Definition von \(\mathbf{u} \) die Definition des
Mechanik starrer Körper

Trägheitsmomentes \(I \) bezüglich der momentanen Drehachse \(e \) vom vorherigen Abschnitt.

\[
\mathbf{u} = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} = \frac{\mathbf{e}}{\sqrt{I}} = \left(\frac{e_x}{\sqrt{I}}, \frac{e_y}{\sqrt{I}}, \frac{e_z}{\sqrt{I}} \right) \quad (6.4.18)
\]

Wir setzen \(\mathbf{u} \) in die Ellipsengleichung ein und erhalten

\[
l_x u_x^2 + l_y u_y^2 + l_z u_z^2 = l_x e_x^2 \frac{u_x^2}{I} + l_y e_y^2 \frac{u_y^2}{I} + l_z e_z^2 \frac{u_z^2}{I} = \frac{l_x e_x^2 + l_y e_y^2 + l_z e_z^2}{I}
\]
\[
= \frac{l_x e_x^2}{I} + \frac{l_y e_y^2}{I} + \frac{l_z e_z^2}{I}
\]
\[
= 1
\]

\(\mathbf{u} \) beschreibt also in der Tat die Oberfläche eines Ellipsoids, das wir Trägheitsellipsoid nennen. Aus der Konstruktion folgen die Eigenschaften des Trägheitsellipsoids:

- Das Trägheitsellipsoid ist körperfest.
- Es hat die gleichen Hauptachsen wie der Kreisel

Aus Gleichung (6.4.19) folgt, dass die Längen der Halbachsen des Trägheitsellipsoids \(\frac{1}{\sqrt{l_x}}, \frac{1}{\sqrt{l_y}} \) und \(\frac{1}{\sqrt{l_z}} \) sind.

Für einen allgemeinen Kreisel mit dem Fixpunkt \(0 \) im Schwerpunkt \(S \) gibt es die folgenden Beziehungen zwischen den Hauptträgheitsmomenten:

<table>
<thead>
<tr>
<th>Kreisel</th>
<th>Hauptträgheitsmomente</th>
<th>Trägheitsellipsoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kugel, Würfel, Tetraeder</td>
<td>(l_1 = l_2 = l_3)</td>
<td>Kugel</td>
</tr>
<tr>
<td>axialsymmetrisch, tellerförmig</td>
<td>(l_1 > l_2 = l_3)</td>
<td>Rotationsellipsoid, tellerförmig</td>
</tr>
<tr>
<td>axialsymmetrisch, spindelförmig</td>
<td>(l_1 = l_2 > l_3)</td>
<td>Rotationsellipsoid, spindelförmig</td>
</tr>
<tr>
<td>niedrige Symmetrie</td>
<td>(l_1 > l_2 > l_3)</td>
<td>allg. Ellipsoid</td>
</tr>
</tbody>
</table>

Tabelle 6.2.: Trägheitsellipsode verschiedener Körper

Bemerkung: nur Rotationen eines freien Körpers um die Hauptachsen mit dem grössten und dem kleinsten Hauptträgheitsmoment sind stabil.

6.4.3. Kräftefreier Kreisel

Definition: Ein Kreisel heisst kräftefrei, wenn M_0 bezüglich des Fixpunktes 0 verschwindet.

Dann ist

$$M_0 = 0$$

und

$$\frac{dL_0}{dt} = 0$$

d.h.

$$L_0 = const.$$

Die kinetische Energie ist dann

$$E_{\text{kin}} = \frac{1}{2} \sum_{j=x,y,z} \frac{L_j^2}{I_j} = \text{const.} = \frac{1}{2} L_0 \cdot \omega(t)$$ (6.4.20)

für die Rotation um eine Hauptachse x. Das heisst, $\omega(t)$ bewegt sich auf einem Kegel um L_0.

Wie realisiert man einen kräftefreien Kreisel?

- Unterstützung im Schwerpunkt S
- freier Körper (mit bewegtes Koordinatensystem)

![Abbildung 6.19.: Kräftefreier Kreisel](image)

Es ist

$$L_0 \cdot \omega(t) = L_0 \omega(t) \cos \alpha$$

$$= L_0 \omega_L = \text{const.}$$

d.h. $\omega_L = \text{const.}$ Dabei ist ω_L die Projektion von ω auf L_0. Es gibt zwei Fälle:
• wenn $\omega(t) \parallel L_0$ ist, dann hat man eine permanente Rotation, d.h. $\omega = \text{const}$.
• wenn $\omega(t)$ nicht parallel zu L_0 ist, bekommt man eine Nutation, abhängig von den Anfangsbedingungen, d.h. ω rotiert um L_0.

Bei einer permanenten Rotation ist $\omega \parallel L_0$ wenn ω zur Hauptachse ist. Es gilt dann

$$\omega_i = \frac{1}{l_i} L_0$$ mit $i = 1...3$

Beim asymmetrischen Kreisel ist

$$l_1 > l_2 > l_3$$

Rotationen um

• e_1 sind stabil
• e_2 sind labil
• e_3 sind stabil

6.4.3.1. Poinsotsche Konstruktion *

Ziel dieses Abschnittes ist es, die allgemeine Bewegung eines Kreisels zu beschreiben. Wir werden sehen, dass dies die Schnittlinien zweier Ellipsoide ist.

Nach Gleichung (6.4.13) und Gleichung (6.4.15) ist

$$E_{\text{kin}} = \frac{1}{2} l \omega^2 = \frac{1}{2} l_x \omega_x^2 + \frac{1}{2} l_y \omega_y^2 + \frac{1}{2} l_z \omega_z^2$$

wenn $\omega = (\omega_x, \omega_y, \omega_z)$ die Kreisfrequenz im Hauptachsensystem ist. Da $\omega^2 = \omega_x^2 + \omega_y^2 + \omega_z^2$ ist, sind alle einzelnen Komponenten kleiner als ω. Also kann man schreiben

$$\omega_x = \omega \cos \alpha \quad \omega_y = \omega \cos \beta \quad \omega_z = \omega \cos \gamma$$

$$\cos \alpha = \frac{\omega_x}{\omega} \quad \cos \beta = \frac{\omega_y}{\omega} \quad \cos \gamma = \frac{\omega_z}{\omega}$$

Abbildung 6.20.: Poinsotsche Konstruktion
Die Zeichnung zeigt, dass damit auch \(\omega^2 = \omega^2 \cos^2 \alpha + \omega^2 \cos^2 \beta + \omega^2 \cos^2 \gamma \) und damit \(1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \) ist. Weiter ist nach Gleichung (6.4.14)

\[
e_x = \frac{\omega_x}{\omega} = \cos \alpha \quad e_y = \frac{\omega_y}{\omega} = \cos \beta \quad e_z = \frac{\omega_z}{\omega} = \cos \gamma
\]

Nach Gleichung (6.4.17) ist

\[l = l_x e_x^2 + l_y e_y^2 + l_z e_z^2\]

und damit

\[1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma\]

Wir setzen den Punkt \(Q \) im Abstand \(\rho = \sqrt{\frac{1}{I}} \) (siehe Gleichung (6.4.17)) vom Nullpunkt auf die Drehachse. Mit \(Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \) wird

\[
\cos \alpha = \frac{x}{\rho} \\
\cos \beta = \frac{y}{\rho} \\
\cos \gamma = \frac{z}{\rho}
\]

da ja gilt \(\rho^2 = x^2 + y^2 + z^2 \) oder \(1 = (x/\rho)^2 + (y/\rho)^2 + (z/\rho)^2 \). Aus Gleichung (6.4.17) bekommt man

\[l_x(x/\rho)^2 + l_y(y/\rho)^2 + l_z(z/\rho)^2 = 1\]

oder mit der Definition von \(\rho = 1/ \sqrt{I} \)

\[l_x x^2 + l_y y^2 + l_z z^2 = l \rho^2 = \frac{1}{I} = 1\]

(6.4.21)

Diese Gleichung beschreibt also nichts anderes als das Trägheitsellipsoid.

Allgemein gilt, dass eine Funktion \(f(x, y, z) = \text{const} \) eine Oberfläche beschreibt. Dann ist der Normalenvektor der Funktion \(f(\rho) = f(x, y, z) = l_x x^2 + l_y y^2 + l_z z^2 \) durch

\[\text{grad} f = 2 (l_x x, l_y y, l_z z)\]

(6.4.22)

gegeben.

Beweis:

Wir betrachten das totale Differential \(df \). Dieses muss null sein, da die Funktion \(f(\rho) \) eine Konstante ist. Wir bekommen also

\[
df = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy + \frac{\partial f}{\partial z} \, dz
\]

\[= (\text{grad} f) \cdot (dx, dy, dz)\]

(6.4.23)

\[= (\text{grad} f) \cdot (d\rho) = 0\]

(6.4.24)

Damit ist \(\text{grad} f \) senkrecht zu \(d\rho \). Da \(d\rho \) in der Fläche \(f(\rho) \) liegt (Die möglichen Änderungen von \(\rho \) sind durch die durch \(f(\rho) \) beschriebene Fläche begrenzt) ist \(\text{grad} f \) senkrecht zur Tangentialebene und damit der Normalenvektor.
Der Normalenvektor zum Trägheitsellipsoid

\[f(x, y, z) = f(\rho) = l_x x^2 + l_y y^2 + l_z z^2 = 1 = \text{const} \]

ist

\[\text{grad } f = 2 (l_x x, l_y y, l_z z) \]

Im Hauptachsensystem ist

\[L = (l_x \omega_x, l_y \omega_y, l_z \omega_z) \]

Von der Konstruktion her sind \(\rho = (x, y, z) \) und \(\omega = (\omega_x, \omega_y, \omega_z) \) parallel. Wir können wie folgt umformen

\[
L = (l_x \omega_x, l_y \omega_y, l_z \omega_z) = \omega \left(l_x \frac{x}{\rho} + l_y y \frac{y}{\rho} + l_z z \frac{z}{\rho} \right) = \frac{\omega}{\rho} (l_x x + l_y y + l_z z)
\]

Deshalb ist \(2L \parallel \text{grad } f(\rho) \), das heisst, dass \(L \) senkrecht zur Tangentialebene \(t \) im Durchstosspunkt \(Q \) von \(\omega \) durch das Trägheitsellipsoid ist.

Rezept zur Konstruktion von \(L \):

- Trage \(\omega \) in 0 ab und bestimme \(Q \) (Durchstosspunkt durch das Trägheitsellipsoid)
- Zeichne die Tangentialebene \(t \) in \(Q \)
- Fälle von 0 aus das Lot auf die Tangentialebene \(t \) in \(Q \)
• \(L \) ist parallel zu diesem Lot.

Abbildung 6.22.: Interpretation der Poinsotschen Konstruktion

Wir bezeichnen mit \(\Delta \) den Abstand von 0 zur Tangentialebene \(t \) in \(Q \). Der Abstand \(\Delta \) hat die folgende Bedeutung

\[
\Delta^2 = \frac{2E_{\text{kin}}}{L^2} \tag{6.4.25}
\]

Beweis: Die Tangentialebene \(t \) ist durch den Vektor \(R = (X, Y, Z) \) gegeben. Dann gilt

\[
(R - \rho) \cdot \nabla f(\rho) = 0 \tag{6.4.26}
\]

Dann ist

\[
\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix} \cdot \begin{pmatrix}
2l_x x \\
2l_y y \\
2l_z z
\end{pmatrix} - \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \cdot \begin{pmatrix}
2l_x x \\
2l_y y \\
2l_z z
\end{pmatrix} = 0
\]

Ausmultipliziert erhält man

\[
2l_x x X + 2l_y y Y + 2l_z z Z = 2l_x x^2 + 2l_y y^2 + 2l_z z^2 = 2
\]

wobei wir Gleichung (6.4.21) verwendet haben. Also ist

\[
l_x x X + l_y y Y + l_z z Z = 1 \tag{6.4.27}
\]

Wir bezeichnen mit \(\hat{e} \) den Einheitsvektor entlang \(R \parallel L \). Dann ist \(\Delta \)

\[
\Delta = R \cdot \hat{e} = X \hat{e}_x + Y \hat{e}_y + Z \hat{e}_z \tag{6.4.28}
\]

oder

\[
1 = \frac{X \hat{e}_x}{\Delta} + \frac{Y \hat{e}_y}{\Delta} + \frac{Z \hat{e}_z}{\Delta} \tag{6.4.29}
\]

Wir vergleichen Gleichung (6.4.27) und Gleichung (6.4.29). Die Vorfaktoren von \(X, Y \) und \(Z \) müssen identisch sein, da bei beliebiger Variation der drei Größen beide Gleichungen konstant sein müssen. Insbesondere kann man \(Y = Z = 0 \) setzen und bekommt dann

\[
l_x x X = 1 = \frac{\hat{e}_x}{\Delta} X \Rightarrow l_x x = \frac{\hat{e}_x}{\Delta}
\]
und natürlich zyklisch für alle drei Komponenten. Also ist
\[
\frac{\hat{e}_x}{\Delta} = l_x x \quad \frac{\hat{e}_y}{\Delta} = l_y y \quad \frac{\hat{e}_z}{\Delta} = l_z z \quad (6.4.30)
\]
oder
\[
\hat{e}_x = \Delta l_x x \quad \hat{e}_y = \Delta l_y y \quad \hat{e}_z = \Delta l_z z \quad (6.4.31)
\]
Da \(\hat{e}\) ein Einheitsvektor ist, gilt
\[
1 = \frac{\hat{e}_x^2 + \hat{e}_y^2 + \hat{e}_z^2}{\Delta^2} = \Delta^2 \left(l_x^2 x^2 + l_y^2 y^2 + l_z^2 z^2 \right) \quad (6.4.32)
\]
\(\rho\) und \(\omega\) sind parallel, also ist
\[
\frac{x_i}{\rho} = \frac{\omega_i}{\omega} \quad \Rightarrow \quad x_i = \frac{\rho}{\omega} \omega_i \quad (6.4.33)
\]
und
\[
\Delta^2 \left(\frac{l_x^2 \rho^2 \omega_x^2}{\omega^2} + \frac{l_y^2 \rho^2 \omega_y^2}{\omega^2} + \frac{l_z^2 \rho^2 \omega_z^2}{\omega^2} \right) = 1 \quad (6.4.34)
\]
Mit der Definition \(\rho = 1/\sqrt{I}\) bekommt man
\[
l_x^2 \omega_x^2 + l_y^2 \omega_y^2 + l_z^2 \omega_z^2 = \frac{\omega^2}{\rho^2 \Delta^2} = \frac{l\omega^2}{\Delta^2} = \frac{2E_{\text{kin}}}{\Delta^2} \quad (6.4.35)
\]
Andererseits ist
\[
L = (l_x \omega_x, l_y \omega_y, l_z \omega_z) \quad (6.4.36)
\]
Damit folgt die Behauptung
\[
\frac{2E_{\text{kin}}}{\Delta^2} = L^2 \quad (6.4.37)
\]

Abbildung 6.23.: Poinsot-Ellipsoid

Wir betrachten nun ein weiteres Ellipsoid, das Poinsot-Ellipsoid \(P\). Dieses ist ähnlich zum Trägheitsellipsoid und liegt zu ihm konzentrisch. Wir wollen das Poinsot-Ellipsoid als Funktion von \(\omega_P\) darstellen. Die Nutation im raumfesten Koordinatensystem wird nun beschrieben durch das Abrollen des Poinsot-Ellipsoids auf eine Ebene \(E\) gegeben durch die Gesamtheit der Vektoren \(\omega_E\). Diese Ebene \(E\) ist durch
\[
\omega_E \cdot L_0 = \omega_L \cdot L_0 = 2E_{\text{kin}} = \text{const.}
\]
charakterisiert, da für einen starren Rotator ja \(E_{\text{kin}} = \frac{1}{2} \mathbf{\omega} \cdot \mathbf{L} \) gilt (siehe Gleichung (6.3.22)).

Am Berührungspunkt des Poinsotschen Ellipsoids muss die vorherige Gleichung auch stimmen. Deshalb ist die Ellipsengleichung im körperfesten Hauptachsensystem

\[
1 = \frac{\mathbf{L}_0 \cdot \mathbf{\omega}_p}{2E_{\text{kin}}}
= \frac{1}{2E_{\text{kin}}} \left[(l_x^2 \omega_{pz}^2) \omega_{px} + (l_y^2 \omega_{py}^2) \omega_{py} + (l_z^2 \omega_{pz}^2) \omega_{pz} \right]
= \frac{l_x^2 \omega_{pz}^2}{2E_{\text{kin}}} + \frac{l_y^2 \omega_{py}^2}{2E_{\text{kin}}} + \frac{l_z^2 \omega_{pz}^2}{2E_{\text{kin}}}
= \frac{\omega_{pz}^2}{l_z} + \frac{\omega_{py}^2}{l_y} + \frac{\omega_{pz}^2}{l_z}
\]

(6.4.38)

Die drei Halbachsen des Poinsotschen Ellipsoids \(P \) sind

\[
\sqrt{\frac{2E_{\text{kin}}}{l_x}}, \quad \sqrt{\frac{2E_{\text{kin}}}{l_y}}, \quad \sqrt{\frac{2E_{\text{kin}}}{l_z}}
\]

im körperfesten Hauptachsensystem.

Der Punkt \(A \) (Berührungspunkt zwischen dem Poinsot-Ellipsoid \(P \) und der Ebene \(E \)) ist gegeben durch

\[
\mathbf{\omega}_E = \omega_p = \mathbf{\omega} \quad (t)
\]

(6.4.39)

Die Bahnkurve von \(A \) auf \(P \) heisst Polhoid.

Die Bahnkurve von \(A \) auf \(E \) heisst Herpolhoide.

Im körperfesten Hauptachsensystem ist der Winkelgeschwindigkeitsvektor \(\mathbf{\omega}(t) \) die Verbindung zwischen dem Fixpunkt 0 (beim freien Körper ist das der Schwerpunkt, beim Kreisel der Auflagepunkt) und der Polhoid.

Die Polhoid ist gegeben als Schnittpunkt des Poinsot-Ellipsoids \(P \) und des Drallellipsoids \(D \). Das Drallellipsoid wird als Funktion der Variablen \(\mathbf{\omega}_D = (\omega_{Dx}, \omega_{Dy}, \omega_{Dz}) \) geschrieben. Nach Gleichung (6.4.11) ist der Drehimpuls gegeben durch

\[
\mathbf{L}_0 = (l_x \omega_z, l_y \omega_y, l_z \omega_z)
\]

(6.4.40)

Also können wir schreiben

\[
1 = \frac{\mathbf{L}_0^2}{\mathbf{L}_0^2} = \frac{l_x^2 \omega_{Dx}^2 + l_y^2 \omega_{Dy}^2 + l_z^2 \omega_{Dz}^2}{l_x^2} = \frac{l_x^2 \omega_{Dx}^2 + l_y^2 \omega_{Dy}^2 + l_z^2 \omega_{Dz}^2}{l_x^2}
\]

(6.4.41)

Diese Gleichung definiert das Drallellipsoid \(D \). Das Drallellipsoid \(D \) hat die Halbachsen

\[
\frac{L_0}{l_x}, \quad \frac{L_0}{l_y}, \quad \frac{L_0}{l_z}
\]

Die Halbachsen des Drallellipsoides \(D \) sind also anders als die Halbachsen des Poinsot-Ellipsoids \(P \).
Bei einem reibungsfreien Kreisel ist sowohl seine kinetische Energie wie auch der Betrag seines Drehimpulses erhalten. Die Winkelgeschwindigkeit \(\omega \) bestimmt zusammen mit dem Trägheitstensor beide Größen. Im Hauptachsensystem folgt aus der Erhaltung der kinetischen Energie, dass \(\omega \) sich auf dem Poinset-Ellipsoid \(P \) bewegen muss. Die Erhaltung des Drehimpuls-Quadrates \(L_0^2 \) bedingt, dass im Hauptachsensystem \(\omega \) sich auf dem Drallellipsoid \(D \) befinden muss. Die möglichen Bahnkurven sind also die Schnittmenge von \(P \) und \(D \).

Um den Vektor \(\omega \) vollständig anzugeben, sind drei Komponenten nötig. Mit der kinetischen Energie \(E_{\text{kin}} \) und dem Quadrat des Drehimpulses \(L_0^2 \) haben wir erst zwei Bestimmungsgrössen. Wir könnten also die Komponenten von \(L_0 \) entlang einer Koordinatenachse als dritte Angabe verwenden. Üblicherweise nennt man diese Koordinatenachse die \(z \)-Achse: Wir bestimmen also die Komponente \(L_z \).

Dieses Tripel \((E_{\text{kin}}, L_0^2 \text{ und } L_z)\) ist das gleiche Tripel, das bei der Angabe der Quantenzahlen für ein Elektron angegeben wird. Der quantenmechanische Zustand eines Elektrons in einem Atom ist also äquivalent zu einem Bewegungszustand eines Kreisels.

Versuch zur Vorlesung:
Nutation (Versuchskarte M-119)

6.4.4. Der Kreisel unter dem Einfluss von Kräften

Wirkt ein externes Drehmoment \(M_0 \) bezüglich \(\theta \) so gilt

\[
\frac{d}{dt} L_0 = M_0 \tag{6.4.42}
\]

Bemerkung: Durch den Drallsatz ist \(L_0 \) bis auf eine Konstante \(L_0^* \) bestimmt.

\[
L(t) = M_0t + L_0^*
\]

\(L_0^* \) bestimmt die Nutation. Im allgemeinen wird ein Kreisel deshalb nutieren. Nur mit speziellen Anfangsbedingungen tritt keine Nutation auf, das heisst, man hat eine nutationsfreie Kreiselung.

6.4.4.1. Präzession

Versuch zur Vorlesung:
Präzession (Versuchskarte M-066)
Versuch zur Vorlesung: Präzessionsfrequenz (Versuchskarte M-110)

Unter Präzession versteht man die Rotation von L_0 mit Ω

$$\frac{dL_0}{dt} = \Omega \times L_0 = mg \times r_{0S} = M_0$$ \hspace{1cm} (6.4.43)

Abbildung 6.24.: Präzedierender Kreisel

Hier ist r_{0S} der Abstand des Schwerpunktes vom Fixpunkt. Dann ist

$$M_0 = mg \sin \alpha \cdot r_{0S} = \Omega \sin \alpha L_0$$

und daraus

$$\Omega = \frac{mgr_{0S}}{L_0} = \frac{r_{0S}mg}{\alpha}$$ \hspace{1cm} (6.4.44)

Ω ist unabhängig von α. Wir können auch eine Energiebetrachtung machen:

$$E_{\text{kin}, \text{Kreisel}} = \frac{1}{2} \omega^2 \sim \text{const.}$$ \hspace{1cm} (6.4.45)

Da ω konstant ist, ist auch die *kinetische Energie* konstant. Die totale Energie ist konstant, also

$$E_{\text{tot}} = E_{\text{pot}} + E_{\text{kin}, \text{Kreisel}} = mgr_{0S} \cos \alpha + \frac{1}{2} \omega^2 = \text{const.}$$ \hspace{1cm} (6.4.46)

Versuch zur Vorlesung: Kreiselfahrzeug (Versuchskarte M-182)
das heisst, E_{kin} und E_{pot} sind auch einzeln konstant. Das heisst der präzedierende Kreisel fällt nicht.

6.5. Mechanische Maschinen

$$\delta E = \sum \frac{\partial E}{\partial x_i} \delta x_i = 0$$ \hspace{1cm} (6.5.1)

ist.

Dabei ist $\frac{\partial E}{\partial x_i} = 0$ die Gleichgewichtsbedingung.

Abbildung 6.25.: Flaschenzug: Berechnung mit virtuellen Verschiebungen.

Versuch zur Vorlesung:
Rollen, Flaschenzug (Versuchskarte M-120)

Wir betrachten als Beispiel einen Flaschenzug. U sei die potentielle Energie als Funktion der Koordinaten x_1 und x_2. Wir haben also

$$\delta x_1 = -2 \delta x_2$$

mit

$$\frac{\partial U}{\partial x_1} = -F_1 \quad \text{und} \quad \frac{\partial U}{\partial x_2} = -F_2$$ \hspace{1cm} (6.5.2)
Die Seile des Flaschenzuges ergeben die Beziehungen für die Arbeit

\[F_1 \delta x_1 + F_2 \delta x_2 = 0 \]

Wir setzen die Beziehung zwischen \(\delta x_1 \) und \(\delta x_2 \) ein

\[F_1 (-2 \delta x_2) + F_2 \delta x_2 = 0 \]

Die gefundene Beziehung ist unabhängig von \(\delta x_2 \). Also hat man

\[2F_1 = F_2 \]

oder \(F_1 = \frac{F_2}{2} \).

Ein zweites Beispiel ist die Kurbelwelle und der Pleuel eines Motors.

\[\text{Abbildung 6.26.: Kurbelwelle und Pleuel berechnet mit virtuellen Verschiebungen.} \]

\[\text{Link zur Vorlesung: (Kolbenmotor)} \]

Für die virtuellen Verrückungen (Arbeit) bekommt man

\[F_2 r \delta \varphi = F_1 \delta x_1 \]

Weiter verwenden wir die Beziehung zwischen den Größen

\[\ell^2 = x_1^2 + r^2 + 2rx \cos \varphi \]

Daraus kann \(x_1 \) als Funktion von \(\varphi \) dargestellt werden.

\[x_1 = -r \cos \varphi + \sqrt{\ell^2 - r^2 \sin \varphi} \]

und für die virtuelle Verschiebung

\[\delta x_1 = r \sin \varphi \left(1 - r \frac{\cos \varphi}{\sqrt{\ell^2 - r^2 \sin^2 \varphi}} \right) \delta \varphi \]
Also ist die Kraft auf die Kurbelwelle

\[F_2 = F_1 \frac{\delta x_1}{r \delta \varphi} = F_1 \sin \varphi \left(1 - \frac{r}{\ell} \frac{\cos \varphi}{\sqrt{1 - \left(\frac{r}{\ell}\right)^2 \sin^2 \varphi}} \right) \]

(6.5.3)

Wenn \(r \ll \ell \) ist, dann ist \(F_2 = F_1 \sin \varphi \).

Die nichtlineare Beziehung zwischen der Position des Kolbens und der der Kurbelwelle bewirkt, dass bei einer Drehzahl nicht nur deren Frequenz sonder noch viele Harmonische schwingungen im Fahrzeug anregen.
7. Mechanik deformierbarer Medien

Bis jetzt haben wir mit starren Körpern gerechnet, aber: **starre Körper existieren nicht.**

Körper können folgendermassen deformiert werden:

Abbildung 7.1.: Arten der Deformation eines deformierbaren Körpers

Dehnung Stauchung Scherung Verdrillation Verbiegung

7.1. Elastomechanik

(Siehe Tipler, Physik [TM04, pp. 342]) (Siehe Gerthsen, Physik [Mes06, pp. 130])

An einem Würfel, der parallel zu den Achsen eines kartesischen Koordinatensystems liegt, können im allgemeinen Falle die folgenden Kräfte oder Spannungen sowie Deformationen auftreten:

- An jeder der 6 Flächen können
 - 3 unabhängige Kräfte (2 parallel zur Fläche, eine senkrecht dazu) und
 - 3 unabhängige Deformationen, die aus einer Kompression oder Dilatation sowie zwei Scherungen bestehen.

- Da keine Netto-Kraft auf den Würfel wirken soll, müssen die Kräfte in die x-, y-, oder z-Richtung auf gegenüberliegenden Seiten gegengleich sein.

- Wir können also 3 mal 3 Kräfte spezifizieren.

- Ebenso müssen die Deformationen auf gegenüberliegenden Seiten gegengleich sein.

- Wir haben also als Resultat der 3 mal 3 Kräfte 3 mal 3 Deformationen.

- Kräfte und Deformationen sind jeweils 3 mal 3 Matrizen, die über einen Tensor 4. Stufe (eine 3 mal 3 mal 3 mal 3 Matrix) miteinander verbunden sind.

Formal können wir schreiben

$$\sigma_{i,j} = \sum_k \sum_\ell E_{i,j,k,\ell} e_k e_\ell \quad \text{mit} \ i, j, k, \ell = x, y, z \quad (7.1.1)$$
Der Würfel soll drehmomentenfrei sein. Das Drehmoment um die 3-Achse kann durch das Kräftepaar auf in der 2-Richtung auf der 1-Fläche oder durch das Kräftepaar in die 1-Richtung auf der 2-Fläche herrühren. Wenn die beiden Kräfte positiv sind, erzeugen sie ein entgegengesetztes Drehmoment und garantieren, dass und kein Netto-Drehmoment um die 3-Achse existiert. Analog kann man mit den beiden anderen möglichen Drehachsen argumentieren. Deshalb sind von den 9 Kräften $F_{i,j}$ gilt

\[F_{i,j} = F_{j,i} \]

Es bleiben sechs unabhängige Kräfte ($F_{1,1}, F_{2,2}, F_{3,3}, F_{1,2}, F_{2,3}, F_{3,1}$). Es gibt also 6 unabhängige Spannungen ($\sigma_{1,1}, \sigma_{2,2}, \sigma_{3,3}, \sigma_{1,2}, \sigma_{2,3}, \sigma_{3,1}$). Von den neun Deformationen ϵ_k, ℓ sind sechs unabhängig. Die Deformationen mit den gleichen Indizes bedeuten Dehnungen und Stauchungen. Die anderen sechs bedeuten Scherungen. So beschreibt die $\epsilon_{1,2}$ die Scherung der 1-Achse gegen die 2-Achse, also die Änderung des Zwischenwinkels zwischen beiden Achsen. $\epsilon_{2,1}$ beschreibt die Scherung der 2-Achse gegen der 1-Achse, also auch die Änderung des Zwischenwinkels. Dies ist aber in beiden Fällen der gleiche Winkel. Also gilt $\epsilon_k, \ell = \epsilon_{\ell, k}$ für $k \neq \ell$. Es bleiben also auch sechs unabhängige Deformationen ($\epsilon_{1,1}, \epsilon_{2,2}, \epsilon_{3,3}, \epsilon_{1,2}, \epsilon_{2,3}, \epsilon_{3,1}$).

Es bleiben also noch $6 \cdot 6 = 36$ unabhängige Komponenten im Tensor übrig. Wenn wir berücksichtigen, dass für kleine Deformationen ϵ_k, ℓ die potentielle Energie wie bei jeder Feder eine quadratische Funktion der Dehnungen sein muss und dass die Spannungen durch die Ableitung dieser Energie nach den Deformationen berechnet werden, folgt dass es noch 21 unterschiedliche Komponenten des Elastizitätstensors gibt. Mit anderen Worten, die Deformation des allgemeinsten Materials wird durch 21 Parameter beschrieben.

Je höher die Symmetrie eines Materials ist, desto weniger unabhängige Konstanten gibt es. Im Grenzfall des isotropen Mediums bleiben zwei, E und G.

7.1.1. Dehnung und Kompression

(Siehe Tipler, Physik [TM04, pp. 342]) (Siehe Gerthsen, Physik [Mes06, pp. 130])

Zieht man an einem Draht (Länge ℓ, Querschnitt d und Querschnittsfläche $A = \pi d^2$), dann vergrößert sich die Länge um $\Delta \ell$ und verringert sich (meistens) der Querschnitt um Δd.

\[
\Delta \ell = \epsilon \ell \\
-\Delta d = \mu \epsilon d
\]

Es sind

- ϵ die relative Dehnung
- μ die Poisson-Zahl

Wir definieren nun die Spannung

\[
\sigma = \frac{F}{A}
\]
dabei ist F die an der Querschnittsfläche A wirkende Kraft.

Das Hookesche Gesetz verknüpft Spannung σ und Dehnung ϵ

$$\sigma = E\epsilon \quad (7.1.4)$$

E ist eine Materialkonstante, der Elastizitäts- oder der Dehnungsmodul (im englischen Young’s Modulus genannt).

Einheiten

- ϵ: dimensionslos
- σ: $\frac{N}{m^2}$
- E: $\frac{N}{m^2}$

Wenn wir die obigen Gleichungen umschreiben, erhalten wir

$$\delta \ell = \frac{1}{E} \frac{\ell F}{A} \quad (7.1.5)$$

Aus Änderung des Querschnitts und der Länge können wir die Volumenänderung berechnen. Wir setzen an, dass $V = \ell d^2$ ist

$$\Delta V = d^2 \Delta \ell + 2\ell d \Delta D = V \frac{\Delta \ell}{\ell} + 2V \frac{\Delta d}{d} \quad (7.1.6)$$

Ungeschrieben erhalten wir

$$\frac{\Delta V}{V} = \frac{\Delta \ell}{\ell} + 2 \frac{\Delta d}{d} = \epsilon - 2\mu \epsilon = \epsilon(1 - 2\mu) = \frac{\sigma}{E}(1 - 2\mu) \quad (7.1.7)$$

Wir sehen, dass für positives ΔV die Poisson-Zahl der Ungleichung $\mu \leq 0.5$ genügen muss. In speziellen Fällen kann μ auch größer als 0.5 sein.

Wir haben hier σ und ϵ als Skalare angenommen.

Wird der Testkörper hydrostatischem Druck Δp unterworfen, ist also die Spannung auf allen Seiten gleich, ändert sich das Volumen um den dreifachen Wert, der bei einer uniaxialen Spannung auftreten würde.

$$\frac{\Delta V}{V} = -\frac{3\Delta p}{E}(1 - 2\mu) \quad (7.1.8)$$

Die Kompressibilität $\kappa = -\frac{\Delta V}{V \Delta p}$ ist

$$\kappa = \frac{3}{E}(1 - 2\mu) \quad (7.1.9)$$

Wird ein Draht gedehnt, kann ihm die Federkonstante $k = \frac{\Delta F}{\Delta \ell} = \frac{\Delta E}{\ell}$ zuschreiben. Bei der Dehnung wird die Arbeit

$$W = \int_0^{\Delta \ell} k \, dx = \frac{1}{2} k \Delta \ell^2 = \frac{1}{2} EA \ell \frac{\Delta \ell^2}{\ell^2} = \frac{1}{2} EV \epsilon^2 \quad (7.1.10)$$
verrichtet. Wenn wir die Arbeit, oder Energie, pro Volumeneinheit ausrechnen, ist die elastische Energiedichte

\[w = \frac{1}{2} E \epsilon^2 \]

\textit{(7.1.11)}

7.1.2. Scherung

(Siehe Gerthsen, Physik [Mes06, pp. 131])

Abbildung 7.3.: Scherung eines Würfels

Wenn die Kraft \(F \) tangential zur Oberfläche steht, dann wird der Testkörper geschert. Wenn die Stirnfläche des Würfels \(A \) ist, ist die Schubspannung

\[\tau = \frac{F}{A} \]

\textit{(7.1.12)}

Als Konsequenz dieser Schubspannung wird der Testkörper um den Winkel \(\alpha \) geschert.

\[\tau = G \alpha \]

\textit{(7.1.13)}

Einheiten

- \(\alpha \): dimensionslos
- \(\tau \): \(\frac{N}{m^2} \)
- \(G \): \(\frac{N}{m^2} \)

\(G \) ist der Schub- oder Torsionsmodul (englisch: shear modulus). Analog zur Energiedichte der axialen Deformation kann auch für die Scherenergiedichte

\[w = \frac{1}{2} G \alpha^2 \]

\textit{(7.1.14)}

geschrieben werden.
7.1.3. Verdrillung eines Drahtes

(Siehe Gerthsen, Physik [Mes06, pp. 131])

Abbildung 7.4.: Verdrillung. Zur Berechnung wird der Draht in koaxiale Zylinder unterteilt.

Hier verdrehen zwei entgegengesetzte Drehmomente M einen Draht um den Winkel φ. Ein Hohlzylinder mit dem Radius r und der Dicke dr wird um

$$\alpha = \frac{r \varphi}{\ell}$$ \hspace{1cm} (7.1.15)

geschert. Wir benötigen die Scherspannung $\tau = G \alpha$ und eine Scherkraft $dF = \tau \cdot 2\pi r dr$. Das Drehmoment ist also

$$dM = dF r = \frac{2\pi G \varphi}{\ell} r^3 dr$$ \hspace{1cm} (7.1.16)

Das gesamte Drehmoment erhalten wir durch Integration

$$M = \int_0^R -\frac{2\pi G \varphi}{\ell} r^3 dr = -\frac{\pi}{2} G \frac{R^4}{\ell} \varphi$$ \hspace{1cm} (7.1.17)

Wir können dem Draht die Richtgrösse

$$D_r = -\frac{M}{\varphi} = -\frac{\pi}{2} G \frac{R^4}{\ell}$$ \hspace{1cm} (7.1.18)

zuschreiben. Beachte, dass die Richtgrösse D_r extrem stark vom Drahtdurchmesser abhängt.

7.1.4. Biegung

(Siehe Gerthsen, Physik [Mes06, pp. 134])
Biegebalken werden heute in vielen der Oberflächen abtastenden Instrumenten eingesetzt. Als Stimmgabeln sind sie die zeitbestimmenden Elemente in einer Uhr. Der Balken der Länge ℓ, Breite b und Dicke h soll einseitig eingespannt sein. Wir legen am Ende eine Kraft F an, die senkrecht zur ursprünglichen Lage des Balkens sein soll. An einem Punkt im Abstand x vom Balkenende ist als Wirkung der Kraft der Balken gebogen, und zwar mit einem Krümmungsradius von r. Die oberen Schichten werden um $\frac{h}{2r}$ gedehnt, die unteren entsprechend gestaucht. In der Mitte befindet sich (rot eingezeichnet) die neutrale Faser. Gemittelt über die obere Hälfte des Balkenquerschnitts (über der neutralen Faser) ist die Dehnung $\frac{h}{4r}$. Die untere Hälfte ist entsprechend gestaucht. Sowohl für die Stauchung wie auch für die Dehnung wird eine Kraft von $\tilde{F} = E \cdot \frac{h \cdot b \cdot h}{4r}$, und analog dazu eine Kraft für die Stauchung. Die beiden Kräfte bilden ein Kräftepaar (Abstand $\frac{h}{2}$), das Drehmoment

$$M(x) = \tilde{F} \cdot \frac{h}{2} \approx \frac{Eh^3b}{16r} \approx \alpha \frac{Eh^3b}{r} \quad (7.1.19)$$

α ist hier eine Schätzung und müsste mit einer ausführlicheren Rechnung berechnet werden. Für einen rechteckigen Querschnitt zeigt die genauere Rechnung, dass $\alpha = 1/12$ und nicht 1/16 ist. Die Ursache für das Drehmoment $M(x)$ ist die Kraft F am Ende des Balkens im Abstand x. Wir erhalten

$$Fx = M(x) = \frac{\alpha Eh^3b}{r} \quad (7.1.20)$$

oder

$$r = \frac{\alpha Eh^3b}{Fx} \quad (7.1.21)$$

Die Krümmung $1/r$ ist an der Einspannungsstelle am grössten. Die Spannung σ...
ist

\[\sigma = \frac{E}{2r} \frac{h}{2} \frac{F\ell}{\alpha Eh^3b} = \frac{F\ell}{2\alpha h^2b} \quad (7.1.22) \]

Wird die Festigkeitsgrenze überschritten, bricht der Balken an der Einspannstelle. Die Belastbarkeit eines einseitig eingespannten Balkens (und auch eines zweiseitig eingespannten oder aufgestützten Balkens) geht mit \(\frac{h^3b}{\ell} \).

Typische Anwendungen einseitig eingespannter Balken finden sich in der Mikrosystemtechnik.

Abbildung 7.6.: Prinzip der Herstellung eines freitragenden, einseitig eingespannten Balkens mit mikrotechnologischen Mitteln (W. Noell Dissertation Ulm und IMM Mainz[Noe98, 84])

Abbildung 7.7.: REM (Rasterelektronenmikroskop)-Bilder des Balkens a) und der Sonde b) eines AFM-Sensors (W. Noell Dissertation Ulm und IMM Mainz[Noe98, 85])
7.1.5. Beziehung zwischen den elastischen Konstanten

(Siehe Gerthsen, Physik [Mes06, pp. 132])

Abbildung 7.8.: Zusammenhang zwischen Scherung und Dehnung

Die blau eingezeichneten Kräfte in der obigen Abbildung bewirken eine Scherung um den Winkel α des Würfels mit der Seitenfläche $A = d^2$. Der Schermodul des Materials ist also

$$G = \frac{2F}{\alpha d^2}$$

Die blauen Kräfte können jeweils in zwei halb so große Kräfte (rot) aufgespalten werden. Nun werden jeweils zwei roten Kräfte von zwei nebeneinander liegenden Flächen zusammengefasst; das Resultat sind die grünen Kräfte. Diese bewirken eine reine Dehnung oder Stauchung.

Jede Scherung kann also als Kombination von einer Stauchung und einer orthogonal dazu liegenden Dehnung aufgefasst werden.

Die eine Diagonale wird um $\alpha d/\sqrt{2}$ gedehnt, die andere um den gleichen Wert gestaucht. Die Kräfte wirken auf dreieckförmige Körper. Im Mittel ist die effektive Fläche halb so groß wie die Diagonalfläche (analog zur Berechnung der Dreieckfläche $A = (c/2) \cdot h$).

Effektiv verwenden wir eine Fläche der Grösse $A' = d \cdot d \frac{\sqrt{2}}{2}$. Jede der Kräfte $F/\sqrt{2}$ erzeugt eine relative Dehnung oder Stauchung um $\frac{F}{\sqrt{2}EA}$ in ihrer Richtung und eine Querkontraktion oder -dilatation von $\mu \frac{\sqrt{2}F}{EA}$2. Die Kräfte auf die beiden anderen Seiten bewirken noch einmal die gleichen Deformationen. Beide Deforma-
tionen zusammen ergeben\(^1\).

\[
\frac{\Delta \ell}{\ell} = 2 \left(\frac{F}{\sqrt{2EA'}} + \mu \frac{F}{\sqrt{2EA'^2}} \right) = 2 \frac{F}{\sqrt{2EA'}} (1 + \mu) = 2 \frac{F}{\sqrt{2Ed^2}} (1 + \mu)
\]

Die Deformation \(\frac{\Delta \ell}{\ell}\) kann aus der Scherung berechnet werden:

\[
\frac{\Delta \ell}{\ell} = \frac{\alpha d}{\sqrt{2d^2}} = \frac{\alpha}{2}
\]

Also ist

\[
2 \frac{F}{Ed^2} (1 + \mu) = \frac{\alpha}{2}
\]

Umgestellt erhalten wir

\[
E = \frac{4F(1 + \mu)}{\alpha d^2}
\]

und durch Vergleich

\[
E = 2G(1 + \mu)
\] \hspace{1cm} (7.1.23)

Da die Poissonzahl \(0 < \mu < 0.5\) ist, bekommt man auch

\[
\frac{E}{2} > G > \frac{E}{3}
\] \hspace{1cm} (7.1.24)

7.1.6. Anelastisches Verhalten

(Siehe Gerthsen, Physik [Mes06, pp. 132])

\(^1\)Die Kräfte an gegenüberliegenden Ecken haben die gleiche Wirkung: die eine ist die Gegenkraft zur anderen, deshalb muss nur eine berücksichtigt werden.
Bei grossen Deformationen ist die Antwort des deformierten Körpers nicht mehr linear. Wir nennen diesen Bereich auch den „Nicht-Hookeischen“ Bereich. Im obigen Bild wird das Verhalten für Grauguss und Stahl dargestellt. Es können die folgenden Bereiche unterschieden werden:

- Für kleine Dehnungen \(\epsilon \) bis zur Elastizitätsgrenze \(\sigma_E \) wir alle in der Deformation gespeicherte Energie bei der Entlastung wieder zurückgewonnen.

- Bis zur Proportionalitätsgrenze \(\sigma_P \) ist die Dehnung proportional zur Spannung.

- An der Streckgrenze \(\sigma_S \) beginnen, manchmal schubweise, starke plastische Verformungen.

- An der Festigkeitsgrenze \(\sigma_F \), auch Fliessgrenze genannt, beginnt das Material zu fließen.

- Bei der Bruchdehnung \(\epsilon_B \) bricht das Material.
7.2. Flüssigkeiten und Gase

7.2.1. Aggregatzustände

Materie besteht aus Atomen oder Molekülen. Sie kommt in 4 verschiedenen Zuständen, Aggregatzustände genannt, vor.

<table>
<thead>
<tr>
<th>Fest</th>
<th>Flüssig</th>
<th>Gas</th>
<th>Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>wohldefinierte Abstände</td>
<td>wohldefinierte Abstände</td>
<td>Abstände variabel</td>
<td>Abstände variabel</td>
</tr>
<tr>
<td>geometrisch periodische</td>
<td>nur Nahordnung</td>
<td>keine Nahordnung</td>
<td>keine Nahordnung</td>
</tr>
<tr>
<td>Anordnung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form ist stabil</td>
<td>grössere Kräfte zwischen Atomen</td>
<td>sehr kleine Kräfte zwischen Atomen</td>
<td>Kerne und Elektronen sind getrennt, grosse Coulombkräfte</td>
</tr>
<tr>
<td>grosse Kräfte zwischen Atomen</td>
<td>im Gravitationsfeld</td>
<td>Im Gravitationsfeld keine definierte Oberfläche</td>
<td>Im Gravitationsfeld keine definierte Oberfläche</td>
</tr>
<tr>
<td></td>
<td>wohldefinierte Oberfläche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>schwingen gegeneinander</td>
<td>verschieben sich gegeneinander</td>
<td>Dichte $\approx 1000 \times$ kleiner als in Flüssigkeit</td>
<td>Dichte variabel</td>
</tr>
<tr>
<td>form- und volumenelastisch</td>
<td>Formänderung kraftlos möglich (ohne Geschwindigkeit)</td>
<td>raumfüllend</td>
<td>raumfüllend</td>
</tr>
</tbody>
</table>

Tabelle 7.1.: Aggregatzustände

7.2.2. Gestalt von Flüssigkeitsoberflächen

Eine Kraft \(F \) tangential zur Flüssigkeitsoberfläche bewirkt eine Verschiebung aber keine Formänderung.
An der Flüssigkeitsoberfläche gibt es keine Tangentialkräfte.

Abbildung 7.11.: Oberfläche einer rotierenden Flüssigkeitsfläche

Beispiel: Kaffee beim Umrühren. Wir wollen die Form der Flüssigkeitsfläche berechnen.

\[F_{res} = \sqrt{(dm \omega^2 r)^2 + (dm g)^2} \]
\[= \left(\sqrt{\omega^4 r^2 + g^2} \right) dm \]
\[\tan \alpha = \frac{dm \omega^2 r}{dm g} = \frac{\omega^2 r}{g} \quad (7.2.1) \]

und

\[y = \int_0^r \frac{\omega^2 r}{g} dr = \frac{1}{2} \frac{\omega^2}{g} r^2 \quad (7.2.2) \]

Eine rotierende Flüssigkeitsoberfläche hat also Parabelform.
7.2.3. Druck

Druck ist die Kraft pro Fläche auf die Berandung eines Behälters. Es sei
\[\Delta F_n = -p \cdot \Delta A \cdot n \]
Wir nennen \(p \) den isotropen Druck. Die Einheit von \(p \) ist Pascal \(\left[\frac{N}{m^2} \right] = [Pa] \)
Bemerkung: die Energiedichte \(\frac{E}{V} \) hat die gleiche Einheit wie der Druck. Eingehendere Überlegungen zeigen, dass Druck immer mit einer Energiedichte, und Energiedichte mit Druck verbunden ist.

Merken Sie sich die Identität:

Energiedichte = Druck

7.2.3.1. Wirkung auf Körper

Eine Druckänderung \(\Delta p \) bewirkt eine Volumenänderung.

\[\frac{\Delta V}{V} = \theta = \Delta \ln V \] \hspace{1cm} (7.2.3)

Lokal bewirkt eine Volumenänderung \(\Delta V \) eine Dichteänderung \(\Delta \rho \).

\[\theta = -\frac{\Delta \rho}{\rho} = -\Delta \ln \rho \] \hspace{1cm} (7.2.4)

(Wenn das Volumen abnimmt, nimmt die Dichte zu.)

Die Volumenänderung ist proportional zur Druckänderung

\[\Delta p = -K\theta = -\frac{1}{\kappa} \theta \] \hspace{1cm} (7.2.5)

\(K \) heisst Kompressionsmodul. Seine Einheit ist 1Pascal = 1Pa = \(\frac{N}{m^2} \). Wir haben weiter

\[\kappa = -\frac{1}{V} \frac{dV}{dp} = \frac{1}{\rho} \frac{d\rho}{dp} \] \hspace{1cm} (7.2.6)
\(\kappa \) heisst Kompressibilität. Ihre Einheit ist \(Pa^{-1} = \frac{m^2}{N} \)

7.2.3.2. Hydraulische Presse

![Hydraulische Presse](image)

Abbildung 7.13.: Hydraulische Presse. Kräfte bezogen auf die Wirkung auf die Außenwelt

Wir haben

\[
F_1 = p A_1 \\
F_2 = p A_2
\]

und

\[
\frac{F_1}{A_1} = \frac{F_2}{A_2} \tag{7.2.7}
\]

Bemerkung: Die Wirkung von hydraulischen Pressen kann sehr gut mit virtuellen Verrückungen berechnet werden.

7.2.3.3. Druckarbeit

![Druckarbeit](image)

Abbildung 7.14.: Druckarbeit

Das Differential der Druckarbeit ist

\[
dW = F dx = p A dx = -pdV \tag{7.2.8}
\]
da \(daAdx = -dV \) ist. Also ist die geleistete Arbeit:

\[
W = - \int pdV = \int \kappa V dp
\]
\((7.2.9) \)

Ändert sich \(V \) wenig, so ist die Druckarbeit

\[
W = V \int \kappa dp = \frac{1}{2} \kappa V \left(p_2^2 - p_1^2\right)
\]
\((7.2.10) \)

7.2.4. Schweredruck

![Abbildung 7.15: Berechnung des Schweredruckes](image)

Wir berechnen die Kraft bei (1). Die Masse des verdrängten Wassers ist \(Ah\rho = m \). Die daraus resultierende Gewichtskraft beträgt \(F = mg = Ah\rho g \). Also ist der Schweredruck des Wassers

\[
p = \frac{F}{A} = h\rho g
\]
\((7.2.11) \)

unabhängig von \(A \). In einem Meter Tiefe ist der Schweredruck 10kPa, das heisst es ist unmöglich mit einer Schnorchel von 1m Länge zu atmen. Der Schweredruck hängt nur von der Flüssigkeitshöhe ab, nicht jedoch vom Querschnitt der Flüssigkeitssäule. Deshalb steht in kommunizierenden Rohren das Wasser überall gleich hoch.
7.2.4.1. Auftrieb

Wir betrachten einen untergetauchten Würfel. Die Kraft von oben ist

\[F_1 = -\rho ghA \]

Die Kraft von unten ist

\[F_2 = +\rho g (h + \ell) A \]

Also ist der Auftrieb

\[F_A = F_2 + F_1 = \rho g \ell A = \rho g V \] \hspace{1cm} (7.2.12)

Salopp gesagt, ist der Auftrieb die „Gewichtskraft der verdrängten Flüssigkeit“.

Ein Körper schwebt im Wasser, wenn

\[F_A = F_G \] \hspace{1cm} (7.2.13)

ist.

7.2.4.2. Schwimmen

Wenn \(\rho_K < \rho \) ist die Gewichtskraft \(F_g = \rho_K \ell A g \). Die Auftriebskraft ist hingegen \(F_A = \rho h A g \). Der Körper schwimmt, wenn die Auftriebskraft gleich der Gewichtskraft ist (\(F_A = F_g \)). Dann ist

\[\rho_K \ell A g = \rho h A g \] \hspace{1cm} (7.2.14)
und der Körper taucht bis zu

\[h = \ell \cdot \frac{\rho_K}{\rho} \]

(7.2.15)

ins Wasser ein.

\section*{7.2.4.2.1. Wann schwimmt ein Körper stabil?}

Abbildung 7.18.: Stabilität eines schwimmenden Körpers

Sei \(S \) der Schwerpunkt des Körpers. \(S_F \) sei der Schwerpunkt der verdrängten Flüssigkeit. Solange der Körper schwimmt ist \(\mathbf{F}_A = -\mathbf{F}_G \). Die beiden Kräfte bilden ein Kräftepaar und damit erzeugen sie ein \textit{Drehmoment}

\[\mathbf{F} = \mathbf{R} \times \mathbf{F}_A \]

(7.2.16)

Dieses \textit{Drehmoment} richtet den Körper auf. Wenn \(S \) unter \(S_F \) liegt, ist die Schwimmlage stabil. Wenn \(S \) über \(S_F \) liegt, hängt die Stabilität von der Lage des Metazentrums \(M \) ab. Das Metazentrum ist durch die Schnittpunkte der Mittellinie des Körpers und der Verlängerung von \(\mathbf{F}_A \) gegeben. Die Schwimmlage ist stabil, wenn \(M \) über \(S \) liegt.
7.2.4.3. Aräometer

![Aräometer Diagramm](image)

Abbildung 7.19.: Aräometer

Mit einem Aräometer misst man die Dichte einer *Flüssigkeit* (Schnapswaage). Wir haben

\[m = \rho(V_0 + A \cdot h) \]
\[h = \frac{m}{A \rho} - \frac{V_0}{A} \]

7.2.5. Gasdruck *

Das *Gesetz von Boyle-Mariotte* lautet

\[V = \frac{c}{p} \quad (7.2.17) \]

Damit es anwendbar ist, brauchen wir

- eine hohe Temperatur
- eine kleine Dichte

\(c \) hängt von der Temperatur \(T \) und der Anzahl Moleküle ab. Bei \(T = 0^\circ C \) ist das *Volumen* eines Gases

\[V = 22.4 \frac{m}{M} \cdot \frac{1}{p} \quad (7.2.18) \]

wobei \(m \) die *Masse* des Gases, \(M \) die Molmasse, \(V \) das *Volumen* in Litern und \(p \) der Druck in bar ist. Bei langsamen Zustandsänderungen ist die *isotherme Kompressibilität*

\[\kappa_{(isotherm)} = \frac{1}{V} \frac{dV}{dp} = \frac{1}{V} \frac{c}{p^2} = \frac{1}{p} \quad (7.2.19) \]
7.2.6. Atmosphärendruck

Der Luftdruck kann mit einem Barometer gemessen werden.

\[
\frac{A \cdot h \cdot \rho_{Hg} g}{A} = p_{Atm} = h \cdot \rho_{Hg} g
\] \hspace{1cm} (7.2.20)

Unter dem Normaldruck versteht man einen Druck von 760 \text{mm Hg} (Quecksilbersäule). Die Einheit \text{mm Hg} bezeichnet man nach Torricelli mit \text{Torr}. Der Normaldruck ist also auch 760 \text{Torr}. In SI-Einheiten ist der Normaldruck 1013 \text{hPa}, was der alten Einheit Atmosphäre 1 \text{Atm} entspricht.

7.2.6.1. Höhe der Atmosphäre bei konstanter Dichte *

Die Dichte der Luft bei Umgebungsbedingungen ist

\[
\rho_L = 1.29 \frac{kg}{m^3}
\]

mit

\[
\rho gh = p_{Atm}
\] \hspace{1cm} (7.2.21)

bekommt man

\[
h = \frac{p_{Atm}}{\rho g} \approx \frac{10^5 \frac{N}{m^2}}{10 \frac{m}{s^2} 1.3 \frac{kg}{m^3}} \approx 8 \cdot 10^3 m
\] \hspace{1cm} (7.2.22)

Aber: Gesetz von Boyle-Mariotte

\[
V = \frac{c}{p} \Rightarrow \rho = \bar{c} \cdot p'
\] \hspace{1cm} (7.2.23)
mit $p' < p$ folgt

$$\Delta p = p' - p = -\rho (h) g \Delta h \quad (7.2.24)$$

und

$$\frac{dp}{dh} = -\rho (h) g \quad (7.2.25)$$

Nun ist aber

$$\frac{\rho}{p} = \text{const} = \frac{\rho_0}{p_0} \quad (7.2.26)$$

wobei ρ_0, p_0 auf Meeresöhhe gemessen werden. Also ist

$$\rho (h) = \frac{\rho_0}{p_0} p (h) \quad (7.2.27)$$

und

$$\frac{dp}{dh} = -\frac{\rho_0}{p_0} g p \quad (7.2.28)$$

Die Lösung ist

$$p = p_0 e^{-Ah} \quad (7.2.29)$$

Wir setzen ein und erhalten

$$Ap_0 e^{-Ah} = -\frac{\rho_0}{p_0} gp_0 e^{-Ah} \quad (7.2.30)$$

oder

$$A = \frac{\rho_0}{p_0} g \quad (7.2.31)$$

Also

$$p = p_0 e^{-\rho_0 \frac{Ah}{p_0}} \quad (7.2.32)$$

Diese Gleichung heisst isotherme Barometerformel. Sie ist eine Näherung, da wir die Temperatur als konstant angenommen haben ebenso wie den Feldvektor des Gravitationspotentials $g (h) = g_0 = \text{const}$.

Abbildung 7.21.: Druckänderung mit der Höhe
7.2.7. Druck als Potential *

Der Druck $p(r)$ sei eine skalare Funktion des Ortes

Behauptung:

$$F_V(r) = -\text{grad} \ p(r) \quad (7.2.33)$$

$F_V(r)$ ist die Volumenkraft. Das ist die resultierende Kraft auf die Oberfläche des Volumenelements, dividiert durch das Volumen dieses Elements.

Beweis

Abbildung 7.22.: Druck auf ein Volumenelement

also

$$-\Delta F(z + \Delta z) + \Delta F(z) = -(p(z + \Delta z) - p(z)) \Delta x \cdot \Delta y$$

$$= \frac{\partial p}{\partial z} \cdot \Delta z \cdot \Delta x \cdot \Delta y$$

$$= -\frac{\partial p}{\partial z} \cdot \Delta V \quad (7.2.34)$$

Daraus folgt die Behauptung.

Eine andere Möglichkeit des Beweises ist: Wähle ein Volumenelement ΔV mit der Oberfläche Δa

$$\Delta F_V = \int_{\Delta a} d\mathbf{F} = \int_{\Delta a} -p \cdot \mathbf{n} \mathbf{da} = \int_{\Delta V} \text{grad} \ (-p) \ dV \quad (7.2.35)$$

Beispiel: Wasser:

Abbildung 7.23.: Kräfte auf ein Volumenelement Wasser
\[p(r) = -\rho_{H_2O} \cdot z g \]
\[r = (x, y, z) \]
\[\text{grad } (p(r)) = -(0, 0, \rho_{H_2O} g) \]
\[F_V = (0, 0, \rho_{H_2O} g) \]
\[= \left(0, 0, 10^4 \frac{N}{m^3}\right) \]
\[= \left(0, 0, 10^4 \frac{N}{m^3}\right) \] (7.2.36)

Der Druck ist also das Potential zur Volumenkraft

\[p(r) = p(r_0) - \int_{r_0}^{r} F_V(r) \, dr \] (7.2.37)

** Analogie zwischen Gravitation und Druck**

<table>
<thead>
<tr>
<th>potentielle Energie</th>
<th>↔</th>
<th>Gravitationskraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitationspotential</td>
<td>↔</td>
<td>Feldvektor der Gravitation</td>
</tr>
<tr>
<td>Druck</td>
<td>↔</td>
<td>Volumenkraft</td>
</tr>
<tr>
<td>Tabelle 7.2.: Analogie zwischen Gravitation und Druck</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daraus folgt:

- Volumenkraft ist wirbelfrei

- Die Flüssigkeitsoberfläche ist eine Äquipotentialfläche. das heisst, \(\text{grad } p \) steht senkrecht zur Oberfläche
7.3. Oberflächenspannung

An der Oberfläche einer Flüssigkeit existieren mindestens zwei, im Gravitationsfeld drei Kräfte.

1. Die Kohäsionskräfte auf Oberflächenatome oder Moleküle sind nicht mehr isotrop verteilt. Die nach aussen ziehenden Anteile fehlen, so dass Netto eine nach innen zeigende Kraft existiert.

2. Stösse an der Oberfläche sind nicht isotrop verteilt. Wie beim Stoss eines Balls mit der Wand überträgt jeder Stoss eines Atoms oder Moleküls mit der Oberfläche eine Impulsänderung in der Zeit Δt auf die Oberfläche, übt also eine Kraft aus.

3. Wenn äussere Kräfte wie die Gravitation vorhanden sind, müssen sie berücksichtigt werden.
Da die Oberfläche in Ruhe ist, müssen die drei Kräfte im Gleichgewicht sein. Die aus dem Impulsübertrag resultierende Kraft nach aussen muss also gleich der Kohäsionskraft und, eventuell, der Gravitation oder anderer äusserer Kräfte, sein.

Da die Oberfläche stabil ist, bedeutet dies auch, dass die potentielle Energie eines Atoms oder Moleküls im Inneren tiefer liegen muss als ausserhalb der Flüssigkeit. Dies kann auch so verstanden werden, dass für jedes Teilchen im Inneren im Mittel \(N \) Kohäsionspotentiale (alle \(< 0!\)) aufsummiert werden müssen, während an der Oberfläche nur \(N_S < N \) Potentiale zum Summieren vorhanden sind. Die Summe aller Kohäsionspotentiale an der Oberfläche ist also weniger negativ als im Inneren. Der Energieunterschied pro Fläche ist dann die Oberflächenenergie.

Diese Oberflächenenergie kann berechnet werden, wenn man annimmt, dass die Stöße mit der Oberfläche unveränderlich eine konstante nach aussen gerichtete Kraft erzeugen. Schiebt sich nun ein Molekül \(M \) an die Oberfläche, so leistet es die Arbeit \(W_{is}(M) \) gegen \(\mathbf{F}_S \). Damit wird

\[
E_S(M) = W_{is}(M)
\]

(7.3.1)

Der Index \(S \) bezeichnet dabei die Oberfläche (surface). Die gesamte Energie der Oberfläche wird berechnet, indem aufsummiert (oder integriert) wird.

Die potentielle Energie der gesamten Oberfläche \(A \) (eventuell berandet) ist minimal, wenn die Oberfläche minimal ist. Die Gesamtenergie \(E_S \) hängt mit der Oberfläche \(A \) und der Oberflächenspannung \(\sigma_S \) wie folgt zusammen:

\[
E_S(M) = \sigma_S \cdot A
\]

(7.3.2)

Die Einheit der Oberflächenspannung \(\sigma_S \) ist \(\frac{N}{m} \).

Wenn \(n \cdot A \) Moleküle an der Oberfläche sind, gilt

\[
\sigma_S = n E_S(M) = \frac{1}{d_{eff}^2} E_S(M)
\]

(7.3.3)

Dabei ist \(n = \frac{1}{d_{eff}^2} \) die Flächendichte der Moleküle, \(d_{eff} \) der effektive Durchmesser eines Moleküls und \(E_S(M) \) die Arbeit, die benötigt wird um ein Molekül gegen die Oberflächenkraft an die Oberfläche zu bringen (siehe Gleichung (7.3.1)).
7.3.1. Anwendung: Kraft eines Flüssigkeitsfilms

1. Der Flüssigkeitsfilm hat 2 Oberflächen.
2. Die Verschiebung der Grenze um Δy benötigt die Arbeit

 \[
 \Delta F \cdot \Delta y = 2 \Delta E_S = \sigma_S \cdot 2 \Delta A = 2 \sigma_S b \Delta y \quad (7.3.4)
 \]
 und

 \[
 \Delta F = 2 \sigma_S b \quad (7.3.5)
 \]

Pro Flüssigkeitsoberfläche wirkt auf die Breite Δx die Kraft.

\[
\Delta F_S = \sigma_S \Delta x \quad (7.3.6)
\]

Der Querschnitt ist $2\pi r$. Das Kräftegleichgewicht verlangt, dass die aufwärtsgerichtete Kraft der Oberflächenspannung gerade das Gewicht des Tropfens kompensiert. Ausser an der Berandung kompensieren sich alle Kräfte.

\[
2\pi r \sigma_S = V \rho g \quad (7.3.7)
\]
Also ist

\[V = \frac{2\pi r \sigma_s}{\rho g} \]

(7.3.8)

Also kann man mit der obigen Physik einen Tropfenzähler beschreiben.

7.3.2. Freie Oberflächen

![Diagram of free surface with curvature radii](image)

Abbildung 7.27.: Krümmungsradien bei einer freien Oberfläche

Die Oberfläche ist charakterisiert durch 2 Krümmungsradien \(R_1 \) und \(R_2 \).

Behauptung

\[\frac{1}{R_1} + \frac{1}{R_2} = \frac{\Delta p}{2\sigma_s} \]

(7.3.9)

Beweis für eine Kugel

![Diagram of tension and pressure in a sphere](image)

Abbildung 7.28.: Oberflächenspannung und Druck in einer Kugel

Wir haben eine Äquatorialfläche \(A \) und einen Äquatorialumfang \(U \). Die Druckkraft ist \(\Delta p \cdot A \), die Oberflächenspannung am Umfang \(2\sigma_s U \) (da wir 2 Oberflächen haben!)
Also

\[\Delta p A = 2 \sigma_S U \]
\[\Delta p \pi R^2 = 2 \sigma_S \cdot 2 \pi R \]
\[\frac{2}{R} = \frac{\Delta p}{2 \sigma S} = \frac{1}{R_1} + \frac{1}{R_2} \] (7.3.10)

da bei der Kugel \(R_1 = R_2 = R \) ist.

Beispiel: Seifenblasen.

Die kleinere Seifenblase hat den grösseren Druck (gilt auch für Luftballons, wieso?)

Freie nicht geschlossene Oberflächen sind Minimalflächen mit

\[\frac{1}{R_1} + \frac{1}{R_2} = 0 \] (7.3.11)

Da der Krümmungsradius \(R^{-1} \propto \frac{\partial^2 z}{\partial x^2} \) ist, gilt auch

\[\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0 \] (7.3.12)

7.3.3. Benetzende Flüssigkeiten, Kapilarität

![Abbildung 7.29.: Benetzende Flüssigkeiten](image_url)

Steigt die Flüssigkeit um \(\Delta h \) wird das Volumen \(V = \pi r^2 \Delta h \) über den Spiegel der Flüssigkeit ausserhalb der Kapillare gehoben. Die Gewichtskraft dieses Volumens \(V \) muss von der Oberflächenspannung entlang des Umfangs \(2 \pi r \) getragen werden.

\[F_{\text{Gravitation}} = F_S \text{ (am Umfang)} \] (7.3.13)

\[\pi r^2 \cdot \Delta h \cdot \rho \cdot g = \sigma_S \cdot 2 \pi r \] (7.3.14)

und

\[\Delta h = \frac{2 \sigma_S}{\rho g} \] (7.3.15)
Bei Nichtbenetzung beobachtet man eine Kapilardepression (Beispiel Glas und Quecksilber).
Wann immer zwei beliebige Substanzen sich berühren, existieren Grenzflächenenergien.

Für benetzende Flüssigkeiten ist σ_{23} negativ. Da die Randlinie sich nicht bewegt, muss

$$\sigma_{12} \cos \theta + \sigma_{23} = \sigma_{13} \quad (7.3.16)$$

sein. Für die Grenzflächen zwischen Flüssigkeit und Dampf sowie zwischen Flüssigkeit und Wand ist die Begrenzung oben, die Oberflächenspannung zeigt nach unten. Für die Grenzfläche Wand-Dampf zeigt die Grenzfläche nach oben. Umge- schrieben erhalten wir

$$\sigma_{12} \cos \theta = \sigma_{13} - \sigma_{23} \quad (7.3.17)$$

Wenn $\sigma_{13} - \sigma_{23} > \sigma_{12}$ ist, müsste $|\cos \theta| > 1$ sein. Es gibt deshalb einen reellen Winkel θ und kein Kräftegleichgewicht. Die Flüssigkeit kriecht deshalb die Wand hoch.

Wenn $\sigma_{23} > \sigma_{13}$ ist, das heisst, wenn $\sigma_{13} - \sigma_{23} < 0$ ist, steigt der Flüssigkeitsspiegel am Rande nicht an, sondern wird nach unten gedrückt. Der Randwinkel θ ist dann $\theta > \frac{\pi}{2}$. Quecksilber in einem Glasgefäss zeigt dieses Verhalten.

7.3.3.1. Adhäsions- und Kohäsionskräfte

Für ein Molekül an der Grenzlinie gibt es die Adhäsionskraft zur Wand. Diese Kraft F_{adh} steht senkrecht zur Wand. Die Kohäsionskräfte werden durch die anderen Flüssigkeitsmoleküle aufgebracht. Die resultierende Kohäsionskraft F_{ko} muss entlang der Winkelhalbierenden zwischen der Tangente zur Oberfläche und zur Wand liegen. Da die Oberfläche keine Scherkraft aufnehmen kann, muss die resultierende Kraft senkrecht zur Flüssigkeitsoberfläche liegen. Wir beobachten

- Bei benetzenden Oberflächen ist an der Grenzlinie $|F_{ko}| < |F_{adh}|$.
- Bei nicht benetzenden Oberflächen ist an der Grenzlinie $|F_{ko}| > |F_{adh}|$.

Abbildung 7.31.: Kohäsion und Adhäsion bei Benetzung und ohne Benetzung

Der Grenzwinkel θ zwischen der Flüssigkeit und der Wand (in der Flüssigkeit!) kann mit dem folgenden Ansatz ausgerechnet werden. Wir legen die x-Achse horizontal nach rechts, die y-Achse nach oben. Die auf ein Teilchen an der Grenzlinie im Winkel θ wirkende Kohäsionskraft kann mit der Kohäsionskraft im Inneren (in einer Ebene) als

$$F_{ko}(\theta) = F_{ko,\text{innen}} \frac{\theta}{2\pi} = F'_{ko} \theta$$

geschrieben werden. Dabei haben wir angenommen, dass die Randlinie nur wenig gekrümmt ist.

$$F_{ko} = F'_{ko} \left(\begin{array}{c} \sin \frac{\theta}{2} \\ -\cos \frac{\theta}{2} \end{array} \right)$$

$$F_{adh} = F_{adh} \left(\begin{array}{c} -1 \\ 0 \end{array} \right)$$

$$F_{res} = F_{res} \left(\begin{array}{c} -\cos \theta \\ -\sin \theta \end{array} \right)$$

Wir können mit dem Kräftegleichgewicht, das heisst der resultierenden Kraft 0, für die x-und y-Richtung zwei Gleichungen aufstellen

$$F_{ko,x} + F_{adh,x} = F_{res,x}$$
$$F_{ko,y} = F_{res,y}$$

(7.3.18)
Eingesetzt haben wir

\[F_{ko}' \theta \sin \frac{\theta}{2} - F_{adh} = -F_{res} \cos \theta \]

\[-F_{ko}' \theta \cos \frac{\theta}{2} = -F_{res} \sin \theta \] \hspace{1cm} (7.3.19)

Aus der zweiten Gleichung in Gleichung (7.3.19) bekommen wir mit \(\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \)

\[F_{res} = \frac{F_{ko}'}{2 \sin \frac{\theta}{2}} \] \hspace{1cm} (7.3.20)

Wir multiplizieren das Resultat aus Gleichung (7.3.20) mit \(2 \sin \frac{\theta}{2} \) in die erste Gleichung aus Gleichung (7.3.19) ein und erhalten

\[2 \sin^2 \frac{\theta}{2} F_{res} - F_{adh} = -F_{res} \cos \theta \]

\[2 \sin^2 \frac{\theta}{2} F_{res} - F_{adh} = -F_{res} \left[\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \right] \]

\[F_{res} \left[\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} \right] = F_{adh} \]

\[F_{res} = F_{adh} \] \hspace{1cm} (7.3.21)

Dies ist ein bemerkenswertes Resultat: Der Betrag der resultierenden Kraft hängt nur von der Adhäsionskraft ab, nicht aber von der Kohäsionskraft.

Wir setzen das Resultat aus Gleichung (7.3.21) zurück in die Gleichung (7.3.20) ein und erhalten die transzendente Gleichung

\[2 \sin^2 \frac{\theta}{2} F_{adh} = F_{ko}' \theta \] \hspace{1cm} (7.3.22)

Wenn wir annehmen, dass \(\theta = \frac{\pi}{2} + d\theta \) mit \(|d\theta| \ll 1 \), so erhalten wir

\[d\theta = \frac{\sqrt{2} F_{adh} - \frac{\pi}{2} F_{ko}'}{\sqrt{2} F_{adh} - F_{ko}'} \] \hspace{1cm} (7.3.23)

Diese Gleichung gilt nur da wo \(F_{ko}' \approx 0.9003 F_{adh} \) ist
7.4. Strömungen

7.4.1. Beschreibung von Strömungen

An jedem Punkt hat die Geschwindigkeit \(\mathbf{v}(\mathbf{r}) \) einen Betrag und eine Richtung. Das Vektorfeld \(\mathbf{v}(\mathbf{r}) \) ist durch Stromlinien charakterisiert. Wenn \(\mathbf{v}(\mathbf{r}) \) nicht von der Zeit abhängt, heisst die Strömung stationär.

Bahnlinien: Bahn eines Teilchens
Bei stationären Strömungen sind Bahnlinien und Stromlinien identisch. Inkompressible Strömungen sind Strömungen mit konstanter Dichte \(\rho \).

7.4.1.1. Fluss

Der Fluss ist definiert als

\[
d\phi = \rho v \cos \alpha \, dA
\]

(7.4.1)

oder

\[
d\phi = \rho \mathbf{v} \cdot d\mathbf{A}
\]

(7.4.2)

Die Integralform lautet

\[
\phi = \int_A \rho \mathbf{v}d\mathbf{A} = \int_A j d\mathbf{A}
\]

(7.4.3)
wobei \(A \) beliebige Fläche (auch gekrümmt) und \(\mathbf{j} = \rho \mathbf{v} \) die Stromdichte ist (analog zum elektrischen Strom). Bei einer geschlossenen Fläche fliesst netto ein Medium heraus, wenn eine Quelle im \textit{Volumen} ist.

\[
d\Phi_1 = -\rho v_x(x) dydz \\
d\Phi_2 = \rho v_x(x + dx) dydz = \rho \left(v_x(x) + \frac{\partial v_x}{\partial x} dx \right) dydz
\]

Abbildung 7.34.: Berechnung der Divergenz

Wir haben

\[
d\phi_1 = -\rho v_x(x) \\
d\phi_2 = \rho v_x(x + dx) dydz \\
= \rho \left(v_x(x) + \frac{\partial v_x}{\partial x} dx \right) dydz
\]

Netto:

\[
d\phi_1 + d\phi_2 = \rho v_x(x) \frac{\partial v_x}{\partial x} dx dydz = \rho \frac{\partial v_x}{\partial x} dV = d\phi_x
\]

ebenso:

\[
d\phi_y = \rho \frac{\partial v_y}{\partial y} dV \\
d\phi_z = \rho \frac{\partial v_z}{\partial z} dV
\]

(7.4.4)

Der Nettofluss ergibt sich zu

\[
d\phi = d\phi_x + d\phi_y + d\phi_z = \rho \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) dV
\]

(7.4.5)

Ohne Quelle ist \(d\phi = 0 \), d.h. die Grösse

\[
\text{div} \ (\mathbf{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}
\]

(7.4.6)

ist gleich null.

Die \textit{Divergenz} beschreibt die Quellen und Senken in einem Fluss.

Wenn \(\text{div} \ (\mathbf{v}) \neq 0 \) ist, so muss sich die Dichte an dieser Stelle ändern

\[
d\phi = \rho \text{div} \ \mathbf{v} dV = -\dot{\rho} dV
\]

(7.4.7)

oder

\[
\rho \text{div} \ \mathbf{v} = -\dot{\rho}
\]

(7.4.8)

Dies ist die Kontinuitätsgleichung.
\[\rho \text{div } \mathbf{v} = \text{div } \mathbf{j} \] heisst Quelldichte.

Eine quellenfreie inkompressible Strömung hat überall \(\text{div } \mathbf{v} = 0 \).

Es gilt:

\[\phi = \iint_{A} \rho \mathbf{v} \, dA = -\iiint_{V} \dot{\rho} \, dV = \iiint_{V} \rho \, \text{div } \mathbf{v} \, dV \quad (7.4.9) \]

Der Satz von Gauss besagt

\[\iiint_{A} \mathbf{v} \, dA = \iiint_{V} \text{div } \mathbf{v} \, dV \quad (7.4.10) \]

\[\omega_{z} = \frac{\partial v_{y}}{\partial x} - \frac{\partial v_{x}}{\partial y} \quad (7.4.11) \]

\(\omega \) zeigt in die \(z \) Richtung. Im Allgemeinen ist

\[\mathbf{\omega} = \left(\frac{\partial v_{z}}{\partial y} - \frac{\partial v_{y}}{\partial z}, \frac{\partial v_{x}}{\partial z} - \frac{\partial v_{z}}{\partial x}, \frac{\partial v_{y}}{\partial x} - \frac{\partial v_{x}}{\partial y} \right) \quad (7.4.12) \]

mit \(\text{rot } \mathbf{v} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \times \mathbf{v} \) die Rotation des Strömungsfeldes.

Es gilt dann

\[\oint_{\mathbf{s}} \mathbf{v} \, ds = \int_{\text{Bahnkurve } s} \text{rot } \mathbf{v} \, dA \quad (7.4.13) \]

Falls \(\text{rot } \mathbf{v} = 0 \) ist kann \(\mathbf{v} \) aus dem Geschwindigkeitspotential \(U \) abgeleitet werden.

\[\mathbf{v} = -\text{grad } U \quad (7.4.14) \]
Dann gilt \(\text{rot } \mathbf{v} = 0 \)
Für inkompressible Flüssigkeiten gilt
\[
\text{div } \mathbf{v} = - \text{div } \text{grad } U = - \Delta U = 0 \quad (7.4.15)
\]
Wir haben also drei unterschiedliche physikalische Phänomene, die durch die gleiche Mathematik beschrieben werden:
\(\text{Strömung } \leftrightarrow \text{ Gravitation } \leftrightarrow \text{ Elektrostatik} \)

7.4.2. Lokale und totale Ableitungen *

Sei \(S^* \) das Laborsystem, \(S \) das mitbewegte System, das \(\Delta m \) folgt. Seien \(s^* \) lokale zeitliche Ableitungen und \(s \) totale zeitliche Ableitungen.
Das 2. Newtonsches Gesetz beschreibt die Bewegung von \(\Delta m \), aber nur in \(S (t) \) (in \(S^* \) betrachtet man Volumina, nicht Massen).

Also ist
\[
\mathbf{F}_m = \frac{\mathbf{F}}{m} = \mathbf{a} = \frac{\text{d} \mathbf{v}}{\text{d} t} \quad \text{in } S (t) \quad (7.4.16)
\]

Lokale Ableitung:
\(r \) ist in \(S^* \) fest
\[
\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial t} \rho (r, t) = \frac{\partial}{\partial t} \rho (x, y, z, t)
\]
\[
\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial}{\partial t} \mathbf{v} (r, t) = \frac{\partial}{\partial t} \mathbf{v} (x, y, z, t) \quad (7.4.17)
\]

Totale zeitliche Ableitungen
In \(S (t) \) beschreiben die physikalischen Größen das gleiche Teilchen.
\[
\mathbf{r} = \mathbf{r} (t) = (x (t), y (t), z (t)) \quad (7.4.18)
\]

wobei \(x (t) \) die Koordinaten in \(S^* \) sind
\[
\rho = \rho (\mathbf{r} (t), t) = \rho (x (t), y (t), z (t), t)
\]
\[
\mathbf{v} = \mathbf{v} (\mathbf{r} (t), t) = \mathbf{v} (x (t), y (t), z (t), t) \quad (7.4.19)
\]
Ableitung: totale Ableitung auf der Bahn \(r(t) \)
\[
\frac{d\rho}{dt} = \frac{d}{dt} \rho(x(t), y(t), z(t), t)
\]
\[
a = \frac{dv}{dt}
\]

Zusammenhang:
Dichte
\[
\frac{d}{dt} \rho = \frac{\partial}{\partial t} \rho + (\text{grad } \rho) \cdot v
\]

Beweis:
\[
\frac{d}{dt} \rho = \frac{\partial}{\partial x} \frac{\partial \rho}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \rho}{\partial y} + \frac{\partial}{\partial z} \frac{\partial \rho}{\partial z} + \frac{\partial \rho}{\partial t}
\]

Beschleunigung:
\[
a = \frac{dv}{dt} = \frac{\partial v}{\partial t} + (\text{grad } v) v = \frac{\partial \rho}{\partial t} + \text{grad } \left(\frac{1}{2} v^2 \right) - v \times \text{rot } v
\]

7.4.2.1. Kontinuitätsgleichung

Grund Massenerhaltung
\[
\frac{\partial \rho}{\partial t} + \text{div } (\rho v) = \frac{\partial \rho}{\partial t} + \rho \text{ div } v = 0
\]

Beweis: Ortsfests Volumen
\[
\Delta V = \Delta x \cdot \Delta y \cdot \Delta z
\]
\[
\delta(\Delta m) = \Delta x \cdot \Delta y \cdot \Delta z \cdot \frac{\partial}{\partial t} \rho \left(z + \frac{1}{2} \Delta z \right) \delta t
\]
\[
\frac{\delta(\Delta m)}{\partial t} = \Delta x \Delta y \Delta z \frac{\partial}{\partial t} \rho(z) = -\frac{\partial (\rho(z) v_z(z))}{\partial z} \cdot \Delta z \cdot \Delta x \cdot \Delta y
\]
\[
\frac{\partial \rho(z)}{\partial t} = -\frac{\partial}{\partial t} (\rho(z) v_z(z)) \text{ usw.}
\]

Abbildung 7.37.: Stromlinien in einer inkompressiblen Flüssigkeit

Die Stromlinien durch \(A \) definieren einen Schlauch, die Stromröhre, die keinen Austausch mit der Umgebung hat. Also ist in einer inkompressiblen Flüssigkeit
\[
A_1 v_1 = A_2 v_2
\]

Dies ist die makroskopische Kontinuitätsgleichung.
7.4.2.1.1. Stationäre Strömung Sei $\frac{\partial v}{\partial t} = 0$. Dann ist die Dichte $\frac{d\rho}{dt} = (\text{grad } \rho) \cdot v$ und die Kontinuitätsgleichung $\text{div } (\rho v) = 0$.

$$a = \frac{dv}{dt} = \text{grad } \left(\frac{1}{2} v^2 \right) - v \times \text{rot } v$$ \hspace{1cm} (7.4.27)

Im Stromfaden gilt

$$A_1 \rho_1 v_1 = A_2 \rho_2 v_2 = \text{const}$$ \hspace{1cm} (7.4.28)

Inkompressible Flüssigkeiten

$$\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} = 0$$

$$\text{div } v = 0$$ \hspace{1cm} (7.4.29)

dann gilt: $A_1 v_1 = A_2 v_2 = \text{const}$.

7.4.3. Innere Reibung

Moleküle haben am Rand im Mittel die Geschwindigkeit der Wand. $v(z)$ ist parallel zur Wand.

Für die Kraft gilt

$$F = \eta A \frac{v}{z}$$ \hspace{1cm} (7.4.30)

$\eta : \left[\frac{Ns}{m^2} \right]$ heisst Viskosität (Scherviskosität)

Beispiel

Wasser: $1.8 \cdot 10^{-3} \frac{Ns}{m^2}$

Glyzerin $1 \frac{Ns}{m^2}$

Allgemein:

$$F = \eta A \frac{dv}{dz}$$ \hspace{1cm} (7.4.31)

wobei A klein sein soll.

Temperaturabhängigkeit:

Moleküle müssen ihren Platz wechseln (→ Bolzmannstatistik)

$$\eta = \eta_\infty e^{\frac{b}{T}}$$ \hspace{1cm} (7.4.32)
7.4.4. Laminare Strömung

Laminare Stromlinien sind dadurch charakterisiert, dass benachbarte Stromlinien benachbart bleiben (Beispiel: Blut)

\[
d\mathbf{F}_1 = -\eta \left. \frac{\partial \mathbf{v}}{\partial x} \right|_1 dydz
\]

\[
d\mathbf{F}_2 = \eta \left. \frac{\partial \mathbf{v}}{\partial x} \right|_2 dydz = \eta \left(\left. \frac{\partial \mathbf{v}}{\partial x} \right|_1 + \frac{\partial^2 \mathbf{v}}{\partial x^2} dx \right) dydz
\]

\[
d\mathbf{F}_R = d\mathbf{F}_1 + d\mathbf{F}_2 = \eta \frac{\partial^2 \mathbf{v}}{\partial x^2} dxdydz = \eta \frac{\partial^2 \mathbf{v}}{\partial x^2} dV \quad (7.4.33)
\]

Allgemein:

\[
d\mathbf{F}_R = \eta \left(\frac{\partial^2 \mathbf{v}}{\partial x^2} + \frac{\partial^2 \mathbf{v}}{\partial y^2} + \frac{\partial^2 \mathbf{v}}{\partial z^2} \right) dV \quad (7.4.34)
\]

oder

\[
\mathbf{F}_{V_R} = \frac{d\mathbf{F}}{dV} = \eta \Delta \mathbf{v} \quad (7.4.35)
\]

die Volumenkraft der Reibung.

Die Druckkraft ist

\[
d\mathbf{F}_p = p dydz - \left(p + \frac{\partial p}{\partial x} dx \right) dydz = -\frac{\partial p}{\partial x} dV \quad (7.4.36)
\]

also

\[
\mathbf{F}_{V_p} = -\text{grad} \ p \quad (7.4.37)
\]

\(\mathbf{F}_{V_R} \) und \(\mathbf{F}_{V_p} \) beschreiben die Dynamik.
7.4.4.1. *Strömung* durch einen *Spalt*

\[v = 0 \text{ an der Wand} \]
\[v = v_0 \text{ in der Mitte} \]
\[\frac{dv}{dx} \Rightarrow \text{Reibungskraft } F_R = 2\ell b\eta \frac{dv}{dx} \]

Druck: \[F_p = 2xb\ell \frac{dp}{dz} \]

\[\Rightarrow \frac{dv}{dx} = \frac{1}{\eta} \frac{dp}{dz} x \]

\[\Rightarrow v(x) \text{ ist eine Parabel} \]

\[v = v_0 - \frac{1}{2\eta} \frac{dp}{dx} x^2 = v_0 - \frac{p_1 - p_2}{2\eta\ell} x^2 \]

Am Rand ist \(v = 0 \)

\[\Rightarrow v_0 = \frac{p_1 - p_2}{2\eta\ell} d^2 \]
7.4.4.2. Rohrströmung

Abbildung 7.41.: Rohrströmung

Am Rand ist die Geschwindigkeit null, $v = 0$.

\[F_R = 2 \pi r \ell \eta \frac{dv}{dr} \]

\[F_p = \pi r^2 (p_1 - p_2) \]

also

\[\frac{dv}{dr} = \frac{p_1 - p_2}{2 \eta \ell} r \]

\[\Rightarrow \quad v = v_0 - \frac{p_1 - p_2}{4 \eta \ell} r^2 \]

und

\[v_0 = \frac{p_1 - p_2}{4 \eta \ell} R^2 \]

infinitesimal

\[v_z (r) = -\frac{1}{4 \eta \frac{dp}{dz}} \left(R^2 - r^2 \right) \]

Volumenstrom: \(d\dot{V} = 2 \pi r dr \cdot v (r) \)

also:

\[\dot{V} = \int_0^R 2 \pi r v (r) \, dr = \frac{\pi (p_1 - p_2)}{8 \eta \ell} R^4 = \frac{\pi}{8 \eta \frac{dp}{dz}} R^4 \]

(7.4.38)

Das ist das Gesetz von Hagen-Poiseuille, wobei \(\frac{dp}{dz} = -8 \eta \frac{\langle v \rangle}{R^2} \) und \(\langle v \rangle = \frac{\dot{V}}{\pi R^2} \)

Der Strömungswiderstand ist: \(\frac{8 \eta \ell}{\pi R^2} \)

7.4.4.3. Druck und Volumenstrom

Druckkraft $F_p = \pi R^2 (p_1 - p_2) = \frac{8 \eta \ell}{\pi R^2} \dot{V}$
7.4.4.4. Strömung um Kugeln

Abbildung 7.42.: Strömung um eine Kugel

Die Kugel hat im Abstand r keinen Einfluss mehr auf die Strömung

\[-\frac{dv}{dz} \sim \frac{v}{r} \]

Oberfläche: $4\pi r^2$

\[F \approx \eta \frac{dv}{dz} \cdot A = -\eta \frac{v}{r} 4\pi r^2 \sim -4\pi \eta vr \]

Genauer erhält man

\[F = -6\pi \eta vr \quad (7.4.39) \]

das Stokes-Gesetz.

7.4.4.5. Prandtl-Grenzschicht

Abbildung 7.43.: Prandtl-Grenzschicht

Reibungskraft: $F_R = \eta A \frac{v}{D}$

Verschieben um ℓ:

\[W = F_R \cdot \ell = \eta A \frac{v}{D} \ell \quad (7.4.40) \]

Kinetische Energie in der Grenzschicht:

\[E_{kin} = \frac{1}{2} \int_0^D A \rho dz \left(v \cdot \frac{z^2}{D} \right) = \frac{1}{6} A \rho v^2 D \quad (7.4.41) \]

mit $W = E_{kin}$ wird

\[D = \sqrt{\frac{6\eta \ell}{\rho v}} \]
Reynolds-Kriterium

\[D \ll \ell \Rightarrow \frac{\ell}{D} \gg 1 \]
\[\sqrt{\frac{\rho v \ell^2}{6\eta \ell}} = \sqrt{\frac{\rho v \ell}{6\eta}} \gg 1 \]
\[(7.4.42) \]
\[\text{Re} = \frac{\rho v \ell}{\eta} \gg 1 \]
\[(7.4.43) \]

dabei ist \(\ell \) eine typische Dimension und \(v \) die mittlere Geschwindigkeit.

- \(\text{Re} \gg 1 \): turbulente Strömung mit laminarer Grenzschicht
- \(\text{Re} \ll 1 \): laminare Strömung (Grenzschicht macht keinen Sinn)

Allgemein gilt: Es gibt für jede Geometrie eine kinetische Reynoldszahl \(\text{Re}_{\text{krit}} \) mit

\[\text{Re} > \text{Re}_{\text{krit}} \Rightarrow \text{turbulent} \]
\[\text{Re} < \text{Re}_{\text{krit}} \Rightarrow \text{laminar} \]
\[(7.4.44) \]

Bemerkung:
Strömungen mit der gleichen Reynoldszahl sind ähnlich ⇒ Windkanal

Bei \(D \ll \ell \) ist \(F_R = \eta A \frac{v}{D} = A \sqrt{\frac{\rho v \ell}{6\eta \ell}} \)
\(F_R \) ist etwa der Mittelwert aus

- Stokessche Reibung \(\sim \eta v \ell \) laminare Strömung
- Newtonsche Reibung \(\sim \ell^2 \rho v^2 \) turbulente Strömung

7.4.5. Bewegungsgleichung einer Flüssigkeit *

Neben der Scherrviskosität existiert noch die Volumenviskosität \(\zeta \)

\[\sigma^* \mathbf{n} = \frac{F^*}{A} = -\zeta \frac{1}{\rho} \frac{d\rho}{dt} \mathbf{n} = -\zeta \frac{d}{dt} \ln \rho \mathbf{n} \]
\[(7.4.45) \]

Dabei ist \(\zeta \) die Volumenviskosität.

Das Gesetz von Navier-Stokes lautet

\[\rho \frac{dv}{dt} = \rho \left(\frac{\partial v}{\partial t} + \text{grad} \frac{v^2}{2} - v \times \text{rot} \ v \right) \]
\[= F_V - \text{grad} \ p + \eta \Delta v + \left(\zeta + \frac{\eta}{3} \right) \text{grad} \ \text{div} \ v \]
\[= F_V - \text{grad} \ p - \eta \text{rot} (\text{rot} \ v) + \left(\zeta + \frac{4\eta}{3} \right) \text{grad} \ \text{div} \ v \]
\[(7.4.46) \]

Vereinfachungen:
• Reibungslose Medien: $\eta = 0, \ \zeta = 0$
 \Rightarrow Euler-Gleichung $\rho \frac{dv}{dt} = F_V - \text{grad } p$

• Inkompressible Medien: div $v = 0$
 $\rho \frac{dv}{dt} = F_v - \text{grad } p - \eta \text{ rot rot } v = F_v - \text{grad } p + \eta \Delta v$

• Potentialströmung: div $v = 0$ rot $v = 0$
 $\rho \frac{dv}{dt} = F_v - \text{grad } p = \rho \text{ grad } \frac{v^2}{2}$

7.4.6. Strömung idealer Flüssigkeiten

Bei einer idealen Strömung gibt es keine Reibung, die Strömung ist laminar.
Aus der Volumenerhaltung folgt

$$A_1 \Delta x_1 = A_2 \Delta x_2 = \Delta V$$

Die verrichtete Arbeit ist

$$\Delta W_1 = p_1 A_1 \Delta x_1$$

und

$$\Delta W_2 = p_2 A_2 \Delta x_2$$

Wir erhalten als Energiebilanz

$$\Delta W = \Delta W_1 - \Delta W_2 = \Delta E_{\text{kin}}$$

und damit

$$(p_1 - p_2) \Delta V = \frac{1}{2} \rho \Delta V \left(v_2^2 - v_1^2 \right)$$

Das ergibt nun

$$p + \frac{1}{2} \rho v^2 = p_0 = \text{const} \quad (7.4.47)$$

Dies ist die Bernoulli-Gleichung.
Bei der Gravitation muss noch ρgh berücksichtigt werden (allg. E_{pot})
7.4.6.1. Anwendung

Ein Manometer misst nur den statischen Druck.

\[p_0 - p = \frac{1}{2} \rho v^2 \]
\[(7.4.48) \]

Beim Schweredruck \(p = \rho gh \) folgt \(v = \sqrt{2gh} \).

Wenn \(v > \sqrt{\frac{2p}{\rho}} = v_k \) wird der statische Druck < 0.
Es gibt eine Dampfbildung (*Kavitation*).

7.4.7. Strömungswiderstand *

Nach Bernoulli ist der Druck vorne und hinten gleich. Also gäbe es keinen Widerstand (Paradoxon von d’Alembert).

Abbildung 7.48.: Stromlinie

Def. Wirbel: Wenn ein „Boot“ auf einem geschlossenen Weg angetrieben wird

Def. Zirkulation:

\[
\Gamma = \oint v ds = \int \text{rot } v \, da \neq 0 \tag{7.4.50}
\]

Abbildung 7.49.: Reales Bild einer Wirbelstrasse

Abbildung 7.50.: Potentialwirbel
v_r = 0 \quad (7.4.51)

v_\varphi = \frac{\Gamma}{2\pi r} \quad (7.4.52)

Beim Potentialwirbel gilt:

\[
\begin{align*}
\text{rot } \mathbf{v} &= 0 \text{ für } r > 0 \\
\text{rot } \mathbf{v} &\neq 0 \text{ für } r < 0
\end{align*}
\]

für \(r \neq 0 \) existiert ein Geschwindigkeitspotential \(\phi = \frac{\Gamma}{2\pi r} \).

7.4.7.1. Druck und Druckgradient *

Nach Bernoulli:

\[
p = p_0 - \frac{1}{2} \rho v^2 = p_0 - \frac{\rho}{8\pi^2} \frac{1}{r^2}
\]

\[
p = 0 \text{ für } r_0 = \frac{\Gamma}{2\pi} \left(\frac{\rho}{2p_0} \right)^{\frac{1}{2}} \quad (7.4.53)
\]

d.h. für \(r < r_0 \) ist das Konzept des Potentialwirbels nicht sinnvoll.

Volumenkraft

\[
F_V = -\nabla p = -\rho \frac{\Gamma^2}{4\pi^2 r^4} \quad (7.4.54)
\]

(nach innen gerichtet)

7.4.8. Helmholtzsche Wirbelsätze *

Abbildung 7.51.: Helmholtzsche Wirbelsätze
8. Schwingungen und eindimensionale Wellen

8.1. Schwingungen

(Siehe Tipler, Physik [TM04, pp. 379]) (Siehe Gerthsen, Physik [Mes06, pp. 141])
Wenn sich ein System nicht in seiner Gleichgewichtslage befindet, dann schwingt in
der Regel seine Position um diese Lage. Diese periodischen oder quasiperiodischen
Bewegungen werden Schwingungen genannt. Die Schwingungsform kann sinusför-
mig sein (harmonische Schwingung) oder eine allgemeine Form haben. Mathemati-
sche Sätze sagen, dass jede periodische Bewegung in eine Summe von sinusförmigen
Bewegungen aufgeteilt werden kann.

Versuch zur Vorlesung:
Plastikfedern (Versuchskarte M-117)

8.1.1. Harmonische Schwingungen

(Siehe Tipler, Physik [TM04, pp. 379]) (Siehe Gerthsen, Physik [Mes06, pp. 141])

Abbildung 8.1.: Masse-Feder-System als Modell eines schwingungsfähigen
Systems

Die Kraft auf die Masse ist durch

\[F = -kx \] \hspace{1cm} (8.1.1)

gegeben, wobei \(k \) die Federkonstante ist. Durch diese Kraft wird die Masse be-
schleunigt, so dass

\[F = -kx = ma = m \frac{d^2x}{dt^2} \]
Umgeschrieben erhalten wir die Bewegungsgleichung
\[a = \frac{d^2x}{dt^2} = -\left(\frac{k}{m}\right)x \]
(8.1.2)

Die \textit{Beschleunigung} ist also proportional zur Auslenkung. Traditionellerweise wird die obige Gleichung auch als
\[\frac{d^2x}{dt^2} + \left(\frac{k}{m}\right)x = 0 \]
(8.1.3)
geschrieben. Die Bewegung ist periodisch mit der \textit{Frequenz} \(\nu = 1/T \), wobei \(T \) die Schwingungsdauer ist.

\begin{mdframed}
Frequenzen werden in \textbf{Hertz} Hz = 1/s gemessen. Die \textit{Kreisfrequenz} \(\omega \) hängt über \(\omega = 2\pi\nu \) mit der \textit{Frequenz} \(\nu \) zusammen. Die \textit{Kreisfrequenz} hat die gleiche Einheit, darf aber nicht mit der \textit{Frequenz} verwechselt werden.
\end{mdframed}

Die Lösung der Gleichung (8.1.3) ist
\[x = A \cos (\omega t + \delta) \]
(8.1.4)

- \(A \) ist die \textit{Amplitude} der Schwingung
- \(\omega \) die \textit{Kreisfrequenz}
- \(\delta \) die Phase

\begin{mdframed}
Link zur Vorlesung: (Simulation der harmonischen Schwingung)
\end{mdframed}

\begin{mdframed}
Versuch zur Vorlesung:
Federpendel (Versuchskarte M-105)
\end{mdframed}

Diese Lösung wird durch die \textit{Simulation} illustriert. Die Phase ist nur bis auf ein ganzzahliges Vielfaches von \(2\pi \) bestimmt (Eigenschaft der Winkelfunktionen). Die Position beim Nulldurchgänge ist \(x(0) = A \cos \delta \).

\begin{mdframed}
Ist die \textit{Beschleunigung} eines Gegenstandes proportional zu seiner Auslenkung und dieser entgegengesetzt, so führt der Gegenstand eine einfache harmonische Schwingung durch.
\end{mdframed}

Die \textit{Geschwindigkeit} der Masse ist
\[v = \frac{dx}{dt} = -A\omega \sin (\omega t + \delta) \]
(8.1.5)
Die Geschwindigkeit bei $t = 0$ ist $v(0) = -A\omega \sin \delta$. Da von den drei die Schwingung bestimmenden Größen zwei, A und ω unbekannt sind, reicht die Kenntnis der Position zur Zeit $t = 0$ und der Geschwindigkeit zu dieser gleichen Zeit aus, um die Schwingungsform zu bestimmen.

Die Beschleunigung ist

$$a = \frac{d^2 x}{dt^2} = -A\omega^2 \cos(\omega t + \delta)$$ \hspace{1cm} (8.1.6)

Mit Gleichung (8.1.2) kann man schreiben

$$a = -\left(\frac{k}{m}\right) x = -\left(\frac{k}{m}\right) A \cos(\omega t + \delta) - A\omega^2 \cos(\omega t + \delta)$$ \hspace{1cm} (8.1.7)

und damit

$$\omega^2 = \frac{k}{m}$$ \hspace{1cm} (8.1.8)

Damit sind die Frequenz ν und die Schwingungsdauer T_0

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

$$T_0 = 2\pi \sqrt{\frac{m}{k}}$$ \hspace{1cm} (8.1.9)

Die Schwingungsdauer hängt nicht von der Amplitude ab (lineares System).

8.1.1.1. Harmonische Schwingungen und Kreisbewegung

(Siehe Tipler, Physik [TM04, pp. 387])

Abbildung 8.2.: Zusammenhang zwischen der Kreisbewegung und einer Schwingung
Da die Funktionen \(\sin \omega t \) und \(\cos \omega t \) beide die Schwingungsgleichung (Siehe Gleichung (8.1.3)) erfüllen, kann geschlossen werden, dass eine harmonische Schwingung die Projektion einer Kreisbewegung ist (siehe auch die Simulation). Nach der Definition des Cosinus ist die Projektion des umlaufenden Radius \(A \) auf die \(x \)-Achse gerade der Cosinus.

Link zur Vorlesung: [Schwingung und Kreisbewegung](#)

8.1.1.2. Energiebilanz bei harmonischen Schwingungen

(Siehe Tipler, Physik [TM04, pp. 388])

Die *potentielle Energie* einer um die Länge \(x \) ausgelenkten Feder ist

\[
E_{\text{pot}}(t) = \frac{1}{2} k x^2(t) \tag{8.1.10}
\]

Die *kinetische Energie* ist

\[
E_{\text{kin}}(t) = \frac{1}{2} m v^2(t) \tag{8.1.11}
\]

Beide Energien hängen von der Zeit ab. Die Erhaltung der mechanischen Energie fordert

\[
E_{\text{ges}}(t) = \text{const} = E_{\text{kin}}(t) + E_{\text{pot}}(t) = \frac{1}{2} m v^2(t) + \frac{1}{2} k x^2(t) \tag{8.1.12}
\]

Am Umkehrpunkt, bei der maximalen Auslenkung \(|x(t)| = A \) ist die Geschwindigkeit \(v(t) = 0 \). Also ist bei einem harmonischen Oszillator

\[
E_{\text{ges}} = \frac{1}{2} k A^2 \tag{8.1.13}
\]

die *Gesamtenergie*.

Setzen wir die Lösung \(x(t) = A \cos (\omega t + \delta) \) und damit auch \(\frac{dx(t)}{dt} = -A \omega \sin (\omega t + \delta) \) jeweils ein, erhalten wir

\[
E_{\text{pot}}(t) = \frac{1}{2} k A^2 \cos^2 (\omega t + \delta)
\]

\[
E_{\text{kin}}(t) = \frac{1}{2} m A^2 \omega^2 \sin^2 (\omega t + \delta)
\]

\[
= \frac{1}{2} k A^2 \sin^2 (\omega t + \delta) \tag{8.1.14}
\]

wobei wir \(\omega^2 = k/m \) verwendet haben. Die *Gesamtenergie* ist

\[
E_{\text{ges}}(t) = \frac{1}{2} k A^2 \cos^2 (\omega t + \delta) + \frac{1}{2} k A^2 \sin^2 (\omega t + \delta)
\]

\[
= \frac{1}{2} k A^2 \left[\sin^2 (\omega t + \delta) + \cos^2 (\omega t + \delta) \right]
\]

\[
= \frac{1}{2} k A^2 \tag{8.1.15}
\]
unabhängig von t. Der Energieinhalt eines harmonischen Oszillators pendelt zwischen zwei **Energiereservoirs**, hier der kinetischen und der potentiellen Energie, hin und her.

Immer dann, wenn in einem System zwei Energiereservoirs gekoppelt sind und Energie zwischen ihnen ausgetauscht wird, ist das System ein Oszillator.

Beispiele:

- Kinetische und *potentielle Energie* beim *Pendel* oder beim Feder-Masse-System
- Energie im elektrischen und im magnetischen Feld (Schwingkreis)
- Energie im elektrischen Feld und im *Gravitationsfeld*

Die kinetische und die *potentielle Energie* können mit dem Winkel der momentanen Phase $\Theta = \omega t + \delta$ wie folgt geschrieben werden:

\[
E_{\text{pot}}(t) = E_{\text{ges}} \cos^2 \Theta \\
E_{\text{kin}}(t) = E_{\text{ges}} \sin^2 \Theta
\]

\[
E_{\text{pot}}(t) = \frac{1}{2} (1 - \cos 2\Theta) \\
E_{\text{kin}}(t) = \frac{1}{2} (1 + \cos 2\Theta)
\]

(8.1.16)

Damit ist auch sofort klar, dass die Mittelwerte

\[
\langle E_{\text{pot}} \rangle = \langle E_{\text{kin}} \rangle = \frac{1}{2} E_{\text{ges}}
\]

sind.

8.1.2. Phasenbild

Bei einer Schwingung harmonisch ist

\[
x(t) = A \cos(\omega t) \\
v(t) = -\omega A \sin(\omega t)
\]

Im *Phasenbild* wird nun $v(t)$ gegen $x(t)$ aufgetragen. Dabei ist die Zeit t der Parameter. Wir sprechen auch von einer *Parameterdarstellung*.

©2001-2014 Ulm University, Othmar Marti

Zeichnet man \(p(t) = m \cdot v(t) \) gegen \(x(t) \) auf, so nennt man die Fläche

\[
 h = p \cdot x = m \cdot v \cdot x
\]

(8.1.18)

Die Einheit dieses \(h \) ist \(kg \frac{m}{s} \cdot m = m^2 \cdot kg \cdot s^{-1} = J \cdot s \). Dies ist die gleiche Einheit wie beim Planckschen Wirkungsquantum. Die von einem Zustand im Phasenbild eingenommene Fläche sagt also etwas aus, wie nahe dieser Zustand einem Quantenzustand ist.

8.1.2.1. Feder-Masse-System im Schwerefeld

(Siehe Tipler, Physik [TM04, pp. 392])
Eine *Feder* im Schwerefeld mit *Masse* wird durch die Bewegungsgleichung

\[m \frac{d^2 x}{dt^2} = -k x + mg \]

beschrieben (1. Simulation und 2. Simulation). Die Ruhelage ist durch \(0 = -k x_0 + mg \) gegeben. Also ist

\[x_0 = \frac{mg}{k} \]

(8.1.20)

Link zur Vorlesung:(Federpendel im Schwerefeld)

Wir wissen, wie wir ein Feder-Masse-System berechnen müssen, wenn wir die Koordinate \(x' = x - x_0 \) verwenden. Da die beiden Koordinatensysteme \(x \) und \(x' \) sich nur um eine Konstante unterscheiden, sind die ersten Ableitungen \(\frac{dx}{dx} = \frac{dx'}{dx} \) und die zweiten Ableitungen \(\frac{d^2 x}{dx^2} = \frac{d^2 x'}{dx'^2} \) gleich. Deshalb wird Gleichung (8.1.19)

\[m \frac{d^2 x}{dt^2} = -k (x' + x_0) + mg = -kx' - kx_0 + mg = -kx' \]

(8.1.21)

da \(kx_0 = mg \) ist. Damit erhalten wir die bekannte Lösung

\[x'(t) = A \cos (\omega t + \delta) \]

(8.1.22)

Die *potentielle Energie* bezogen auf die neue Gleichgewichtslage \(x_0 \) ist

\[E_{pot, F} = \frac{1}{2} k (x' + x_0)^2 - \frac{1}{2} k x_0^2 = \frac{1}{2} k x'^2 + kx'x_0 = \frac{1}{2} k x'^2 + mgx' \]

(8.1.23)

da \(kx_0 = mg \) ist. Zusätzlich gibt es die *potentielle Energie* der Gravitation \(E_{pot, g} = -mgx' \) bezogen auf die Ruhelage. Die gesamte *potentielle Energie* ist die Summe...
aus den potentiellen Energien der *Feder* und der *Gravitation*.

\[
E_{pot} = E_{pot,F} + E_{pot,g} = \frac{1}{2}kx'^2 + mgx' - mgx' = \frac{1}{2}kx'^2
\] \hspace{1cm} (8.1.24)

Diese *potentielle Energie* ist unabhängig von \(g\), wenn wir von der jeweiligen Ruhelage aus rechnen.

8.1.2.2. Pendel im Schwerefeld

(Siehe Tipler, Physik [TM04, pp. 394])

8.1.2.2.1. Mathematisches Pendel

Ein mathematisches *Pendel* ist eine Punktmasse \(m\) aufgehängt an einem masselosen Faden der Länge \(L\).

Der vom *Pendel* zurückgelegte Weg ist die Bogenlänge

\[
s = L\phi
\]

(8.1.25)

Die *Kraft* tangential an den Bogen \(-mg\sin\phi\) beschleunigt die *Masse* \(m\). Die Bewegungsgleichung ist

\[
-mg\sin\phi = m\frac{d^2s}{dt^2}
\]

(8.1.26)

Ungeschrieben erhalten wir

\[
\frac{d^2s}{dt^2} = -g\sin\phi = -g\sin\frac{s}{L}
\]

(8.1.27)

Für sehr kleine Winkel \(\phi \ll 1\) ist \(\sin\phi \approx \phi\). Damit wird die obige Gleichung

\[
\frac{d^2s}{dt^2} = -g\frac{s}{L} = -\frac{g}{L}s
\]

(8.1.28)
Mit \(\frac{g}{L} = \omega^2 \) erhalten wir die Schwingungsgleichung

\[
\frac{d^2 s}{dt^2} = -\omega^2 s
\]
(8.1.29)

deren Lösung \(s(t) = s_0 \cos(\omega t + \delta) \) bekannt ist (Simulation). Die Schwingungsdauer ist

\[
T_0 = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{g}}
\]
(8.1.30)

Link zur Vorlesung: (Fadenpendel)

Für grosse Amplituden ist die Schwingungsdauer durch die Reihe

\[
T_0 = 2\pi \sqrt{\frac{L}{g}} \left[1 + \frac{1}{2^2} \sin^2 \left(\frac{s_0}{2L} \right) + \frac{1}{2^2} \left(\frac{3}{4} \right)^2 \sin^4 \left(\frac{s_0}{2L} \right) + \ldots \right]
\]
(8.1.31)
gegeben.

8.1.2.2.2. Physikalisches Pendel

Wir müssen nun mit dem Trägheitsmoment des Pendels bezüglich des Drehpunktes \(A \) rechnen. Das Drehmoment ist

\[
|M| = I \alpha = I \frac{d^2 \phi}{dt^2}
\]
(8.1.32)

Die Bewegungsgleichung ist also

\[
-mgd \sin \phi = I \frac{d^2 \phi}{dt^2}
\]
(8.1.33)

In der traditionellen Schreibweise lautet die Bewegungsgleichung

\[
\frac{d^2 \phi}{dt^2} + \frac{mgd}{I} \sin \phi = 0
\]
(8.1.34)
Mit $\frac{mgd}{I} = \omega^2$ und unter der Annahme einer kleinen Amplitude ist das physikalische Pendel ein harmonischer Oszillator mit der Bewegungsgleichung

$$\frac{d^2\phi}{dt^2} + \omega^2\phi = 0$$ (8.1.35)

Die Schwingungsdauer ist

$$T_0 = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{mgd}}$$ (8.1.36)

Eine Anwendungsmöglichkeit dieser Gleichung ist die Bestimmung des Trägheitsmomentes eines Körpers

$$I = \frac{mgdT_0^2}{4\pi^2}$$ (8.1.37)

Zum Beispiel ist für einen einseitig eingespannten Stab das Trägheitsmoment $I = \frac{1}{3}ml^2$. Der Schwerpunkt liegt in der Mitte, also $d = \frac{1}{2}l$. Damit wird die Schwingungsdauer

$$T_0 = 2\pi \sqrt{\frac{\frac{1}{3}ml^2}{mg\frac{1}{2}l}} = 2\pi \sqrt{\frac{2l}{3g}}$$

Vergleiche dies mit dem Resultat für ein mathematisches Pendel $T = 2\pi \sqrt{\frac{l}{g}}$.

8.1.2.2.3. Torsionspendel

![Torsionspendel](image)

Abbildung 8.7.: Torsionspendel (analog zur Gravitationswaage)

Versuch zur Vorlesung:
Dreipendel (Versuchskarte SW-021)
Das rückstellende Moment ist proportional zum Verdrillungswinkel und dient zur Winkelbeschleunigung des Drehkörpers mit dem Trägheitsmoment I

$$|\mathbf{M}| = -D\phi = I \frac{d^2\phi}{dt^2} \quad (8.1.38)$$

Wieder setzen wir $\omega^2 = \frac{D}{I}$. Die Periodendauer ist

$$T_0 = 2\pi \sqrt{\frac{I}{D}} \quad (8.1.39)$$

8.1.2.3. Bewegung in der Nähe von Gleichgewichtspunkten

(Siehe Tipler, Physik [TM04, pp. 400])

Wir nehmen eine allgemeine Potentialfunktion

$$E_{pot}(x) = E_{pot}(x_0) + \frac{dE_{pot}(x)}{dx} \bigg|_{x_0} (x - x_0) + \frac{1}{2} \frac{d^2 E_{pot}(x)}{dx^2} \bigg|_{x_0} (x - x_0)^2 + \ldots \quad (8.1.40)$$

an und entwickeln sie in eine Taylorreihe um den Punkt x_0. Dieser Punkt soll ein Gleichgewichtspunkt sein. Dann ist die Kraft $F(x) = -\frac{dE_{pot}(x)}{dx}$ als Funktion durch die erste Ableitung der potentiellen Energie gegeben. Am Gleichgewichtspunkt ist jedoch die Kraft null, also $\left(\frac{dE_{pot}(x)}{dx} \right|_{x_0} = 0$. Die Steigung der Kraft-Distanz-Kurve im Gleichgewichtspunkt x_0, die Federkonstante k, ist durch die zweite Ableitung gegeben.

Also kann an jedem Gleichgewichtspunkt bei genügend kleinen Auslenkungen die Schwingungsgleichung

$$0 = m \frac{d^2x}{dt^2} + \frac{d^2 E_{pot}(x)}{dx^2} \bigg|_{x_0} (x - x_0)$$

$$0 = \left. \frac{dE_{pot}(x)}{dx} \right|_{x_0} \quad (8.1.41)$$

geschrieben werden. Die Frequenz für kleine Bewegungen ist

$$\nu = \frac{1}{2\pi} \sqrt{\frac{1}{m} \cdot \frac{d^2 E_{pot}(x)}{dx^2} \bigg|_{x_0}} \quad (8.1.42)$$

Daraus folgt für die Periodendauer

$$T = 2\pi \sqrt{\frac{m}{\frac{d^2 E_{pot}(x)}{dx^2} \bigg|_{x_0}}} \quad (8.1.43)$$
8.1.3. Gedämpfte Schwingung

(Siehe Tipler, Physik [TM04, pp. 401]) (Siehe Gerthsen, Physik [Mes06, pp. 150])

Eine genaue Beobachtung zeigt, dass die Amplitude jeder freien Schwingung sich nach einer gewissen, charakteristischen Zeit um einen bestimmten Betrag erniedrigt. Die Dämpfung ist in vielen Fällen proportional zur Geschwindigkeit.

\[F_D = -bv \] (8.1.44)

Das Kräftegleichgewicht ergibt

\[-kx - bv = m \frac{dv}{dt} \] (8.1.45)

Für kleine Dämpfungen ist die neue Resonanzfrequenz \(\omega' \) in der Nähe von \(\omega_0 \). Mit jeder Schwingung nimmt die Energie \(E_{tot} = E_{pot}(x_{max}) = E_{kin}(v_{max}) = 2 \langle E_{kin} \rangle = \langle mv^2 \rangle = m \langle v^2 \rangle \) in einer definierten Zeiteinheit um einen bestimmten Betrag ab. Diese Leistung ist

\[P = \frac{dE_{tot}}{dt} = F_D \cdot v = -bv^2 \] (8.1.46)

Wenn wir \(v^2 \) durch \(\langle v^2 \rangle = \frac{E_{tot}}{m} \) ersetzt, bekommt man

\[\frac{dE_{tot}}{dt} = -\frac{b}{m} E_{tot} \] (8.1.47)

Der Energieinhalt eines gedämpften Oszillators nimmt also exponentiell ab. Die relative Abnahme der Energie ist für alle Zeiten gleich. Wir lösen die Gleichung durch

\[\frac{dE_{tot}}{E_{tot}} = -\frac{b}{m} dt \] (8.1.48)

und erhalten nach der Integration

\[\ln E_{tot}(t) = -\frac{b}{m} t + C \] (8.1.49)

oder, nach einer Exponentiation

\[E_{tot}(t) = e^{-(b/m)t+C} = e^C \cdot e^{-(b/m)t} = E_0e^{-(b/m)t} \] (8.1.50)

Wir haben \(E_0 = e^C \) gesetzt. Mit der Zeitkonstante \(\tau = m/b \) bekommen wir

\[E(t) = E_0e^{-(b/m)t} = E_0e^{-t/\tau} \] (8.1.51)

8.1.3.1. Güte des schwingungsfähigen Systems

Versuch zur Vorlesung:
Federpendel: Amplitudenverlauf (Versuchskarte M-105)
Der Energieverlust pro Periode T_0 ist
\[\frac{\Delta E_{\text{tot}}}{E_{\text{tot}}} = - \frac{b}{m} \frac{1}{T_0} \] (8.1.52)

Man charakterisiert die Dämpfung eines schwingungsfähigen Systems oft durch die Güte Q. Wenn der Energieverlust pro Periode ΔE_{tot} ist, gilt
\[Q = 2\pi \frac{E_{\text{tot}}}{-\Delta E_{\text{tot}}} \] (8.1.53)

Der Q-Faktor ist umgekehrt proportional zum relativen Energieverlust pro Periode
\[\frac{-\Delta E_{\text{tot}}}{E_{\text{tot}}} = 2\pi \frac{1}{Q} \]

Es gilt auch
\[Q = 2\pi \frac{E_{\text{tot}}}{-\Delta E_{\text{tot}}} = \frac{2}{bT_0} = \frac{2}{T_0} \] (8.1.54)

Da die Energie des Oszillators proportional zum Quadrat der Amplitude ist ($E_{\text{tot}} = \frac{1}{2} k x_{\text{max}}^2 = \frac{1}{2} k A^2$ gilt für die Abnahme der Amplitude
\[\frac{E_{\text{tot}}}{E_0} = \frac{A^2}{A_0^2} = e^{-t/\tau} \] (8.1.55)

Also ist
\[A = A_0 e^{-t/(2\tau)} \] (8.1.56)

Zur Lösung der Schwingungsgleichung machen wir den komplexen Ansatz
\[x(t) = A_0 e^{-i\omega t} \]

und setzen in Gleichung (8.1.45) ein. Mit $k/m = \omega_0^2$ bekommen wir
\[0 = m \ddot{x} + b \dot{x} + kx \]
\[= \ddot{x} + \frac{b}{m} \dot{x} + \omega_0^2 x \]
\[= -\omega_0^2 A_0 e^{-i\omega t} - i\omega A_0 e^{-i\omega t} + \omega_0^2 A_0 e^{-i\omega t} \]
\[= \omega_0^2 - \omega^2 - i\omega \frac{b}{m} \]

Dies ist eine quadratische Gleichung in ω. Die Lösungen sind
\[\omega_{1,2} = -i \frac{b}{m} \pm \sqrt{-\frac{b^2}{4m^2} + 4\omega_0^2} \]
\[= -i \frac{b}{2m} \pm \sqrt{\omega_0^2 - \frac{b^2}{4m^2}} \]

Es gibt drei Lösungen
\[\omega_{1,2} = \begin{cases}
- i \frac{b}{2m} \pm \sqrt{\omega_0^2 - \frac{b^2}{4m^2}}, & \text{für } \omega_0 > \frac{b}{2m} \text{ (unterkritische Dämpfung)}; \\
- i \frac{b}{2m}, & \text{für } \omega_0 = \frac{b}{2m} \text{ (kritische Dämpfung)}; \\
- i \left(\frac{b}{2m} \pm \sqrt{\frac{b^2}{4m^2} - \omega_0^2} \right), & \text{für } \omega_0 < \frac{b}{2m} \text{ (überkritische Dämpfung)}.
\end{cases} \] (8.1.57)
Bei \(b/(2m) = \omega_0 \) haben wir bis jetzt nur eine Lösung. In den anderen Fällen haben wir jeweils das ±.

Die entsprechenden Lösungsfunktionen sind

\[
x(t) = \begin{cases}
 e^{-\frac{b}{2m}t} \left(A_{0,1} e^{\omega_0 t} \sqrt{\frac{b^2}{4m^2} - \omega_0^2} + A_{0,2} e^{-\omega_0 t} \sqrt{\frac{b^2}{4m^2} - \omega_0^2} \right), & \text{für } \omega_0 > \frac{b}{2m}; \\
 (A_{0,1} + A_{0,2}t) e^{-\frac{b}{2m}t}, & \text{für } \omega_0 = \frac{b}{2m}; \\
 e^{-\frac{b}{2m}t} \left(A_{0,1} e^{-\omega_0 t} \sqrt{\frac{b^2}{4m^2} - \omega_0^2} + A_{0,2} e^{\omega_0 t} \sqrt{\frac{b^2}{4m^2} - \omega_0^2} \right), & \text{für } \omega_0 < \frac{b}{2m}.
\end{cases}
\]

Wir testen noch, dass für \(\omega_0 = b/(2m) \) die Lösung stimmt. Für diesen Spezialfall lautet die Differentialgleichung

\[0 = \ddot{x} + 2\omega_0 \dot{x} + \omega_0^2 x \]

\[= -2\omega_0 A_{0,2} e^{-\omega_0 t} + \omega_0^2 (A_{0,1} + A_{0,2}t) e^{-\omega_0 t} + 2\omega_0 A_{0,2} e^{-\omega_0 t} - 2\omega_0^2 (A_{0,1} + A_{0,2}t) e^{-\omega_0 t} + \omega_0^2 (A_{0,1} + A_{0,2}t) e^{-\omega_0 t} = \omega_0^2 [A_{0,1} + A_{0,2}t - 2(A_{0,1} + A_{0,2}t) + A_{0,1} + A_{0,2}t] + \omega_0 [-2A_{0,2} + 2A_{0,2}] = 0\]

Die Lösung der Schwingungsgleichung für den gedämpften Oszillator im Falle der unterkritischen Dämpfung ist

\[x(t) = A_0 e^{-(b/(2m))t} \cos(\omega' t + \delta)\]

\[\omega' = \omega_0 \sqrt{1 - \left(\frac{b}{2m\omega_0}\right)^2} = \omega_0 \sqrt{1 - \frac{1}{4Q^2}} \quad (8.1.59)\]

Wenn die Dämpfung den kritischen Wert \(b_k = 2m\omega_0 \) übertrifft, schwingt das System nicht mehr. Für \(b = b_k \) nennt man das System kritisch gedämpft. Für \(b > b_k \) ist es überkritisch gedämpft und für \(b < b_k \) untermkritisch gedämpft.

Zum Beispiel verwendet man in Autos geschwindigkeitsproportionale Stossdämpfer um eine kritische Dämpfung zu erreichen. Sind die Stossdämpfer alt, wird die Dämpfung der Fahrzeugschwingungen, z.B. durch Bodenwellen angeregt, unterkritisch und man fliegt von der Strasse.

8.1.4. Erzwungene (gedämpfte) Schwingung und Resonanz

(Siehe Tipler, Physik [TM04, pp. 406]) (Siehe Gerthsen, Physik [Mes06, pp. 154])
Versuch zur Vorlesung:
Erzwungene Schwingung (Versuchskarte SW-090)

Das vorliegende System wird durch zwei Größen charakterisiert: die Anregungsschwingung \(z(t) = z_0 \cos \omega t \) sowie durch das Federpendel mit der Masse \(m \), der Dämpfung \(b \) und die Federkonstante \(k \). Die rücktreibende Kraft an der Feder ist

\[
F_F(t) = -k \left(x(t) - z(t) \right)
\]

(8.1.60)

Die Beschleunigung ist wieder durch \(m \ddot{x}(t) = F(t) \) gegeben; die geschwindigkeitsproportionale Dämpfung durch \(-b \dot{x}(t)\)

Die Bewegungsgleichung ist also

\[
F(t) = -k \left(x(t) - z(t) \right) - b \dot{x}(t) = m \ddot{x}(t)
\]

(8.1.61)

Wenn wir \(z(t) \) einsetzen und umstellen, erhalten wir

\[
m \ddot{x}(t) + b \dot{x}(t) + kx(t) = z_0 k \cos \omega t
\]

(8.1.62)

Wir teilen durch \(m \) und kürzen \(k/m = \omega_0^2 \) ab und erhalten

\[
\ddot{x}(t) + \frac{b}{m} \dot{x}(t) + \omega_0^2 x(t) = z_0 \omega_0^2 \cos \omega t
\]

(8.1.63)

Die Lösung (Simulation) dieser Gleichung besteht aus zwei Teilen: dem Einschwingvorgang als Lösung der Gleichung

\[
\ddot{x}(t) + \frac{b}{m} \dot{x}(t) + \omega_0^2 x(t) = 0
\]

(analog zur freien gedämpften Schwingung, dieser Teil klingt ab gegen 0) sowie der stationären Lösung. Dieser Teil der Lösung hat die Form

\[
x(t) = A(\omega) \cos (\omega t - \delta(\omega))
\]

(8.1.64)
wobei wir hier ein Minuszeichen vor der Phase setzen, damit diese die Phasendifferenz zur Anregung darstellt. Eingesetzt in die Bewegungsgleichung erhalten wir

\[
A(\omega) \left[-\omega^2 \cos(\omega t - \delta(\omega)) - \frac{b}{m} \omega \sin(\omega t - \delta(\omega)) + \omega_0^2 \cos(\omega t - \delta(\omega)) \right] = z_0 \omega_0^2 \cos \omega t \quad (8.1.65)
\]

Um die Gleichung zu lösen müssen wir die Winkelfunktionen \(\sin \) und \(\cos \) mit Phasen in reine Winkelfunktionen auflösen. Also setzen wir

\[
\cos(\omega t - \delta(\omega)) = \cos(\omega t) \cos(\delta(\omega)) + \sin(\omega t) \sin(\delta(\omega)) \quad \text{und} \quad \sin(\omega t - \delta(\omega)) = \sin(\omega t) \cos(\delta(\omega)) - \cos(\omega t) \sin(\delta(\omega)).
\]

Wir bekommen dann

\[
\begin{align*}
z_0 \omega_0^2 \cos \omega t &= A(\omega) \left[-\omega^2 \cos(\omega t) \cos(\delta(\omega)) \\
&\quad + \frac{b}{m} \omega \cos(\omega t) \sin(\delta(\omega)) \\
&\quad + \omega_0^2 \cos(\omega t) \cos(\delta(\omega)) \right] \\
0 &= A(\omega) \left[-\omega^2 \sin(\omega t) \sin(\delta(\omega)) \\
&\quad - \frac{b}{m} \omega \sin(\omega t) \cos(\delta(\omega)) \\
&\quad + \omega_0^2 \sin(\omega t) \sin(\delta(\omega)) \right] \quad (8.1.66)
\end{align*}
\]

Diese Gleichungen können vereinfacht werden

\[
\begin{align*}
z_0 \omega_0^2 &= A(\omega) \left[-\omega^2 \cos(\delta(\omega)) + \frac{b}{m} \omega \sin(\delta(\omega)) + \omega_0^2 \cos(\delta(\omega)) \right] \\
0 &= -\omega^2 \sin(\delta(\omega)) - \frac{b}{m} \omega \cos(\delta(\omega)) + \omega_0^2 \sin(\delta(\omega)) \quad (8.1.67)
\end{align*}
\]

Aus der zweiten Gleichung folgt

\[
\left(\omega_0^2 - \omega^2 \right) \sin(\delta(\omega)) = \frac{b}{m} \omega \cos(\delta(\omega)) \quad (8.1.68)
\]

und daraus

\[
\tan(\delta(t)) = \frac{b\omega}{m (\omega_0^2 - \omega^2)} \quad (8.1.69)
\]

Wir verwenden \(\cos \phi = \frac{1}{\sqrt{1+\tan^2 \phi}} \) und \(\sin \phi = \cos \phi \cdot \tan \phi = \frac{\tan \phi}{\sqrt{1+\tan^2 \phi}} \) und bekommen aus der ersten Gleichung
\[
\frac{z_0 \omega_0^2}{A(\omega)} = \frac{\omega_0^2 - \omega^2}{\sqrt{1 + \tan^2(\delta(t))}} + \frac{b\omega}{m} \frac{\tan(\delta(t))}{\sqrt{1 + \tan^2(\delta(t))}} \\
= \frac{\omega_0^2 - \omega^2 + \frac{b^2 \omega^2}{m^2 (\omega_0^2 - \omega^2)}}{\sqrt{1 + \frac{b^2 \omega^2}{m^2 (\omega_0^2 - \omega^2)^2}}} \\
= \frac{(\omega_0^2 - \omega^2)^2 + \frac{b^2 \omega^2}{m^2}}{\sqrt{(\omega_0^2 - \omega^2)^2 + \frac{b^2 \omega^2}{m^2}}} \\
= \sqrt{(\omega_0^2 - \omega^2)^2 + \frac{b^2 \omega^2}{m^2}}
\]

(8.1.70)

Zusammengefasst ist die stationäre Lösung durch die Amplitude und Phase

\[
\delta(\omega) = \arctan \left(\frac{b\omega}{m (\omega_0^2 - \omega^2)} \right)
\]

(8.1.71)

\[
A(\omega) = \frac{z_0 \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + \frac{b^2 \omega^2}{m^2}}}
\]

(8.1.72)

gegeben.

Mit der Definition der Güte aus Gleichung (8.1.54) sowie mit \(\omega_0 = 2\pi\nu = \frac{2\pi}{\tau} \) schreiben wir zuerst

\[
Q = 2\pi \frac{m}{bT} = \omega_0 m b \quad \Leftrightarrow \quad \frac{b}{m} = \frac{\omega_0}{Q} \quad (8.1.73)
\]

und erhalten

\[
\delta(\omega) = \arctan \left(\frac{\omega_0 \omega}{Q(\omega_0^2 - \omega^2)} \right) \quad (8.1.74)
\]

\[
A(\omega) = \frac{z_0 \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + \frac{b^2 \omega^2}{m^2} Q^2}} \quad (8.1.75)
\]

Die folgenden Bilder zeigen einige typische Frequenz- und Phasengänge.
Abbildung 8.9.: Amplitude und Phase eines getriebenen harmonischen Oszillators mit \(z_0 = 1 \), \(\omega_0 = 1 \), \(Q = 10 \) (unterkritische Dämpfung).

Abbildung 8.10.: Amplitude und Phase eines getriebenen harmonischen Oszillators mit \(z_0 = 1 \), \(\omega_0 = 1 \), \(Q = 2 \) (unterkritische Dämpfung).

Abbildung 8.11.: Amplitude und Phase eines getriebenen harmonischen Oszillators mit \(z_0 = 1 \), \(\omega_0 = 1 \), \(Q = 0.5 \) (kritische Dämpfung).
Abbildung 8.12.: Amplitude und Phase eines getriebenen harmonischen Oszillators mit $z_0 = 1$, $\omega_0 = 1$, $Q = 0.1$ (überkritische Dämpfung).

Noch kompakter ist die folgende Schreibweise für die Amplitude

$$A(\omega) = \frac{z_0}{\sqrt{(1 - \omega^2/\omega_0^2)^2 + \omega^2/Q^2}}$$ \hspace{1cm} (8.1.76)

Die Frequenz, bei der die Amplitude maximal wird, also die Resonanzfrequenz, erhält man, indem man $\frac{dA(\omega)}{d\omega} = 0$ berechnet.

$$\frac{dA(\omega)}{d\omega} = \frac{d}{d\omega} \left(\frac{z_0}{\sqrt{(1 - \omega^2/\omega_0^2)^2 + \omega^2/Q^2}} \right) = \frac{z_0}{2} \left((\omega_0^2 - \omega^2)^{3/2} + \frac{\omega^2}{Q^2} \right) = 0$$

Damit ist

$$0 = 4 \left(\omega_0^2 - \omega^2 \right) \omega - 2 \frac{\omega \omega_0^2}{Q^2}$$

$$\frac{\omega \omega_0^2}{Q^2} = 2 \left(\omega_0^2 - \omega^2 \right) \omega$$

$$\frac{\omega_0^2}{Q^2} = 2 \left(\omega_0^2 - \omega^2 \right)$$

$$\omega^2 = \omega_0^2 \left(1 - \frac{1}{2Q^2} \right)$$

$$\omega = \pm \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$$

Hier ist nur die positive Lösung physikalisch sinnvoll. Also ist

$$\omega_R = \omega_0 \sqrt{1 - \frac{1}{2Q^2}} = \sqrt{\omega_0^2 - \frac{b^2}{2m^2}}$$ \hspace{1cm} (8.1.77)
Diese Resonanzfrequenz ist kleiner als die Eigenfrequenz eines ungedämpften Systems (Siehe Gleichung (8.1.59)).

Die Bestimmung der Kenndaten eines Oszillators aus der Amplitude ist bei hohen Güten Q sehr schwierig und sehr ungenau. Viel einfacher ist es, die Phase bei ω_0 und ihre Steigung an der Stelle zu bestimmen.

Berechnung der Steigung $d\delta(\omega)/d\omega$:

\[
\frac{d\delta(\omega)}{d\omega} = \frac{d}{d\omega} \arctan \left(\frac{\omega_0 \omega}{Q (\omega_0^2 - \omega^2)} \right)
\]

\[
= \frac{\omega_0}{Q (\omega_0^2 - \omega^2)} + 2 \frac{\omega_0^2 \omega}{Q (\omega_0^2 - \omega^2) \omega^2}
\]

\[
= \frac{\omega_0 Q (\omega_0^2 - \omega^2) + 2 Q \omega^2 \omega_0}{Q^2 (\omega_0^2 - \omega^2)^2 + \omega^2 \omega_0^2}
\]

An der Stelle $\omega = \omega_0$ ist der Funktionswert

\[
\left. \frac{d\delta(\omega)}{d\omega} \right|_{\omega = \omega_0} = \frac{\omega_0 Q (\omega_0^2 - \omega_0^2) + 2 Q \omega_0^2 \omega_0}{Q^2 (\omega_0^2 - \omega_0^2)^2 + \omega_0^2 \omega_0^2}
\]

\[
= \frac{2Q \omega_0^3}{\omega_0^4} = \frac{2Q}{\omega_0}
\]

Bei der Resonanzfrequenz $\omega = \omega_0$ des ungedämpften Systems ist die Phase

\[
\delta(\omega_0) = \pi/2 \quad (8.1.78)
\]

Die Steigung der Phase $d\delta(\omega)/d\omega$ hat an der Stelle ω_0 den Wert

\[
\left. \frac{d\delta(\omega)}{d\omega} \right|_{\omega_0} = \frac{2Q}{\omega_0} \quad (8.1.79)
\]

Es ist sehr viel einfacher, ω_0 und Q aus der Phase als aus der Amplitude zu bestimmen.

8.1.5. Überlagerung von Schwingungen

(Siehe Gerthsen, Physik [Mes06, pp. 142])

8.1.5.1. Schwingungen in unterschiedliche Richtungen

Wenn in der x-Richtung eine Schwingung $x(t) = x_0 \cos(\omega_xt)$ und in der y-Richtung eine Schwingung $y(t) = y_0 \cos(\omega_y t + \delta)$ überlagert werden, entstehen Lissajous-Figuren. Solche Schwingungen können entstehen, wenn zum Beispiel eine Kugel in einer elliptischen Potentialmulde hin- und herschwingt.
8.1.5.2. Schwingungen gleicher Richtung und Frequenz, aber unterschiedlicher Amplitude

Eine Schwingung $x(t) = x_0 \cos(\omega t + \delta)$ kann durch einen Zeiger dargestellt werden. Die Projektion dieses Zeigers auf die x-Achse ergibt das Schwingungsbild. Wenn zwei Schwingungen unterschiedlicher Amplitude und Phase, aber gleicher Frequenz addiert werden, kann man die trigonometrischen Sätze für schiefwinklige Dreiecke anwenden. So ist nach dem Cosinussatz

$$A^2 = A_1^2 + A_2^2 - 2A_1A_2 \cos(\pi - \delta_2 + \delta_1)$$
(8.1.80)

oder

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos(\delta_2 + \delta_1)}$$
(8.1.81)

Der Sinussatz liefert

$$\frac{A}{\sin(\pi - \delta_2 + \delta_1)} = \frac{A}{\sin(\delta_1 - \delta_2)} = \frac{A_2}{\sin(\delta - \delta_1)}$$
(8.1.82)

Wenn wir die Zeit zur Berechnung so wählen, dass $\delta_1 = 0$ ist, so ergibt sich

$$\sin \delta = \frac{A_2}{A} \sin \delta_2$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \delta_2}$$
(8.1.83)

8.1.5.3. Schwingungen gleicher Richtung, aber leicht unterschiedlicher Frequenz

Versuch zur Vorlesung:
Schwebungen (Versuchskarte SW-100)
Die Frequenzen der beiden Schwingungen sollen um \(\Delta \omega \) verschieden sein. Wir setzen an

\[
x_1(t) = A_1 \cos(\omega t + \delta_1) \\
x_2(t) = A_2 \cos((\omega + \Delta \omega)t + \delta_2)
\]

(8.1.84)

Die resultierende Schwingung ist

\[
x(t) = x_1(t) + x_2(t) = A_1 \cos(\omega t + \delta_1) + A_2 \cos((\omega + \Delta \omega) t + \delta_2)
\]

(8.1.85)

Wir rechnen nun wie folgt um

\[
x(t) = A_1 \cos(\omega t + \delta_1) + A_2 \cos((\omega t + \delta_1) + \Delta \omega t + \delta_2 - \delta_1) \\
= A_1 \cos(\omega t + \delta_1) + A_2 \cos(\omega t + \delta_1) \cos(\Delta \omega t + \delta_2 - \delta_1) \\
- \sin(\omega t + \delta_1) \sin(\Delta \omega t + \delta_2 - \delta_1)
\]

(8.1.86)

Dies entspricht einer Schwingung der Frequenz \(\omega \) mit einer aufmodulierten Frequenz \(\Delta \omega \). Wir nennen diese verhalten auch Schwebung. Transparenter wird die Rechnung, wenn komplexe Zahlen verwendet werden. Anstelle von \(\cos(\omega t + \delta) \) schreiben wir \(e^{i(\omega t + \delta)} \), wobei wieder \(i = \sqrt{-1} \) ist. Wir schreiben

\[
x_1(t) = A_1 e^{i(\omega t + \delta_1)} \\
x_2(t) = A_2 e^{i((\omega + \Delta \omega)t + \delta_2)}
\]

(8.1.87)

und weiter

\[
x(t) = x_1(t) + x_2(t) \\
= A_1 e^{i(\omega t + \delta_1)} + A_2 e^{i((\omega t + \delta_1) + \Delta \omega t + \delta_2 - \delta_1)} \\
= A_1 e^{i(\omega t + \delta_1)} + A_2 e^{i(\omega t + \delta_1)} e^{i(\Delta \omega t + \delta_2 - \delta_1)} \\
= e^{i(\omega t + \delta_1)} \left[A_1 + A_2 e^{i(\Delta \omega t + \delta_2 - \delta_1)} \right]
\]

(8.1.88)

8.1.5.4. Fourierreihen *

(Siehe Gerthsen, Physik [Mes06, pp. 146])

Die obige Schwingung ist nicht nur durch den zeitlichen Verlauf, sondern auch durch das Frequenzspektrum sowie das Phasenspektrum charakterisiert. Grundlage für diese Aussage ist der mathematische Satz, dass sich jede periodische Funktion \(f(t) = f(t + T) \) (Frequenz \(\omega = 2\pi/T \) als Fourierreihe

\[
f(t) = \sum_{k=0}^{\infty} a_k \cos(k\omega t + \delta_k)
\]

(8.1.89)

schreiben lässt. Alternativ kann man auch

\[
f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t)
\]

(8.1.90)
Für gerade Funktionen $f(t) = f(-t)$ sind alle $b_k = 0$, für ungerade Funktionen sind alle $a_k = 0$.

Versuch zur Vorlesung:
Fourier-Synthese (Versuchskarte SW-065)

Versuch zur Vorlesung:
Fourier-Analyse 4 (Versuchskarte SW-101)

Abbildung 8.14.: Synthese einer Schwingung mit $f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \cos((2k - 1)\omega t)/(2k-1)$. Die verschiedenen Stufen der Synthese sind durch eine der Stufenummer proportionale Verschiebung nach oben aneinandergereiht.
Abbildung 8.15.: Synthese einer Schwingung mit \(f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \cos((2k-1)\omega t)/(2k-1)^2 \). Die verschiedenen Stufen der Synthese sind durch eine der Stufennummer proportionale Verschiebung nach oben auseinandergezogen.

Abbildung 8.16.: Synthese einer Schwingung mit \(f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \cos((2k-1)\omega t)/(2k-1) \). Die verschiedenen Stufen der Synthese sind durch eine der Stufennummer proportionale Verschiebung nach oben auseinandergezogen.
Abbildung 8.17.: Synthese einer Schwingung mit
\[f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \cos\left(\frac{(2k-1)\omega t}{(2k-1)^{2/3}}\right). \]
Die verschiedenen Stufen der Synthese sind durch eine der Stufennummer proportionale Verschiebung nach oben auseinandergezogen.

Abbildung 8.18.: Synthese einer Schwingung mit
\[f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \cos\left(\frac{(2k-1)\omega t}{(2k-1)^{1/2}}\right). \]
Die verschiedenen Stufen der Synthese sind durch eine der Stufennummer proportionale Verschiebung nach oben auseinandergezogen.
Abbildung 8.19.: Synthese einer Schwingung mit \(f(t) = \frac{\omega}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \cos((2k-1)\omega t)/(2k-1)^{1/6} \). Die verschiedenen Stufen der Synthese sind durch eine der Stufennummer proportionale Verschiebung nach oben auseinandergezogen.

Die folgenden Applets illustrieren die Fourieranalyse und -synthese

- hören synthetisierter Wellenformen
- Musik und Fouriersynthese
- Soundscapes

8.1.6. Gekoppelte Schwingungen

(Siehe Gerthsen, Physik [Mes06, pp. 181])
Abbildung 8.20.: Zwei mathematische Pendel im Abstand d mit jeweils der Länge L sind mit einer masselosen Feder der Ruhelänge d und der Federkonstante k gekoppelt.

Versuch zur Vorlesung:

Gekoppelte Pendel (Versuchskarte SW-063)

Wenn das linke Pendel um ϕ_1 und das rechte Pendel um ϕ_2 ausgelenkt wird (in beiden Fällen wird nach rechts positiv gezählt), dann verändert sich die Länge der Feder um

$$\Delta d = \ell (\sin \phi_1 - \sin \phi_2) \approx \ell (\phi_1 - \phi_2) \quad (8.1.91)$$

für kleine Auslenkungen. Deshalb ist die Kraft, die auf das linke Pendel ausgeübt wird

$$F_{F,1} = -k \Delta d \approx -k \ell (\phi_1 - \phi_2) \quad (8.1.92)$$

Entsprechend ist die Kraft auf das rechte Pendel

$$F_{F,2} = -k(-\Delta d) \approx k \ell (\phi_1 - \phi_2) \quad (8.1.93)$$

Diese Kräfte entsprechen den Drehmomenten

$$M_{F,1} = \ell F_{F,1} = -k \ell^2 (\phi_1 - \phi_2)$$
$$M_{F,2} = \ell F_{F,2} = k \ell^2 (\phi_1 - \phi_2) \quad (8.1.94)$$

Die durch die Gravitation hervorgerufenen Momente an den Pendeln sind

$$M_{G,1} = -L mg \sin \phi_1 \approx -L mg \phi_1$$
$$M_{G,2} = -L mg \sin \phi_2 \approx -L mg \phi_2 \quad (8.1.95)$$

Wir beachten, dass für eine Punktmasse m an einem masselosen Faden der Länge L das Trägheitsmoment $I = mL^2$ ist und erhalten die linearisierte Momentengleichung

$$I \ddot{\phi}_1 = mL^2 \ddot{\phi}_1 = -L mg \phi_1 - k \ell^2 (\phi_1 - \phi_2)$$
$$I \ddot{\phi}_2 = mL^2 \ddot{\phi}_2 = -L mg \phi_2 + k \ell^2 (\phi_1 - \phi_2) \quad (8.1.96)$$
Wir teilen durch mL^2 und schreiben in Matrizenform
\[
\begin{pmatrix}
\ddot{\phi}_1 \\
\ddot{\phi}_2
\end{pmatrix}
=

\begin{pmatrix}
-\frac{g}{L} - \frac{k\ell}{mL^2} & +\frac{k\ell}{mL^2} \\
+\frac{k\ell}{mL^2} & -\frac{g}{L} - \frac{k\ell}{mL^2}
\end{pmatrix}
\begin{pmatrix}
\phi_1 \\
\phi_2
\end{pmatrix}
\tag{8.1.97}
\]

Wir nehmen an, dass beide Pendel mit der gleichen Frequenz ω schwingen. Wir setzen also an
\[
\phi_1(t) = \phi_{1,0} e^{i\omega t} \\
\phi_2(t) = \phi_{2,0} e^{i(\omega t + \delta)}
\tag{8.1.98}
\]

Eingesetzt in Gleichung (8.1.96) bekommen wir
\[
-\omega^2 \phi_{1,0} e^{i\omega t} = -\frac{g}{m} \phi_{1,0} e^{i\omega t} - \frac{k\ell^2}{mL^2}(\phi_{1,0} e^{i\omega t} - \phi_{2,0} e^{i(\omega t + \delta)})
\]
\[
-\omega^2 \phi_{2,0} e^{i(\omega t + \delta)} = -\frac{g}{L} \phi_{2,0} e^{i\omega t} e^{i\delta} + \frac{k\ell^2}{mL^2}(\phi_{1,0} e^{i\omega t} - \phi_{2,0} e^{i(\omega t + \delta)})
\tag{8.1.99}
\]

Wir teilen durch $e^{i\omega t}$
\[
-\omega^2 \phi_{1,0} = -\frac{g}{L} \phi_{1,0} - \frac{k\ell^2}{mL^2}(\phi_{1,0} - \phi_{2,0} e^{i\delta})
\]
\[
-\omega^2 \phi_{2,0} e^{i\delta} = -\frac{g}{L} \phi_{2,0} e^{i\delta} + \frac{k\ell^2}{mL^2}(\phi_{1,0} - \phi_{2,0} e^{i\delta})
\tag{8.1.100}
\]

Wir stellen die Gleichung um und sortieren nach den beiden unbekannten $\phi_{1,0}$ und $\phi_{2,0} e^{i\delta}$.
\[
0 = \left[-\omega^2 + \frac{g}{L} + \frac{k\ell^2}{mL^2}\right] \phi_{1,0} - \frac{k\ell^2}{mL^2} \phi_{2,0} e^{i\delta}
\]
\[
0 = -\frac{k\ell^2}{mL^2} \phi_{1,0} + \left[-\omega^2 + \frac{g}{L} + \frac{k\ell^2}{mL^2}\right] \phi_{2,0} e^{i\delta}
\tag{8.1.101}
\]

Wir verwenden die folgenden Abkürzungen
\[
A = -\omega^2 + \frac{g}{L} + \frac{k\ell^2}{mL^2}
\]
\[
B = \frac{k\ell^2}{mL^2}
\]
\[
y = \phi_{1,0}
\]
\[
z = \phi_{2,0} e^{i\delta}
\tag{8.1.102}
\]

und müssen damit die Gleichung
\[
0 = Ay - Bz
\]
\[
0 = -B y + Az
\tag{8.1.103}
\]

lösen. Wir multiplizieren die erste Gleichung mit B und die zweite mit A und bekommen
\[
0 = AB y - B^2 z
\]
\[
0 = -AB y + A^2 z
\tag{8.1.104}
\]
und addieren die Gleichungen. Damit wird

\[0 = z(A^2 - B^2) \] \hspace{1cm} (8.1.105)

Damit diese Gleichung für alle \(y \) eine Lösung ist, muss \(A^2 = B^2 \) sein. Diese Bestimmungsgleichung für \(\omega \) hat zwei Lösungen

\[A_1 = B \]
\[A_2 = -B \] \hspace{1cm} (8.1.106)

oder

\[-\omega_1^2 + \frac{g}{L} + \frac{kl^2}{mL^2} = \frac{kl^2}{mL^2} \]
\[-\omega_2^2 + \frac{g}{L} + \frac{kl^2}{mL^2} = -\frac{kl^2}{mL^2} \] \hspace{1cm} (8.1.107)

Wir vereinfachen diese beiden Gleichungen und lösen nach \(\omega_i \) auf

\[\omega_1^2 = \frac{g}{L} \]
\[\omega_2^2 = \frac{g}{L} + 2\frac{kl^2}{mL^2} = \omega_1^2 + 2\frac{kl^2}{mL^2} \] \hspace{1cm} (8.1.108)

Wenn wir \(y = \phi_1 \) als Vorgabe nehmen und die Gleichung \(z = \frac{A}{B} y \) lösen, bekommen wir die "Amplitude" des zweiten Pendels.

\[\phi_{2,0,1} e^{i\delta_1} = \frac{-\omega_1^2 + \frac{g}{L} + \frac{kl^2}{mL^2}}{\frac{kl^2}{mL^2}} \phi_{1,0} \]
\[= \frac{-\frac{g}{L} + \frac{kl^2}{mL^2}}{\frac{kl^2}{mL^2}} \phi_{1,0} \]
\[= \phi_{1,0} \]
\[\phi_{2,0,2} e^{i\delta_2} = \frac{-\omega_2^2 + \frac{g}{L} + \frac{kl^2}{mL^2}}{\frac{kl^2}{mL^2}} \phi_{1,0} \]
\[= \frac{-\frac{g}{L} + 2\frac{kl^2}{mL^2} + \frac{g}{L} + \frac{kl^2}{mL^2}}{\frac{kl^2}{mL^2}} \phi_{1,0} \]
\[= -\phi_{1,0} \] \hspace{1cm} (8.1.109)

Die beiden Lösungen haben die folgenden Charakteristika

Lösung 1 Es ist \(\phi_{2,0,1} = \phi_{1,0} \) und \(\delta_1 = 0 \). Die beiden Pendel schwingen in Phase mit der gleichen Resonanzfrequenz wie ein einzelnes Pendel. Die Feder wird nicht gedehnt. Ob sie vorhanden ist oder nicht, ist nicht relevant.

Lösung 2 Es ist \(\phi_{2,0,2} = \phi_{1,0} \) und \(\delta_2 = \pi \). Die beiden Pendel schwingen gegenphasig mit einer höheren Resonanzfrequenz als die, die ein einzelnes Pendel hätte. Die Feder wird periodisch gedehnt und gestaucht.
8.1.7. Verallgemeinerung: Fundamental- oder Eigenschwingungen *

(Siehe Gerthsen, Physik [Mes06, pp. 181])

Versuch zur Vorlesung:
Gekoppelte Stangenpendel (Versuchskarte SW-050)

Wir wollen nun untersuchen, wie die Lösung der Schwingungsgleichung für N gleich Pendel aussieht, die jeweils vom i-ten zum $i+1$-ten Pendel mit einer masselosen Feder mit der Federkonstante k gekoppelt sind. Für das erste Pendel mit $i=1$ gilt

$$I\ddot{\phi}_1 = -Lmg\phi_1 - k\ell^2(\phi_1 - \phi_2) \quad (8.1.110)$$

Die Bewegungsgleichung des letzten Pendels ist

$$I\ddot{\phi}_N = -Lmg\phi_N + k\ell^2(\phi_{N-1} - \phi_N) \quad (8.1.111)$$

Dazwischen lauten die Bewegungsgleichungen für ein Pendel $0 < j < N$

$$I\ddot{\phi}_j = -Lmg\phi_j - k\ell^2(\phi_j - \phi_{j+1}) + k\ell^2(\phi_{j-1} - \phi_j) = -Lmg\phi_j + k\ell^2\phi_{j-1} - 2k\ell^2\phi_j + k\ell^2\phi_{j+1} \quad (8.1.112)$$

Wir dividieren durch $I = mL^2$ und setzen $\omega_0^2 = \frac{g}{L}$ und $\kappa = \frac{k\ell^2}{mL^2}$ und schreiben die Gleichung als Matrizengleichung

$$\begin{pmatrix} \ddot{\phi}_1 \\ \vdots \\ \ddot{\phi}_j \\ \vdots \\ \ddot{\phi}_N \end{pmatrix} = \begin{pmatrix} -\omega_0^2 - \kappa & \kappa & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ddots & \kappa & \omega_0^2 - 2\kappa & \kappa & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \kappa & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \kappa & \ddots & \omega_0^2 - \kappa \end{pmatrix} \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_j \\ \vdots \\ \phi_N \end{pmatrix} \quad (8.1.113)$$

Wir setzen nun $\phi_i = \phi_{i,0}e^{i\omega t}$ und lösen die obige Gleichung

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \omega^2 - \omega_0^2 - \kappa & \kappa & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \ddots & \omega^2 - \omega_0^2 - 2\kappa & \kappa & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \kappa & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \kappa & \ddots & \omega^2 - \omega_0^2 - \kappa \end{pmatrix} \begin{pmatrix} \phi_{1,0} \\ \vdots \\ \phi_{j,0} \\ \vdots \\ \phi_{N,0} \end{pmatrix} \quad (8.1.114)$$

Diese Gleichung hat dann eine Lösung, wenn die Determinante

$$\begin{vmatrix} \omega^2 - \omega_0^2 - \kappa & \kappa & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \cdots & \omega^2 - \omega_0^2 - 2\kappa & \kappa & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \kappa & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \cdots & 0 & 0 & \kappa & \ddots & \omega^2 - \omega_0^2 - \kappa \end{vmatrix} = 0 \quad (8.1.115)$$
Die Lösung mit der tiefsten Resonanzfrequenz ist $\omega = \omega_0$, bei der alle Pendel in Phase sind (bei allen anderen Bewegungsmoden ist neben der potentiellen Energie der Pendel auch in den Federn potentielle Energie gespeichert, die Gesamtenergie also für die gleich Auslenkung grösser.) Wenn wir diese Lösung einsetzen, bekommen wir die Gleichung

\[
\begin{vmatrix}
-\kappa & \kappa & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & \kappa & -2\kappa & \kappa & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & \kappa & \cdots & \kappa & -\kappa
\end{vmatrix} = 0
\] (8.1.116)

Wenn man alle Zeilen dieser Determinante aufsummiert, bekommt man den Null-Vektor. Deshalb ist die obige Determinantengleichung erfüllt.

8.2. Wellen in einer Dimension

(Siehe Tipler, Physik [TM04, pp. 423]) (Siehe Gerthsen, Physik [Mes06, pp. 158])

Wellen können sich in Medien (Schallwellen, Seilwellen) oder auch ohne Medien (Licht, elektromagnetische Wellen) ausbreiten. Sie können sich im Raum ausbreiten, also in drei Dimensionen, auf Platten, in zwei Dimensionen oder in Seilen oder Glasfaserkabeln in einer Dimension. Wir betrachten den einfachen Fall einer Welle in einer Dimension.

8.2.1. Wellenberge

(Siehe Tipler, Physik [TM04, pp. 424])

Abbildung 8.21.: Reflexion einer Seilwelle wenn das Ende an der Wand eingespannt ist
Versuch zur Vorlesung:
Seilwellen (Versuchskarte SW-043)

Abbildung 8.22.: Reflexion einer Seilwelle wenn das Ende lose befestigt ist.

Wenn das Seilende lose ist, ist der Ort frei, aber die Geschwindigkeit stellt sich der Anregung entsprechend ein. Hier hat die Amplitude der reflektierten Seilwelle die gleiche Phase, es gibt keinen Phasensprung.

Analoge Effekte treten bei elektromagnetischen Wellen auf. je nach Randbedingung tritt bei der Reflexion ein Phasensprung von π auf.

8.2.1.1. Transversal- und Longitudinalwellen

Die hier betrachteten Seilwellen sind Transversalwellen oder Querwellen, da die Anregung senkrecht zur Ausbreitungsrichtung ist. Licht und Seilwellen gehören zu den Transversalwellen. Bei Longitudinalwellen oder Längswellen geht die Auslenkung der Teilchen in die Richtung der Ausbreitung. Das bekannteste Beispiel einer Longitudinalwelle ist die Druckwelle bei einer Schallwelle.
Mischformen von transversal- und Longitudinalwellen existieren, so zum Beispiel die oben dargestellte Wasserwelle. Ein einzelnes Wasserteilchen bewegt sich kreisförmig (eine Folge der Energieerhaltung). Dabei ist die Geschwindigkeit der Teilchen am Wellenkamm nach rechts gerichtet, wenn die Welle sich nach links ausbreitet\(^1\).

8.2.1.2. Reflexion und Überlagerung oder Superposition

Wir beobachten, dass die Form eines Wellenberges sich nicht ändert. Im bewegten Bezugs system \(x^*, y^*\) ist sie durch \(y^* = y(x^*)\) gegeben. Nun bewegt sich das Maximum mit der Geschwindigkeit \(v\). Wir können die Gleichungen der Galilei-Transformation hinschreiben

\[
\begin{align*}
y & = y^* \\
x & = x^* + vt
\end{align*}
\]

(8.2.1)

Deshalb kann man die Form des Seiles auch mit

\[
y = y(x - vt)
\]

(8.2.2)

schreiben. Bewegt sich das Maximum nach links, lautet die Gleichung

\[
y = y(x + vt)
\]

(8.2.3)

Das Überlagerungsprinzip können sie mit einer Simulation austesten.

\(^1\)Dies ist auch das Prinzip des Wanderwellenmotors, der häufig, zum Beispiel auch in Kameras, als Stellmotor eingesetzt wird.
Wenn wie in der obigen Zeichnung die beiden Wellen den Gleichungen $y = y_1(x - vt)$ und $y = y_2(x + vt)$ genügen, ist die resultierende Wellenfunktion

$$y = y_1(x - vt) + y_2(x + vt)$$

(8.2.4)

Haben die beiden Wellenberge unterschiedliche Vorzeichen, so können sie sich zu gewissen Zeiten teilweise oder, bei gleicher Amplitude, vollständig auslöschen. Obwohl in der Mitte nichts mehr von den Wellenbergen zu sehen ist, ist die Information über ihre Form und Geschwindigkeit in der kinetischen Energie der Seilstücke gespeichert.
Abbildung 8.26.: Überlagerung zweier sinusförmiger Wellenberge mit unterschiedlichen Amplituden und gleichem Vorzeichen.

Das Überlagerungsprinzip gilt auch für Wellen mit beliebiger Form, hier als Sinuswelle dargestellt. Bei grossen Amplituden, also dann wenn das betrachtete System nicht mehr linear ist, gilt das Überlagerungs- oder Superpositionsprinzip nicht.

8.2.2. Ausbreitungsgeschwindigkeit

(Siehe Tipler, Physik [TM04, pp. 429])

Abbildung 8.27.: Kräfteverhältnisse an einem Wellenberg in einem sich mit dem Wellenberg sich fortbewegenden Koordinatensystem.

Wir betrachten ein Seilsegment der Länge \(\Delta s = r\Theta \). Auf dieses Segment wirken an den Enden Kräfte \(F \), die um den Winkel \(\Theta/2 \) nach unten gekippt sind. Die Kraft \(F \) ist die Spannkraft am Seil. Das Seil bewegt sich in dieser Darstellung mit der Geschwindigkeit \(v \) durch das Bild. Dabei bewegt sich das Seilsegment auf einer Kreisbahn, ist also der Zentripetalbeschleunigung \(v^2/r \) unterworfen. Das Kräftegleichgewicht in radialer Richtung (nach unten) ist

\[
\sum F_r = 2F \sin \left(\frac{\Theta}{2} \right) \approx 2F \left(\frac{\Theta}{2} \right) = F\Theta \tag{8.2.5}
\]

Die Trägheitskräfte können aus der Massenbelegung \(\mu = \rho A \) des Seils berechnet werden, dabei ist \(\rho \) die Dichte und \(A \) der Seilquerschnitt. Die Masse des Seilstückes ist

\[
m = \mu \Delta s = \mu r\Theta = \rho A\Delta s = \rho Ar\Theta \tag{8.2.6}
\]
Schwingungen und eindimensionale Wellen

Die durch die Seilspannung bewirkte Kraft F ist gleich der durch die Dynamik gegebene Zentripetalkraft.

$$F \Theta = m \frac{v^2}{r} = \mu r \Theta \frac{v^2}{r} = \rho A r \Theta \frac{v^2}{r}$$ \hspace{1cm} (8.2.7)

Dies Gleichung kann nach v aufgelöst werden (wir verwenden die Seilspannung $\sigma = F/A$)

$$v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{\sigma}{\rho}}$$ \hspace{1cm} (8.2.8)

Dies ist die Ausbreitungsgeschwindigkeit einer Störung auf einem Seil oder auf einer Saite.

Da in dieser Gleichung keine koordinatenabhängigen Grössen vorhanden sind, gilt sie auch für das „Ruhesystem“ des Seils.

Ein Seil mit einer Massenbelegung von $\mu = 0.02\text{kg/m}$ und einer Seilspannkraft $F = 30\text{N}$ ist die Ausbreitungsgeschwindigkeit $v = \sqrt{\frac{30\text{N}}{0.02\text{kg/m}}} = 38.7\text{m}$.

8.2.3. Harmonische Wellen

(Siehe Tipler, Physik [TM04, pp. 431])

Abbildung 8.28.: Der Schnappschuss einer Welle mit der Wellenlänge λ.

In der Periodendauer T bewegt sich die Welle um eine Wellenlänge λ vorwärts. Wenn wir die Frequenz $\nu = 1/T$ einführen erhalten wir

$$v = \frac{\lambda}{T} = \nu \lambda$$ \hspace{1cm} (8.2.9)

Wenn die Auslenkung sinusförmig ist, ist die Form der Welle zu einer bestimmten Zeit t_0 durch

$$y(x) = A \sin(kx)$$ \hspace{1cm} (8.2.10)

beschrieben. A ist die Amplitude und $k = \frac{2\pi}{\lambda}$ die Wellenzahl, oder wenn damit auch die Ausbreitungsrichtung bezeichnet wird, den Wellenvektor. Die Größe von k kann mit der folgenden Überlegung berechnet werden: Die Sinusfunktion ist mit 2π periodisch. Sie wiederholt sich aber auch mit jedem Vielfachen der Wellenlänge λ. Also ist

$$k(x_1 + \lambda) = kx_1 + 2\pi$$ \hspace{1cm} (8.2.11)
und daraus

\[k\lambda = 2\pi \quad \Rightarrow \quad k = \frac{2\pi}{\lambda} \quad (8.2.12) \]

Analog zu der Beschreibung der Wellenberge bemerken wir, dass die Welle sich mit der Geschwindigkeit \(v \) nach rechts bewegt. Wir transformieren also \(x \rightarrow x - vt \).

\[y(x, t) = A \sin (k(x - vt)) = A \sin (kx - kvt) \quad (8.2.13) \]

Wenn wir \(\omega = kv \) (Kreisfrequenz) setzen erhalten wir das Schlussresultat

\[y(x, t) = A \sin (kx - \omega t) \quad (8.2.14) \]

Die Wellengleichung

Wie schon früher berechnet, ist \(\omega = 2\pi v = \frac{2\pi}{T} \). Die Ausbreitungsgeschwindigkeit ist

\[v = \frac{\omega}{k} \quad (8.2.15) \]

Die Wellengleichung kann auch

\[y(x, t) = A \sin \left[2\pi \left(\frac{x}{\lambda} - \frac{t}{T} \right) \right] \quad (8.2.16) \]

8.2.4. Energieübertrag bei Wellen

(Siehe Tipler, Physik [TM04, pp. 434])

Wenn wir ein kurzes Segment der Länge \(\Delta x \) einer schwingenden Welle betrachten, dann führt dieses eine harmonische Schwingung aus. Wenn die Wellengleichung \(y(x, t) = A \sin (kx - \omega t) \) ist, dann ist die Geschwindigkeit \(v(x, t) = \dot{y}(x, t) = -A\omega \cos (kx - \omega t) \). Damit ist die kinetische Energie des Seilsegments beim Nulldurchgang und damit auch die Gesamtenergie

\[\Delta E = \frac{1}{2}\Delta mv^2 = \frac{1}{2}\Delta m\omega^2 A^2 = \frac{1}{2}A^2\omega^2 \mu \Delta x \quad (8.2.17) \]

Die Ausbreitungsgeschwindigkeit der Welle sei \(v = \Delta x/\Delta t \). Umgeformt \(\Delta x = v\Delta t \) und eingesetzt bekommen wir

\[\Delta E = \frac{1}{2}A^2\omega^2 \mu v \cdot \Delta t \quad (8.2.18) \]

Wir dividieren durch \(\Delta t \) und bekommen die durch die Welle transportierte Energie pro Zeiteinheit, also die Leistung\(^2\)

\[P = \frac{\Delta E}{\Delta t} = \frac{1}{2}\mu A^2\omega^2 v \quad (8.2.19) \]

\(^2\)Die Intensität des Lichtes oder jeglicher Strahlung ist die Leistung pro Fläche
8.2.5. Superposition und **Interferenz** harmonischer Wellen

Abb. 8.29.: **Interferenz** zweier Wellen mit der gleichen *Amplitude* und der gleichen *Frequenz* und einer Phase, die von $0 \ldots 2\pi$ variiert.

Mathematisch setzen wir zwei Wellen an

$$y_1(x, t) = A \sin (kx - \omega t)$$
$$y_2(x, t) = A \sin (kx - \omega t + \delta)$$ (8.2.20)

An einem bestimmten Ort ist die Differenz der Phasen durch

$$(kx - \omega t_1) - (kx - \omega t_2 + \delta) = \omega(t_1 - t_2) - \delta = \omega \Delta t - \delta$$ (8.2.21)

gegeben und unabhängig vom Ort. Zu einer bestimmten Zeit ist die Differenz der Phasen durch

$$(kx_1 - \omega t) - (kx_2 - \omega t + \delta) = k(x_1 - x_2) - \delta = k \Delta x - \delta$$ (8.2.22)

gegeben, unabhängig von der Zeit.

Wir wenden die Additionstheoreme für die Winkelfunktionen an. Wir verwenden

$$\sin(\alpha) + \sin(\beta) = 2 \cos \left(\frac{\alpha - \beta}{2} \right) \sin \left(\frac{\alpha + \beta}{2} \right)$$ (8.2.23)

und erhalten

$$y(x, t) = y_1(x, t) + y_2(x, t)$$
$$= A \sin (kx - \omega t) + A \sin (kx - \omega t + \delta)$$
$$= 2A \cos \left(\frac{\delta}{2} \right) \sin \left(kx - \omega t + \frac{\delta}{2} \right)$$ (8.2.24)
Aus dieser Gleichung kann die folgende Tabelle abgeleitet werden.

<table>
<thead>
<tr>
<th>Phase</th>
<th>resultierende Amplitude</th>
<th>Interferenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2A</td>
<td>konstruktive</td>
</tr>
<tr>
<td>π/2</td>
<td>√2A</td>
<td>konstruktive</td>
</tr>
<tr>
<td>π</td>
<td>0</td>
<td>destruktiv</td>
</tr>
<tr>
<td>3π/2</td>
<td>√2A</td>
<td>konstruktive</td>
</tr>
<tr>
<td>2π</td>
<td>2A</td>
<td>konstruktive</td>
</tr>
</tbody>
</table>

Tabelle 8.1.: Interferenz und Phase

8.2.5.1. Stehende Wellen

(Siehe Tipler, Physik [TM04, pp. 435]) (Siehe Gerthsen, Physik [Mes06, pp. 513])

Wenn wir eine nach links laufende Welle \(y_1(x, t) = A \sin(kx + \omega t) \) und eine nach rechts laufende Welle \(y_2 = A \sin(kx - \omega t + \delta) \) zur Interferenz kommen lassen, erhalten wir

\[
y(x, t) = y_1(x, t) + y_2(x, t) \\
= A \sin(kx + \omega t) + A \sin(kx - \omega t + \delta) \\
= 2A \cos\left(\omega t - \frac{\delta}{2}\right) \sin\left(kx + \frac{\delta}{2}\right) \quad (8.2.25)
\]

Die Summe der beiden Wellenfunktionen ist das Produkt zweier Termen

- ein zeitabhängiger Teil, der für alle Orte gleich ist: \(\cos\left(\omega t - \frac{\delta}{2}\right) \)
- ein ortsabhängiger Teil, der für alle Zeiten gleich ist: \(\sin\left(kx + \frac{\delta}{2}\right) \)

Damit bilden sich räumlich stehende Knotenlinien aus, wir haben eine **stehende Welle**.

Wenn die Amplituden der beiden Wellen nicht gleich gross ist, dann interferieren von der Welle mit der grösseren Amplitude nur die Amplitudenteile, die gleich gross wie die Amplitude der schwächeren Welle sind.

Stehende Wellen als Resultat zweier gegenlaufender Wellen gibt es in jedem Resonator, insbesondere in Laserresonatoren.
A. Begriffe

Die Buchstaben der deutschen Sprache und diejenigen der griechischen Sprache reichen nicht aus, um alle physikalischen und mathematischen Grössen mit eindeutigen Symbolen zu versehen. Manchmal erschliesst sich die Bedeutung eines Symbols nur aus seinem Kontext.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Einheit</th>
<th>Wert, Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nullpunkt von Koordinatensystemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< x ></td>
<td>Arithmetischer Mittelwert der Größe x (siehe Gleichung (2.1.3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ẋ</td>
<td>erste Ableitung nach der Zeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ẍ</td>
<td>zweite Ableitung nach der Zeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f'</td>
<td>erste Ableitung (meistens nach x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f''</td>
<td>zweite Ableitung (meistens nach x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Additionszeichen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Subtraktionszeichen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>·</td>
<td>Multiplikationszeichen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/</td>
<td>Divisionszeichen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>Gleichheitszeichen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td>ungefähr gleich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∝</td>
<td>proportional zu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Vektor</td>
<td></td>
<td>in diesem Skript fett gedruckt</td>
</tr>
<tr>
<td>⋅</td>
<td>Skalare Multiplikation zweier Vektoren</td>
<td>a ⋅ b</td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>Vektorprodukt zweier Vektoren</td>
<td>a × b</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\overline{AB}</td>
<td>Länge der Strecke zwischen A und B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>x</td>
<td>$</td>
<td>Betrag einer Zahl, eines Vektors oder einer komplexen Zahl</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>das konjugiert Komplexe von x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{x}</td>
<td>Quadratwurzel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Siehe auch bei den einzelnen Buchstaben

A

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>ein Winkel $1 = \text{rad}$</td>
</tr>
<tr>
<td>α</td>
<td>der erste Eulersche Winkel $1 = \text{rad}$</td>
</tr>
<tr>
<td>α</td>
<td>die Winkelbeschleunigung $\frac{1}{s^2} = \frac{\text{rad}}{s^2}$</td>
</tr>
<tr>
<td>a</td>
<td>Beschleunigungsvektor $\frac{m}{s^2}$</td>
</tr>
<tr>
<td>a</td>
<td>Betrag des Beschleunigungsvektors $\frac{m}{s^2}$</td>
</tr>
<tr>
<td>a</td>
<td>eine unbestimmte Zahl</td>
</tr>
<tr>
<td>da</td>
<td>Flächenelement m^2</td>
</tr>
<tr>
<td>a_s</td>
<td>Beschleunigungsvektor des Schwerpunktes $\frac{m}{s^2}$</td>
</tr>
<tr>
<td>a_T</td>
<td>Beschleunigungsvektor zur Trägheitskraft $\frac{m}{s^2}$</td>
</tr>
<tr>
<td>$\text{arccos}(x)$</td>
<td>Arcuscosinus</td>
</tr>
<tr>
<td>$\text{arcsin}(x)$</td>
<td>Arcussinus</td>
</tr>
<tr>
<td>$\text{arctan}(x)$</td>
<td>Arcustangens</td>
</tr>
<tr>
<td>A</td>
<td>ein Punkt</td>
</tr>
<tr>
<td>A</td>
<td>eine Fläche m^2</td>
</tr>
<tr>
<td>A</td>
<td>Name eines Körpers</td>
</tr>
<tr>
<td>A</td>
<td>Beobachter bei der Diskussion der speziellen Relativität</td>
</tr>
<tr>
<td>A</td>
<td>Amplitude</td>
</tr>
<tr>
<td>B</td>
<td>ein Winkel</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>β</td>
<td>der zweite Eulersche Winkel</td>
</tr>
<tr>
<td>β</td>
<td>Kompressibilität</td>
</tr>
<tr>
<td>β</td>
<td>Vektor</td>
</tr>
<tr>
<td>b</td>
<td>eine unbestimmte Zahl</td>
</tr>
<tr>
<td>b</td>
<td>eine Bahnkurve</td>
</tr>
<tr>
<td>b</td>
<td>Widerstandsbeiwert (Strömung)</td>
</tr>
<tr>
<td>b</td>
<td>Koeffizient der geschwindigkeitsproportionalen Dämpfung</td>
</tr>
<tr>
<td>B</td>
<td>ein Punkt</td>
</tr>
<tr>
<td>B</td>
<td>Name eines Körpers</td>
</tr>
<tr>
<td>B</td>
<td>Beobachter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>ein Winkel</th>
<th>1 = rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>der dritte Eulersche Winkel</td>
<td>1 = rad</td>
</tr>
<tr>
<td>cos(φ)</td>
<td>Cosinus</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>eine unbestimmte Zahl</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>die Lichtgeschwindigkeit $\frac{m}{s}$</td>
<td>$c = 2.99792458 \cdot 10^8 \frac{m}{s}$</td>
</tr>
<tr>
<td>c</td>
<td>Konstante im Boyle-Mariotte-Gesetz Nm</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ein Punkt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Divergenz</th>
<th>$\frac{1}{m}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Phase</td>
<td>1 = rad</td>
</tr>
<tr>
<td>Begriffe</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Δx</td>
<td>Kleine Größe in der Variablen (x)</td>
<td></td>
</tr>
<tr>
<td>Δx</td>
<td>Abweichung der Größe (x) von einem Referenzwert z.B. Abweichung vom arithmetischen Mittelwert</td>
<td></td>
</tr>
<tr>
<td>(\frac{df}{dx})</td>
<td>Ableitung von (f) nach (x)</td>
<td></td>
</tr>
<tr>
<td>(\frac{\partial f}{\partial x})</td>
<td>partielle Ableitung von (f) nach (x)</td>
<td></td>
</tr>
<tr>
<td>(dx)</td>
<td>infinitesimale Änderung der Größe (x)</td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>totales Differential der Funktion (f)</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>eine Länge (m)</td>
<td></td>
</tr>
<tr>
<td>(d_{eff})</td>
<td>effektiver Durchmesser (m) eines Moleküls</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Winkelrichtgröße (\frac{Nm}{rad})</td>
<td></td>
</tr>
</tbody>
</table>

E	Winkel \(1 = rad \)
ε	relative Dehnung \(1 \)
\(\epsilon_B \)	Bruchdehnung \(1 \)
\(\eta \)	Scherviskosität \(\frac{Ns}{m^2} \)
\(e^x \)	Exponentialfunktion
\(e \)	ein \((\text{Koordinaten-})\text{Einheitsvektor} \)
\(E \)	der Elastizitätsmodul \(\frac{Nm}{m^2} \) heisst auch Young’s Modul
\(E_{i,j,k,\ell} \)	Elastizitätstensor \((4. \frac{Nm}{m^2} \) Stufe)
\(E \)	Energie \(J = \frac{m^2 kg}{s^2} \) (Joule)
\(E_{kin} \)	kinetische Energie \(J = \frac{m^2 kg}{s^2} \)
\(E_{pot} \)	potentielle Energie \(J = \frac{m^2 kg}{s^2} \)
\(E_{innen} \)	innere Energie \(J = \frac{m^2 kg}{s^2} \) \((z.B. \text{ Wärme, mechanische Spannungen}) \)
Tabelle A.1.: (Konstanten: Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>eine der Koordinaten („Längengrad“) bei Zylinderkoordinaten und Kugelkoordinaten</td>
<td>(1 = \text{rad})</td>
</tr>
<tr>
<td>(\phi)</td>
<td>ein Winkel</td>
<td>(1 = \text{rad})</td>
</tr>
<tr>
<td>(\phi(r))</td>
<td>das Gravitationspotential</td>
<td>(J = \frac{m^2}{s^2})</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Fluss</td>
<td>(kg)</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>ein Winkel</td>
<td>(1 = \text{rad})</td>
</tr>
<tr>
<td>(f)</td>
<td>Steigung der Weltlinie</td>
<td>(1)</td>
</tr>
<tr>
<td>(F)</td>
<td>Kraft</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(</td>
<td>F</td>
<td>)</td>
</tr>
<tr>
<td>(F)</td>
<td>Kraftvektor</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(F_C)</td>
<td>Corioliskraft</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(</td>
<td>F_C</td>
<td>)</td>
</tr>
<tr>
<td>(F_{ai})</td>
<td>Kraftvektoren der äußeren Kräfte bei einem Teilchensystem</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(</td>
<td>F_{ij}</td>
<td>)</td>
</tr>
<tr>
<td>(F_a)</td>
<td>Kraftvektor der resultierenden äußeren Kraft</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(F_D)</td>
<td>Kraftvektor der Dämpfungskraft</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(F_G)</td>
<td>Gewichtskraft</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(F_{GR})</td>
<td></td>
<td>(F_{GR})</td>
</tr>
<tr>
<td>(F_{HR})</td>
<td></td>
<td>(F_{HR})</td>
</tr>
<tr>
<td>(F_R)</td>
<td>Kraftvektor der Rückstosskraft</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
<tr>
<td>(F_{RR})</td>
<td></td>
<td>(F_{RR})</td>
</tr>
<tr>
<td>(F_T)</td>
<td>Trägheitskraft</td>
<td>(N = \frac{m \cdot kg}{s^2})</td>
</tr>
</tbody>
</table>

\(\phi(r) = \frac{E_{pot, Gravitation}}{mg}\)
Tabelle A.1.: (Konstanten: Fortsetzung)

<table>
<thead>
<tr>
<th>(\mathbf{F}_V(\mathbf{r}))</th>
<th>Volumenkraft</th>
<th>(\frac{N}{m^3} = \frac{kg}{m^3 \cdot s^2}) (Newton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{G})</td>
<td>Gradient</td>
<td>(\frac{1}{m})</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>Zirkulation</td>
<td>(\frac{m^2}{s})</td>
</tr>
<tr>
<td>(\mathbf{g})</td>
<td>Feldvektor des Gravitationsfeldes</td>
<td>(\frac{m}{s^2})</td>
</tr>
</tbody>
</table>
| \(g \) | Betrag des Feldvektors des Gravitationsfeldes | \(\frac{m}{s^2} \)
\(g = 9.81 \frac{m}{s^2} \) (dies gilt in Bodennähe, sonst ist \(g \) eine Variable!) |
| \(\mathbf{G} \) | Gebiet | |
| \(G \) | Gravitationskonstante | \(\frac{m^3 \cdot kg}{s^2} \)
\(G = 6.6742 \cdot 10^{-11} \frac{m^3 \cdot kg}{s^2} \) |
| \(\mathbf{G} \) | der Schubmodul oder der Torsionsmodul | \(\frac{Nm}{m^2} \) |
| \(\mathbf{H} \) | Höhe der Flüssigkeits säule | \(m \) |
| \(h \) | |
| \(\mathbf{I} \) | Integralzeichen | |
| \(\oint \) | Linienintegral entlang eines geschlossenen Weges | |
| \(i \) | Laufindex | \(i \in \mathbb{Z} \) |
| \(i \) | die imaginäre Einheit | \(i = \sqrt{-1} \) (Schreibweise in der Mathematik und in der Physik) |
| \(I \) | Strom | \(A \) (Ampère) |
| \(I \) | Lichtstärke | \(cd \) (candela) |
| \(I \) | Trägheitsmoment | \(m^2 \cdot kg \) |
| \(I \) | Trägheitstensor | \(m^2 \cdot kg \)
\(3 \times 3 \)-Komponenten |
<p>| (I_s) | Trägheitsmoment bezüglich des Schwerpunktes | (m^2 \cdot kg) |</p>
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{T}_0</td>
<td>Trägheitstensor</td>
<td>m^2 , kg</td>
</tr>
<tr>
<td>J</td>
<td>j Laufindex</td>
<td>$j \in \mathbb{Z}$</td>
</tr>
<tr>
<td></td>
<td>j die imaginäre Einheit</td>
<td>$j = \sqrt{-1}$ (Schreibweise in der Elektrotechnik)</td>
</tr>
<tr>
<td></td>
<td>j Stromdichte</td>
<td>$\frac{kg}{m^2 , s}$</td>
</tr>
<tr>
<td>K</td>
<td>κ Kompressibilität</td>
<td>$\frac{m^2}{N} = \frac{m \cdot s^2}{kg}$</td>
</tr>
<tr>
<td></td>
<td>k eine Konstante</td>
<td>$k \in \mathbb{Z}$</td>
</tr>
<tr>
<td></td>
<td>k Laufindex</td>
<td>$k \in \mathbb{Z}$</td>
</tr>
<tr>
<td></td>
<td>k Federkonstante</td>
<td>$\frac{N}{m} = \frac{kg}{s^2}$</td>
</tr>
<tr>
<td></td>
<td>k Wellenzahl</td>
<td>$\frac{1}{m}$</td>
</tr>
<tr>
<td></td>
<td>k Wellenvektor</td>
<td>$k =</td>
</tr>
<tr>
<td>L</td>
<td>λ Wellenlänge</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Δ Laplace-Operator</td>
<td>$\frac{1}{m^2}$</td>
</tr>
<tr>
<td></td>
<td>ℓ Länge</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>l Länge</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>$\ln(x)$ natürlicher Logarithmus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lim_{x \to 0} f(x)$ Limes (Grenzwert) von $f(x)$ wenn x gegen 0 geht</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Drehimpuls</td>
<td>$\frac{m^2 , kg}{s}$</td>
</tr>
<tr>
<td>L_0</td>
<td>Drehimpuls bezüglich des Punktes 0</td>
<td>$\frac{m^2 , kg}{s}$</td>
</tr>
<tr>
<td>L</td>
<td>Länge</td>
<td>m</td>
</tr>
<tr>
<td>Tabelle A.1.: (Konstanten: Fortsetzung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L Pendellänge m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ Massenbelegung eines $\frac{kg}{m}$ Seils $\mu = \rho A$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ Poissonzahl oder Querkontraktionszahl 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ Reduzierte Masse kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{GR} Gleitreibungskoeffizient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{HR} Haftreibungskoeffizient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{RR} Rollreibungskoeffizient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m Masse kg (Kilogramm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_0 Ruhemasse kg (Kilogramm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_s schwere Masse kg (Kilogramm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_t träge Masse kg (Kilogramm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_E Masse der Erde kg $m_E = 5,98 \cdot 10^{24} kg$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_M Masse des Mondes kg $m_M = 7,3 \cdot 10^{22} kg$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Metazentrum eines schwimmenden Körpers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Drehmoment $Nm = \frac{m^2 kg}{s^2} M = \frac{dL}{dt}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_0 Drehmoment bezüglich des Punktes 0 $Nm = \frac{m^2 kg}{s^2} M_0 = \frac{dL_0}{dt}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν Frequenz $Hz = \frac{1}{s}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n Anzahl $j \in \mathbb{N}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ n \ \text{Stoffmenge} mol$ (Mol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n Normaleneinheitsvektor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(n)$ vernachlässigte Terme der Ordnung n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A.1.: (Konstanten: Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
<th>Formel</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>Verhältnis zwischen Kreisumfang und Durchmesser</td>
<td>$\pi = 3,141592653589793$</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Impuls</td>
<td>$p = mv$</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Impulsvektor</td>
<td>$p = mv$</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Druck</td>
<td>$P_a = \frac{N}{m^2} = \text{(Pascal)}$</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>ein Punkt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Leistung</td>
<td>$W = \frac{J}{s} = \frac{m^2 kg}{s^3}$ (Watt)</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>ein Punkt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Güte</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Wärme</td>
<td>$J = \frac{m^2 kg}{s^2}$ (Joule)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Rotation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>die Radius-Koordinate in Zylinderkoordinaten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho(r)$</td>
<td>die Massendichte</td>
<td>$\frac{kg}{m^3}$</td>
<td></td>
</tr>
<tr>
<td>$\rho_m(r)$</td>
<td>die Massendichte</td>
<td>$\frac{kg}{m^3}$</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Ortsvektor</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Betrag des Ortsvektors</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>die Radius-Koordinate in Kugelkoordinaten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_S</td>
<td>Ortsvektor des Schwerpunktes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_E</td>
<td>Erdradius</td>
<td>$r_E = 6.38 \cdot 10^6 m$</td>
<td></td>
</tr>
<tr>
<td>r_M</td>
<td>Radius des Mondes</td>
<td>$r_M = 1.74 \cdot 10^6 m$</td>
<td></td>
</tr>
<tr>
<td>r_{EM}</td>
<td>Abstand Erde-Mond</td>
<td>$r_{EM} = 3.84 \cdot 10^8 m$</td>
<td></td>
</tr>
<tr>
<td>$R(s)$</td>
<td>Krümmungsradius</td>
<td>m</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A.1.: (Konstanten: Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>Radius einer Kugel (m)</td>
</tr>
<tr>
<td>(R)</td>
<td>Erdradius (m) (R = r_E = 6.38 \cdot 10^6 m)</td>
</tr>
<tr>
<td>(Re)</td>
<td>Reynoldszahl (1)</td>
</tr>
</tbody>
</table>

\(S \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin(\varphi))</td>
<td>Sinus</td>
</tr>
<tr>
<td>(\sum)</td>
<td>Summenzeichen</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Spannung (\frac{N}{m^2})</td>
</tr>
<tr>
<td>(\sigma_s)</td>
<td>Oberflächenspannung (\frac{N}{m})</td>
</tr>
<tr>
<td>(\sigma_F)</td>
<td>Festigkeitsgrenze oder Fliessgrenze (\frac{N}{m^2})</td>
</tr>
<tr>
<td>(\sigma_P)</td>
<td>Proportionalitätsgrenze (\frac{N}{m^2})</td>
</tr>
<tr>
<td>(\sigma_S)</td>
<td>Streckgrenze (\frac{N}{m^2})</td>
</tr>
<tr>
<td>(\sigma_x)</td>
<td>Standardabweichung des Messwertes (x) (Siehe Gleichung (2.1.5))</td>
</tr>
<tr>
<td>(\sigma_{<x>})</td>
<td>Standardabweichung des Mittelwertes (\langle x \rangle) (Siehe Gleichung (2.1.6))</td>
</tr>
<tr>
<td>(s)</td>
<td>Strecke entlang einer (m) Bahn</td>
</tr>
<tr>
<td>(ds)</td>
<td>Differentielle Länge entlang einer Bahn (m)</td>
</tr>
<tr>
<td>(S)</td>
<td>Schwerpunkt</td>
</tr>
<tr>
<td>(S)</td>
<td>Eine geschlossene Oberfläche</td>
</tr>
</tbody>
</table>

\(T \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>Eine der sphärischen Koordinaten ((90^\circ - \text{Breitengrad})) (1 = \text{rad}) (Winkel zwischen (z)-Achse und (r))</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Ein Winkel (1 = \text{rad}) (Winkel zwischen (z)-Achse und (r))</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Tangenteneinheitsvektor</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Scherspannung oder (\frac{N}{m^2} = \frac{kg}{m^2}) (z.B. radioaktiver Zerfall) Schubspannung</td>
</tr>
</tbody>
</table>
Tabelle A.1.: (Konstanten: Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
<th>Stoffliche Angabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>Zeitkonstante</td>
<td>(s)</td>
<td>(z.B. radioaktiver Zerfall)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Zeit</td>
<td>(s)</td>
<td>(z.B. in Integralen)</td>
</tr>
<tr>
<td>(\dot{\tau})</td>
<td>Zeit</td>
<td>(s)</td>
<td>(z.B. in Integralen)</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>Winkel</td>
<td></td>
<td>(1 = \text{rad})</td>
</tr>
<tr>
<td>(t)</td>
<td>Zeit</td>
<td>(s)</td>
<td>(Sekunde)</td>
</tr>
<tr>
<td>(t_0)</td>
<td>Zeit</td>
<td>(s)</td>
<td>(Sekunde)</td>
</tr>
<tr>
<td>(\tan(\varphi))</td>
<td>Tangens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td>Temperatur</td>
<td>(K)</td>
<td>(Kelvin)</td>
</tr>
<tr>
<td>(T)</td>
<td>Zeit</td>
<td>(s)</td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td>Gesamtdauer</td>
<td>(s)</td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td>Periodendauer</td>
<td>(s)</td>
<td></td>
</tr>
<tr>
<td>(T_0)</td>
<td>Periodendauer</td>
<td>(s)</td>
<td></td>
</tr>
<tr>
<td>(U)</td>
<td>Geschwindigkeitsvektor</td>
<td>(\frac{m}{s})</td>
<td></td>
</tr>
<tr>
<td>(u)</td>
<td>Betrag des Geschwindigkeitsvektors</td>
<td>(\frac{m}{s})</td>
<td>(u =</td>
</tr>
<tr>
<td>(U)</td>
<td>Geschwindigkeitspotential</td>
<td>(\frac{m^2}{s})</td>
<td></td>
</tr>
<tr>
<td>(V)</td>
<td>Geschwindigkeitsvektor</td>
<td>(\frac{m}{s})</td>
<td>(v =</td>
</tr>
<tr>
<td>(v)</td>
<td>Betrag des Geschwindigkeitsvektors</td>
<td>(\frac{m}{s})</td>
<td></td>
</tr>
<tr>
<td>(v_0)</td>
<td>Anfangsgeschwindigkeit</td>
<td>(\frac{m}{s})</td>
<td></td>
</tr>
<tr>
<td>(\mathbf{v}_S)</td>
<td>Geschwindigkeitsvektor des Schwerpunktes</td>
<td>(\frac{m}{s})</td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>Winkelgeschwindigkeit</td>
<td>(\frac{1}{s} = \frac{\text{rad}}{s})</td>
<td>(\omega = \dot{\Theta})</td>
</tr>
<tr>
<td>(w)</td>
<td>Energiedichte der elastischen Deformation</td>
<td>(\frac{N}{m^2})</td>
<td></td>
</tr>
<tr>
<td>Tabelle A.1.: (Konstanten: Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>Betrag des Geschwindigkeitsvektors</td>
<td>$w =</td>
<td>\mathbf{w}</td>
</tr>
<tr>
<td>\mathbf{w}</td>
<td>Geschwindigkeitsvektor</td>
<td>$\frac{m}{s}$</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Arbeit</td>
<td>$J = \frac{m^2 \cdot kg}{s^2}$ (Joule)</td>
<td></td>
</tr>
</tbody>
</table>

X

| x | Ortskoordinate bei kartesischen Koordinaten | m (Meter) |
| x_0 | Ausgangsposition | m |

<table>
<thead>
<tr>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
</tr>
<tr>
<td>z</td>
</tr>
<tr>
<td>z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle A.2.: Vorfaktoren von Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>z</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>μ</td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>da</td>
</tr>
</tbody>
</table>
Tabelle A.2.: (Konstanten: Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>10^n</th>
<th>Name</th>
<th>bedeutet</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>10^2</td>
<td>Hekto</td>
<td>hundert</td>
</tr>
<tr>
<td>k</td>
<td>10^3</td>
<td>Kilo</td>
<td>tausend</td>
</tr>
<tr>
<td>M</td>
<td>10^6</td>
<td>Mega</td>
<td>bedeutet gross</td>
</tr>
<tr>
<td>G</td>
<td>10^9</td>
<td>Giga</td>
<td>bedeutet Riese</td>
</tr>
<tr>
<td>T</td>
<td>10^{12} = (10^3)^4</td>
<td>Tera</td>
<td>bedeutet viermal</td>
</tr>
<tr>
<td>P</td>
<td>10^{15} = (10^3)^5</td>
<td>Peta</td>
<td>bedeutet fünf</td>
</tr>
<tr>
<td>E</td>
<td>10^{18} = (10^3)^6</td>
<td>Exa</td>
<td>bedeutet sechs</td>
</tr>
<tr>
<td>Z</td>
<td>10^{21} = (10^3)^7</td>
<td>Zetta</td>
<td>bedeutet sieben</td>
</tr>
<tr>
<td>Y</td>
<td>10^{24} = (10^3)^8</td>
<td>Yotta</td>
<td>bedeutet acht</td>
</tr>
</tbody>
</table>

Tabelle A.3.: Griechische Buchstaben

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>kleines Alpha</td>
<td>β</td>
<td>kleines Beta</td>
</tr>
<tr>
<td>γ</td>
<td>kleines Gamma</td>
<td>δ</td>
<td>kleines Delta</td>
</tr>
<tr>
<td>ε</td>
<td>kleines Epsilon</td>
<td>ζ</td>
<td>kleines Zeta</td>
</tr>
<tr>
<td>η</td>
<td>kleinesEta</td>
<td>θ</td>
<td>kleines Theta</td>
</tr>
<tr>
<td>ϑ</td>
<td>kursive Theta</td>
<td>Ϝ</td>
<td>Digamma</td>
</tr>
<tr>
<td>i</td>
<td>kleines Jota</td>
<td>ρ</td>
<td>kleines Rho</td>
</tr>
<tr>
<td>κ</td>
<td>kleines Kappa</td>
<td>σ</td>
<td>kleines Sigma</td>
</tr>
<tr>
<td>λ</td>
<td>kleines Lambda</td>
<td>ς</td>
<td>kursive Sigma</td>
</tr>
<tr>
<td>μ</td>
<td>kleines Mü</td>
<td>ν</td>
<td>kleines Nü</td>
</tr>
<tr>
<td>ξ</td>
<td>kleines Xi</td>
<td>o</td>
<td>kleines Omicron</td>
</tr>
<tr>
<td>π</td>
<td>kleines Pi</td>
<td>ω</td>
<td>kursive Pi</td>
</tr>
<tr>
<td>φ</td>
<td>kleines Phi</td>
<td>ϑ</td>
<td>kursive Phi</td>
</tr>
<tr>
<td>ϕ</td>
<td>kursive Phi</td>
<td>χ</td>
<td>kleines Chi</td>
</tr>
<tr>
<td>ψ</td>
<td>kleines Psi</td>
<td>ω</td>
<td>kleines Omega</td>
</tr>
<tr>
<td>Ψ</td>
<td>grosses Psi</td>
<td>Ω</td>
<td>grosses Omega</td>
</tr>
<tr>
<td>Ξ</td>
<td>grosses Xi</td>
<td>Π</td>
<td>grosses Pi</td>
</tr>
<tr>
<td>Σ</td>
<td>grosses Sigma</td>
<td>Γ</td>
<td>grosses Gamma</td>
</tr>
<tr>
<td>Δ</td>
<td>grosses Delta</td>
<td>Δ</td>
<td>grosses Delta</td>
</tr>
<tr>
<td>Ε</td>
<td>kursive Epsilon</td>
<td>Ε</td>
<td>kursive Epsilon</td>
</tr>
<tr>
<td>Λ</td>
<td>grosses Lambda</td>
<td>Λ</td>
<td>grosses Lambda</td>
</tr>
<tr>
<td>Ψ</td>
<td>grosses Psi</td>
<td>Ω</td>
<td>grosses Omega</td>
</tr>
<tr>
<td>Α</td>
<td>grosses Alpha</td>
<td>Π</td>
<td>grosses Pi</td>
</tr>
</tbody>
</table>

©2001-2014 Ulm University, Othmar Marti
<table>
<thead>
<tr>
<th>ג</th>
<th>Gimel</th>
<th>ℸ</th>
<th>Daleth</th>
</tr>
</thead>
<tbody>
<tr>
<td>א</td>
<td>Aleph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. Konstanten

Tabelle B.1: Konstanten

<table>
<thead>
<tr>
<th>Werte</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 6.62606896 \cdot 10^{-34}$ Js</td>
<td>Plancksches Wirkungsquantum</td>
</tr>
<tr>
<td>$N_A = 6.023 \cdot 10^{23}$ mol$^{-1}$</td>
<td>Avogadro-Konstante</td>
</tr>
<tr>
<td>$k = 1.3806504 \cdot 10^{-23}$ JK$^{-1}$</td>
<td>Boltzmann-Konstante</td>
</tr>
<tr>
<td>$e = 1.602176487 \cdot 10^{-19}$ C</td>
<td>Elementarladung</td>
</tr>
<tr>
<td>$F = 96485.3399$ C mol$^{-1}$</td>
<td>Faradaykonstante</td>
</tr>
<tr>
<td>$G = 6.67428 \cdot 10^{-11}$ m3kg$^{-1}$s$^{-2}$</td>
<td>Gravitationskonstante</td>
</tr>
<tr>
<td>$g_n = 9.80665$ m s$^{-2}$</td>
<td>Normalfallbeschleunigung</td>
</tr>
<tr>
<td>$R = 8.314472$ J mol$^{-1}$K$^{-1}$</td>
<td>ideale Gaskonstante</td>
</tr>
<tr>
<td>$c = 299792458$ m s$^{-1}$</td>
<td>Lichtgeschwindigkeit</td>
</tr>
<tr>
<td>$SK = 1367$ W m$^{-2}$</td>
<td>Solarkonstante</td>
</tr>
<tr>
<td>$R_{H,\text{gemessen}} = 1.097095531 \cdot 10^7$ m$^{-1}$</td>
<td>Rydbergkonstante des Wasser-</td>
</tr>
<tr>
<td>$R_{\infty} = 1.0973731568539(55) \cdot 10^7$ m$^{-1}$</td>
<td>stoffs für Wellenzahlen</td>
</tr>
<tr>
<td>$\sigma = 5.67040(4) \cdot 10^{-8}$ W m$^{-2}$K$^{-4}$</td>
<td>Rydbergkonstante bei unendlich</td>
</tr>
<tr>
<td>$m_e = 0.510999$MeV/c2</td>
<td>schweren Kernen für Wellenzahlen</td>
</tr>
<tr>
<td>$\mu_B = 9.27400968(20) \cdot 10^{-24}$ JT$^{-1}$</td>
<td>Stefan-Boltzmann-Konstante</td>
</tr>
<tr>
<td>$m_E = 5.9736 \cdot 10^{24}$ kg</td>
<td>Elektronenmasse</td>
</tr>
<tr>
<td>$r_E = 6371000$ m</td>
<td>Bohrsches Magneton</td>
</tr>
<tr>
<td>$\rho = 1.3 \frac{kg}{m^3}$</td>
<td>Masse der Erde</td>
</tr>
<tr>
<td>$g = 9,81 \frac{m}{s^2}$</td>
<td>Erdradius</td>
</tr>
<tr>
<td>1 Lj = 9.461 Pm</td>
<td>Dichte von Luft</td>
</tr>
<tr>
<td>$r_P = 46,0$ Gm</td>
<td>Betrag des Feldvektors der Gravitation</td>
</tr>
<tr>
<td>$r_A = 69,8$ Gm</td>
<td>Lichtjahr</td>
</tr>
<tr>
<td>$c = 299792458$ m/s</td>
<td>Perihelabstand des Merkur</td>
</tr>
<tr>
<td>$T_0 = 365.24$ d</td>
<td>Aphelabstand des Merkur</td>
</tr>
<tr>
<td>$T_S = 366.24$ d</td>
<td>Lichtgeschwindigkeit im Vakuum</td>
</tr>
<tr>
<td>$r_0 = 149,597$ Gm</td>
<td>Umlaufdauer der Erde um die Sonne in Sonntagen</td>
</tr>
<tr>
<td>$T_{ST} = 86164$ s</td>
<td>Umlaufdauer der Erde um die Sonne in Sternentagen</td>
</tr>
<tr>
<td>$T_{Tag} = 86400$ s</td>
<td>Mittlerer Radius der Erdbahn</td>
</tr>
<tr>
<td>$\eta_{H_2O,20^\circ} = 0.00102$ Ns/m2</td>
<td>Sternentag</td>
</tr>
<tr>
<td>$\rho_{H_2O,20^\circ} = 998.20$ kg/m3</td>
<td>Sonnentag</td>
</tr>
<tr>
<td></td>
<td>Viskosität des Wassers bei 20°</td>
</tr>
<tr>
<td></td>
<td>Dichte des Wassers bei 20 °</td>
</tr>
</tbody>
</table>
C. Einige notwendige mathematische Verfahren

C.1. Ableitung

Abbildung C.1.: Berechnung der Ableitung

d.h. die Steigung einer Kurve oder die Änderung finden

\[
\frac{df(x)}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\] \hspace{1cm} (C.1.1)

Gesetze beim Ableiten:

\[
\frac{d}{dx} (f(x) \cdot g(x)) = \left(\frac{d}{dx} f(x) \right) \cdot g(x) + f(x) \left(\frac{d}{du} g(u) \right) \hspace{1cm} (C.1.2)
\]

\[
\frac{d}{dx} f(g(x)) = \left(\frac{d}{du} f(u) \right) \frac{dg(x)}{dx} \text{ mit } u = g(x) \hspace{1cm} (C.1.3)
\]
Einige notwendige mathematische Verfahren

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>$f'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin(x)$</td>
<td>$\cos(x)$</td>
</tr>
<tr>
<td>$\cos(x)$</td>
<td>$-\sin(x)$</td>
</tr>
<tr>
<td>$\ln(x)$</td>
<td>$\frac{1}{x}$</td>
</tr>
<tr>
<td>e^x</td>
<td>e^x</td>
</tr>
</tbody>
</table>

Tabelle C.1.: Beispiele für Ableitungen

C.2. Integration

Abbildung C.2.: Integration einer Funktion

Integrieren, d.h. Fläche unter der Kurve oder den „zurückgelegten“ Weg bestimmen

\[
\int_{u_1}^{u_2} f(u) \, du = \lim_{n=\infty} \sum_{j=0}^{n} f \left(u_1 + j \frac{u_2 - u_1}{n} \right) \cdot \left(\frac{u_2 - u_1}{n} \right) \quad (C.2.1)
\]

Die verwendeten Symbole sind nebensächlich. Man kann mathematische Operationen mit allen Symbolen durchführen, z.B. die Integration mit u.

©2001-2014 Ulm University, Othmar Marti
C.3 Ableitungen zur näherungsweisen Berechnung von Funktionswerten

Eine allgemeine Funktion \(f(x) \), die genügend oft stetig differenzierbar ist, soll in der Nähe des Wertes \(x_0 \) angenähert werden (Siehe auch die Ausführungen über Taylorreihen in E.3).

Abbildung C.3.: Approximationen der Funktion \(f(x) = \cos(x) \) mit dem Grad 1, 2 und 3.

Abbildung C.3 zeigt, wie die Funktion \(\cos(x) \) an der Stelle \(x_0 = -\pi/4 \) angenähert wird. Die Funktion und die ersten drei Ableitungen sind

\[
\begin{align*}
\int f(t) \, dt &= \int f(\tau) \, d\tau \\
\frac{1}{n+1} f^{n+1} \quad \text{wobei } n \neq -1 \\
\sin(t) &= -\cos(t) \\
\cos(t) &= \sin(t) \\
e^t &= e^t \\
\frac{1}{t} &= \ln(t)
\end{align*}
\]

Tabelle C.2.: Beispiele für Integrale

Gesetze der Integration

\[
\int (g(x) + h(x)) \, dx = \int g(x) \, dx + \int h(x) \, dx \tag{C.2.2}
\]

\[
\int (g(x) \cdot h'(x)) \, dx = g(x) \cdot h(x) - \int g'(x) \cdot h(x) \, dx \tag{C.2.3}
\]
Einige notwendige mathematische Verfahren

\[f(x) = \cos(x) \quad \frac{d}{dx} f(x) = -\sin(x) \quad \text{(C.3.1)} \]
\[\frac{d^2}{dx^2} f(x) = -\cos(x) \quad \frac{d^3}{dx^3} f(x) = \sin(x) \]

In nullter Näherung würde man sagen, dass \(\cos(x) = 1/\sqrt{2} + O(1) \) ist in der Umgebung von \(x_0 = -\pi/4 \). Das Symbol \(O(1) \) bedeutet, dass Terme von \(x \) mit dem Exponenten größer oder gleich 1 vernachlässigt wurden.

In erster oder linearer Näherung hätten wir \(\cos(x) = 1/\sqrt{2} - 1/\sqrt{2}(x - (-\pi/4)) + O(2) = 1/\sqrt{2}(1 - (x + \pi/4)) + O(2) \). Hier sind Terme mit dem Exponenten 2 oder mehr vernachlässigt worden.

Die nächste Näherung, die 2., nimmt auch die quadratischen oder paraboloiden Anteile mit. Hier wäre \(\cos(x) = 1/\sqrt{2} - 1/\sqrt{2}(x - (-\pi/4))^2 + O(3) = 1/\sqrt{2}(1 - (x + \pi/4) - (x + \pi/4))^2 + O(3) \).

Allgemein sind die verschiedenen Approximationen

\[
\begin{align*}
 f(x_0 + \Delta x) & \approx f_0(\Delta x) = f(x_0) + O(1) \quad \text{(C.3.2)} \\
 f(x_0 + \Delta x) & \approx f_1(\Delta x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} \Delta x + O(2) \\
 f(x_0 + \Delta x) & \approx f_2(\Delta x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} \Delta x + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=x_0} \Delta x^2 + O(3) \\
 f(x_0 + \Delta x) & \approx f_3(\Delta x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} \Delta x + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=x_0} \Delta x^2 + \left. \frac{d^3 f(x)}{dx^3} \right|_{x=x_0} \Delta x^3 + O(4)
\end{align*}
\]

Mit \(x = x_0 + \Delta x \) lauten die Gleichungen

\[
\begin{align*}
 f(x) & \approx f_0(x) = f(x_0) + O(1) \quad \text{(C.3.3)} \\
 f(x) & \approx f_1(x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} (x - x_0) + O(2) \\
 f(x) & \approx f_2(x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} (x - x_0) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=x_0} (x - x_0)^2 + O(3) \\
 f(x) & \approx f_3(x) = f(x_0) + \left. \frac{df(x)}{dx} \right|_{x=x_0} (x - x_0) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=x_0} (x - x_0)^2 + \left. \frac{d^3 f(x)}{dx^3} \right|_{x=x_0} (x - x_0)^3 + O(4)
\end{align*}
\]

oder allgemein

\[
f(x) = \sum_{j=0}^{\infty} \frac{1}{j!} \left. \frac{d^j f(x)}{dx^j} \right|_{x=x_0} (x - x_0)^j \quad \text{(C.3.4)}
\]

Dabei ist \(j! = 1 \cdot 2 \cdot \ldots \cdot j \) die Fakultät von \(j \), Per Definition ist \(0! = 1 \). Die nullte-Ableitung ist einfach die Funktion selber.

Als Beispiel betrachten wir \(\cos(x) \) an der Stelle \(x_0 = -\pi/4 \). Wir haben
C.3 Ableitungen zur näherungsweisen Berechnung von Funktionswerten

\[f(-\pi/4) = \frac{1}{\sqrt{2}} \]

\[\left. \frac{df(x)}{dx} \right|_{x=-\pi/4} = -\frac{1}{\sqrt{2}} \]

\[\left. \frac{d^2 f(x)}{dx^2} \right|_{x=-\pi/4} = -\frac{1}{\sqrt{2}} \]

\[\left. \frac{d^3 f(x)}{dx^3} \right|_{x=-\pi/4} = \frac{1}{\sqrt{2}} \] \hspace{1cm} (C.3.5)

\[\left. \frac{d^2 f(x)}{dx^2} \right|_{x=-\pi/4} = -\frac{1}{\sqrt{2}} \]

\[\left. \frac{d^3 f(x)}{dx^3} \right|_{x=-\pi/4} = \frac{1}{\sqrt{2}} \]

und

\[f(x) \approx f_0(x) = \frac{1}{\sqrt{2}} + \mathcal{O}(1) \] \hspace{1cm} (C.3.6)

\[f(x) \approx f_1(x) = f(-\pi/4) + \left. \frac{df(x)}{dx} \right|_{x=-\pi/4} (x + \pi/4) + \mathcal{O}(2) \]

\[f(x) \approx f_2(x) = f(-\pi/4) + \left. \frac{df(x)}{dx} \right|_{x=-\pi/4} (x + \pi/4) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=-\pi/4} (x + \pi/4)^2 + \mathcal{O}(3) \]

\[f(x) \approx f_3(x) = f(-\pi/4) + \left. \frac{df(x)}{dx} \right|_{x=-\pi/4} (x + \pi/4) + \left. \frac{d^2 f(x)}{dx^2} \right|_{x=-\pi/4} (x + \pi/4)^2 + \left. \frac{d^3 f(x)}{dx^3} \right|_{x=-\pi/4} (x + \pi/4)^3 + \mathcal{O}(4) \]

Diese Kurven werden in Abbildung C.3 gezeigt.

Abbildung C.4.: Approximationen der Funktion \(f(x) = \cos(x) \) mit dem Grad 1, 2 und 3.

Abbildung C.4 zeigt die Approximation für \(x_0 = -\pi/2 \). Hier ist der Funktionswert wie auch die zweite Ableitung null, so dass eine lineare Approximation resultiert. Erst die dritte Ableitung ist wieder ungleich null.
C.4. Vektoren

beschreiben Orte oder gerichtete Grössen

\[\mathbf{r} = r = \begin{pmatrix} x \\ y \end{pmatrix} \]

Abbildung C.5.: Approximationen der Funktion \(f(x) = \cos(x) \) mit dem Grad 1, 2 und 3.

Abbildung C.5 zeigt die Approximationen bei \(x_0 = 0 \). Hier ist die erste und die dritte Ableitung null, so dass nur die zweite übrig bleibt.
\[\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} \]

Die Ableitung nach der Zeit wird auch als
\[\dot{x} = \frac{dx}{dt} \]
geschrieben.

Addition:
\[\mathbf{a} + \mathbf{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} + \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_x + b_x \\ a_y + b_y \\ a_z + b_z \end{pmatrix} \quad (C.4.1) \]

Versuch zur Vorlesung:
Kraft-Polygon (Versuchskarte M-28)

Länge eines Vektors
\[|\mathbf{a}| = \sqrt{a_x^2 + b_y^2 + a_z^2} \quad (C.4.2) \]

Skalarprodukt
\[\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z = |\mathbf{a}| |\mathbf{b}| \cdot \cos (\angle \mathbf{a}, \mathbf{b}) \quad (C.4.3) \]

der Einheitsvektor \(\mathbf{e}_x \) ist ein Vektor der Länge 1, der in die x-Richtung zeigt.

Vektorprodukt
\[\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix} \quad (C.4.4) \]

C.4.1. Gesetze

Für die Orientierung der Vektoren gilt:
\[\mathbf{a} \times \mathbf{b} \perp \mathbf{a} \quad (C.4.5) \]
\[\mathbf{a} \times \mathbf{b} \perp \mathbf{b} \quad (C.4.6) \]
\[|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \cdot \sin (\angle \mathbf{a}, \mathbf{b}) \quad (C.4.7) \]

C.4.1.1. Spatprodukt
\[\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = -\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) \quad (C.4.8) \]

Das Spatprodukt berechnet das **Volumen** des durch \(\mathbf{a}, \mathbf{b}, \mathbf{c} \) aufgespannten Spates.
C.4.1.2. Orthogonalität zweier Vektoren testen

Gegeben seien zwei Vektoren \mathbf{a} und \mathbf{b}. Die Projektion von \mathbf{a} auf \mathbf{b}, das heisst, die Komponente von \mathbf{a} in die Richtung von \mathbf{b} ist

$$a_b = a_{\text{in Richtung } b} = \mathbf{a} \cdot \mathbf{e}_b = \mathbf{a} \cdot \frac{\mathbf{b}}{|\mathbf{b}|} = \mathbf{a} \cdot \frac{\mathbf{b}}{|\mathbf{b}|} = a \cdot b$$ \hspace{1cm} (C.4.9)

In kartesischen Koordinaten heisst dies

$$a_b = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{b_x^2 + b_y^2 + b_z^2}}$$ \hspace{1cm} (C.4.10)

Beispiel:

Sei $\mathbf{a} = (3, 2, -2)$ und $\mathbf{b} = (-2, 0, 1)$. Dann ist

$$a_b = \frac{3 \cdot (-2) + 2 \cdot 0 + (-2) \cdot 2}{\sqrt{(-2)^2 + 0^2 + 2^2}} = \frac{-6 - 4}{\sqrt{8}} = -\frac{10}{2\sqrt{2}} = -\frac{5}{\sqrt{2}}$$

Beispiel:

Sei $\mathbf{a} = (3, 2, -2)$ und $\mathbf{b} = (0, 0, 1)$. Dann ist

$$a_b = \frac{3 \cdot 0 + 2 \cdot 0 + (-2) \cdot 2}{\sqrt{0^2 + 0^2 + 1^2}} = \frac{-2}{\sqrt{1}} = -2$$

Dis ist die z-Komponente von \mathbf{a}.
D. Skalarprodukt und Vektorprodukt in kartesischen Koordinaten

Wir betrachten die zwei Vektoren

\[a = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \quad \text{und} \quad b = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} \]

Das Skalarprodukt zweier Vektoren \(a \) und \(b \) ist

\[a \cdot b = a_x b_x + a_y b_y + a_z b_z \]

Das Vektorprodukt der beiden Vektoren ist

\[a \times b = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix} \]
E. Differentiation und Integration
E.1. Differentiationsregeln

Einige Differentiationsregeln sind

<table>
<thead>
<tr>
<th>Definition der Ableitung</th>
<th>$u = f(t)$</th>
<th>$u' = \frac{du}{dt} = \lim_{\Delta t \to 0} \frac{f(t+\Delta t) - f(t)}{\Delta t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partielle Ableitung</td>
<td>$u = f(x, y, z, \ldots, t)$</td>
<td>$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x, y, z, \ldots, t) - f(x, y, z, \ldots, t)}{\Delta x}$</td>
</tr>
<tr>
<td>Andere Schreibweise</td>
<td>$u = f(t)$</td>
<td>$\frac{du}{dt} = \frac{d}{dt} u = \frac{d}{dt} f(t)$</td>
</tr>
<tr>
<td>Konstanter Faktor</td>
<td>$u = f(x), c = \text{const}$</td>
<td>$\frac{d}{dx} c u = c \frac{du}{dx}$</td>
</tr>
<tr>
<td>Summenregel</td>
<td>$u = f(t), v = g(t)$</td>
<td>$\frac{d}{dt} (u + v) = \frac{du}{dt} + \frac{dv}{dt}$</td>
</tr>
<tr>
<td>Produktregel</td>
<td>$u = f(t), v = g(t)$</td>
<td>$\frac{d}{dt} (uv) = u \frac{dv}{dt} + v \frac{du}{dt}$</td>
</tr>
<tr>
<td>Bruch</td>
<td>$u = f(t), v = g(t)$</td>
<td>$\frac{d}{dt} \left(\frac{u}{v} \right) = \frac{u \frac{dv}{dt} - v \frac{du}{dt}}{v^2}$</td>
</tr>
<tr>
<td>Kettenregel</td>
<td>$u = f(v), v = g(t)$</td>
<td>$\frac{df(g(t))}{dt} = \frac{df}{dv} \frac{dv}{dt} = \frac{df(v)}{dv} \frac{dg(t)}{dt}$</td>
</tr>
<tr>
<td>logarithmische Ableitung</td>
<td>$u = f(x)$</td>
<td>$\frac{d \ln u}{dx} = \frac{du}{dx} \frac{dx}{dy}$</td>
</tr>
</tbody>
</table>

Tabelle E.1.: Differentiationsregeln
E.2. Differentiation einfacher Funktionen

<table>
<thead>
<tr>
<th>Funktion</th>
<th>n-te Ableitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^n</td>
<td>$m(m-1)(m-2)\ldots(m-n+1)x^{m-n}$ bei ganzzahligem m und n und $m > n$ ist die n-te Ableitung null</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$(-1)^{n-1}(n-1)! x^{-n}$</td>
</tr>
<tr>
<td>$\log_a(x)$</td>
<td>$(-1)^{n-1} \frac{(n-1)!}{\ln a} x^{-n}$</td>
</tr>
<tr>
<td>e^{kx}</td>
<td>$k^n e^{kx}$</td>
</tr>
<tr>
<td>a^{kx}</td>
<td>$(k \ln a)^n a^{kx}$</td>
</tr>
<tr>
<td>$\sin(kx)$</td>
<td>$k^n \sin \left(kx + \frac{n\pi}{2}\right)$</td>
</tr>
<tr>
<td>$\cos(kx)$</td>
<td>$k^n \cos \left(kx + \frac{n\pi}{2}\right)$</td>
</tr>
</tbody>
</table>

Tabelle E.2.: Ableitung einiger Funktionen

Beispiel:

$y = (5x^2 - 3x + 2)^6x$

soll differenziert werden. Wir verwenden die logarithmische Ableitung.

$$\ln(y) = 6x \ln(5x^2 - 3x + 2) \quad | \frac{d}{dx}$$

$$\frac{d}{dx} (\ln(y)) = \frac{d}{dx} \left(6x \ln(5x^2 - 3x + 2) \right) \quad | \text{ableiten, Produktregel rechts}$$

$$\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{d(\ln(5x^2 - 3x + 2))}{dx} \quad | \text{Kettenregel ganz rechts}$$

$$\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{1}{5x^2 - 3x + 2} d(5x^2 - 3x + 2) \quad | \frac{d}{dx}$$

$$\frac{y'}{y} = 6 \ln(5x^2 - 3x + 2) + 6x \frac{1}{5x^2 - 3x + 2} (10x - 3) \quad | \ast y$$

$$\frac{dy}{dx} = \frac{y'}{y} = 6y \ln(5x^2 - 3x + 2) + 6yx \frac{10x - 3}{5x^2 - 3x + 2} \quad | y \text{ einsetzen}$$

$$y' = 6(5x^2 - 3x + 2)^6x \ln(5x^2 - 3x + 2) + 6(5x^2 - 3x + 2)^6x \frac{10x - 3}{5x^2 - 3x + 2}$$
\[y' = 6(5x^2 - 3x + 2)^6 \left[\ln(5x^2 - 3x + 2) + \frac{10x - 3}{5x^2 - 3x + 2} \right] \]

E.3. Taylorreihe und Reihen

Definition

\[f(x) = f(a) + \frac{x-a}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \ldots + \frac{(x-a)^n}{n!} f^{(n)}(a) + \ldots \]

andere Schreibweise

\[f(x + \Delta x) = f(x) + \Delta x \frac{f'(x)}{1!} + \Delta x^2 \frac{f''(x)}{2!} + \ldots + \frac{(\Delta x)^n}{n!} f^{(n)}(x) + \ldots \]

Beispiel

\[f(x + \Delta x) = \sin(x + \Delta x) = \sin(x) + \frac{\Delta x}{1!} \cos(x) + \frac{(\Delta x)^2}{2!} f''(x) + \ldots + (-1)^n \frac{(\Delta x)^{2n+1}}{(2n+1)!} \cos(x) + \ldots \]

Spezialfall: x = 0

\[\sin(\Delta x) = \Delta x - \frac{1}{3!}(\Delta x)^5 + \frac{1}{3!}(\Delta x)^5 + \ldots \]

\[+ (-1)^n \frac{(\Delta x)^{2n+1}}{(2n+1)!} + \ldots \]
E.4. Einige Reihen

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Potenzreihe</th>
<th>Konvergenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1 \pm x)^m$</td>
<td>$1 \pm m x + \frac{m(m-1)}{2!} x^2 + \frac{m(m-1)(m-2)}{3!} x^3 + \ldots + \frac{m(m-1)\ldots(m-n+1)}{n!} x^n + \ldots$</td>
<td>$</td>
</tr>
<tr>
<td>$\sin(x + \Delta x)$</td>
<td>$\sin(x) + \frac{\Delta x}{1!} \cos(x) + \frac{(\Delta x)^2}{2!} f''(x) + \ldots + \frac{(\Delta x)^n}{(n!)!} \sin(x + \frac{\pi}{2}) + \ldots$</td>
<td>$</td>
</tr>
<tr>
<td>$\cos(x + \Delta x)$</td>
<td>$\cos(x) - \Delta x \sin(x) - \frac{\Delta x^2 \cos(x)}{2!} + \frac{\Delta x^3 \sin(x)}{3!} + \ldots + \frac{\Delta x^n \cos(x + \frac{\pi}{2})}{n!} + \ldots$</td>
<td>$</td>
</tr>
<tr>
<td>$\tan x$</td>
<td>$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \ldots$</td>
<td>$</td>
</tr>
<tr>
<td>$\cot x$</td>
<td>$\frac{x}{3} - \left[\frac{x}{3} + \frac{x^3}{45} + \frac{x^5}{945} + \frac{x^7}{2025} + \ldots \right]$</td>
<td>$0 <</td>
</tr>
<tr>
<td>e^x</td>
<td>$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots$</td>
<td>$</td>
</tr>
<tr>
<td>$a^x = e^{x \ln a}$</td>
<td>$1 + \frac{x \ln a}{1!} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \frac{(x \ln a)^4}{4!} + \ldots$</td>
<td>$</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$2 \left[\frac{x}{x+1} + \frac{(x-1)^2}{3(x+1)^3} + \frac{(x-1)^3}{5(x+1)^5} + \ldots \right]$ $+ \frac{(x-1)^{2n+1}}{(2n+1)(x+1)^{2n+1}} + \ldots$</td>
<td>$x > 0$</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$(x - 1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \ldots + (-1)^{n+1} \frac{(x-1)^n}{n} + \ldots$</td>
<td>$0 < x \leq 2$</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$\frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x} \right)^2 + \frac{1}{3} \left(\frac{x-1}{x} \right)^3 + \ldots + \frac{1}{n} \left(\frac{x-1}{x} \right)^n + \ldots$</td>
<td>$x > \frac{1}{2}$</td>
</tr>
<tr>
<td>$\ln(1 + x)$</td>
<td>$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots + (-1)^{n+1} \frac{x^n}{n} + \ldots$</td>
<td>$-1 < x \leq 1$</td>
</tr>
<tr>
<td>$\arcsin x$</td>
<td>$x + \frac{x^3}{3 \cdot 3} + \frac{1 \cdot 3 x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \ldots$</td>
<td>$</td>
</tr>
<tr>
<td>$\arccos x$</td>
<td>$\frac{\pi}{2} - \left[x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3 x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \ldots \right]$</td>
<td>$</td>
</tr>
<tr>
<td>$\arctan x$</td>
<td>$x - \frac{x^3}{3} + \frac{x^5}{5} - \ldots + (-1)^{n+1} \frac{x^{2n+1}}{2n+1} + \ldots$</td>
<td>$</td>
</tr>
</tbody>
</table>

Tabelle E.3.: Reihenentwicklungen
E.5. Ableitungen in drei Dimensionen

E.5.1. Gradient in kartesischen Koordinaten

Wenn wir eine Funktion \(y = f(x) \) als Höhenprofil in einer zweidimensionalen Landschaft auffassen, dann ist
\[
\frac{df(x)}{dx}
\]
die Steigung dieses Profiles an der Stelle \(x \). \(f(x) \) ist die Höhenangabe über einer eindimensionalen Grundfläche.
Wir können eine Funktion \(f(x,y) \) als Höhenangabe über einer zweidimensionalen Grundfläche betrachten.

Abbildung E.1.: Gradient als Richtung der stärksten Steigung

Die Funktion \textbf{Gradient} berechnet das stärkste Gefälle einer Höhenlandschaft über einer zweidimensionalen Ebene. Sie ist definiert:
\[
\text{grad } f = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y} \right)
\]
Eine skalare Funktion \(f(x,y,z) \) definiert eine „Höhenlandschaft“ über einer dreidimensionalen Grundfläche. Sie kann nicht mit einfachen Mitteln visualisiert werden. Hier ist die Definition
Gradient einer skalaren Funktion $f(x, y, z)$ von drei Variablen

\[\text{grad } f = \begin{pmatrix} \frac{\partial f(x,y,z)}{\partial x} \\ \frac{\partial f(x,y,z)}{\partial y} \\ \frac{\partial f(x,y,z)}{\partial z} \end{pmatrix} \]

E.5.2. Divergenz in kartesischen Koordinaten

Wir betrachten eine Vektorfunktion

\[f(x, y) = \begin{pmatrix} f_x(x, y) \\ f_y(x, y) \end{pmatrix} \]

Abbildung E.2.: Vektorfeld mit Umrandung

Wenn wir die Umrandung betrachten, dann sehen wir, dass netto etwas aus ihr herausfliesst. In die x-Richtung heißt das, dass

\[F_x \cdot dx = f_x(x + dx, y) - f_x(x, y) \]

fliesst.

In die y-Richtung müssen wir die schräg liegenden Vektoren aufteilen. Die x-Komponente, $f_x(x, y)$ und $f_x(x, y + dy)$ ist parallel zur oberen und unteren Umrandung. Sie trägt nichts zum Fluss bei. Also gilt auch für die y-Richtung

\[F_y \cdot dy = f_y(x, y + dy) - f_y(x, y) \]

Die Größe $F = F_x + F_y$ nennen wir Divergenz oder Quellstärke. Sie ist also
Divergenz oder Quellstärke in 2 Dimensionen

\[\text{div } \mathbf{f}(x, y) = \frac{\partial f_x(x, y)}{\partial x} + \frac{\partial f_y(x, y)}{\partial y} \]

Eine analoge Überlegung kann man sich in drei Dimensionen machen. Die Vektorfunktion ist dann

\[\mathbf{f}(x, y, z) = \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix} \]

Wir definieren

Divergenz einer Vektorfunktion \(\mathbf{f}(x, y) \) in drei Dimensionen

\[\text{div } \mathbf{f}(x, y, z) = \frac{\partial f_x(x, y, z)}{\partial x} + \frac{\partial f_y(x, y, z)}{\partial y} + \frac{\partial f_z(x, y, z)}{\partial z} \]

E.5.3. Rotation in kartesischen Koordinaten

Wir betrachten wieder eine zweidimensionale Vektorfunktion

\[\mathbf{f}(x, y) = \begin{pmatrix} f_x(x, y) \\ f_y(x, y) \end{pmatrix} \]

Wir nehmen nun an, dass die durch \(\mathbf{f}(x, y) \) definierten Strömungen den rechtseckigen schwimmenden Klotz beeinflussen. So wie die Vektoren gezeichnet sind, wird er sich drehen. Seine Drehachse zeigt aus der Zeichenebene heraus, also die \(z \)-Richtung. Die Drehung hat etwas zu tun mit den Größen.

Abbildung E.3.: Drehung eines schwimmenden Klotzes, Rotation
\[R_y dx = f_y(x + dx, y) - f_y(x, y) \]

und

\[R_x dy = -(f_x(x, y + dy) - f_x(x, y)) \]

Um bei gleicher Drehrichtung (positiv ist im Gegenuhrzeigersinn) eine positive Größe zu haben, wird bei \(R_x \) ein „−“ eingefügt. Die Stärke der Drehung ist also

\[
\text{Rotation in zwei Dimensionen} \\
R = \frac{\partial f_y(x, y)}{\partial x} - \frac{\partial f_x(x, y)}{\partial y}
\]

Für eine dreidimensionale Vektorfunktion

\[
f(x, y, z) = \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix}
\]

cann man sich überlegen, dass die gleichen Überlegungen wie für die \(xy \)-Ebene auch für die \(xz \)-Ebene (Rotation um \(y \)) und die \(yz \)-Ebene (Rotation um \(x \)) gelten. Wir definieren also

\[
\text{Rotation in drei Dimensionen} \\
\text{rot } f(x, y, z) = \begin{pmatrix} \frac{\partial f_z(x, y, z)}{\partial y} - \frac{\partial f_y(x, y, z)}{\partial z} \\ \frac{\partial f_x(x, y, z)}{\partial z} - \frac{\partial f_z(x, y, z)}{\partial x} \\ \frac{\partial f_y(x, y, z)}{\partial x} - \frac{\partial f_x(x, y, z)}{\partial y} \end{pmatrix}
\]

Man kann sich die Berechnung gut merken mit

\[
\text{Gedankenstütze für Rotation} \\
\text{rot } f(x, y, z) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix}
\]
F. Rechnen mit Integralen

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM00, pp. 447])

Konstanter Faktor
\[\int a f(x) \, dx = a \int f(x) \, dx \]

Integral einer Summe oder Differenz
\[\int [u(x) + v(x) - w(x)] \, dx = \int u(x) \, dx + \int v(x) \, dx - \int w(x) \, dx \]

Substitutionsmethode
Sei \(y = \phi(x) \)
\[\int f(y) \, dy = \int f[\phi(x)]\phi'(x) \, dx \]

Partielle Integration der Kettenregel der Differentiation
\[\int u(x)v'(x) \, dx = u(x)v(x) - \int v(x)u'(x) \, dx \]
\[\int \frac{f'(x)}{f(x)} \, dx = \int \frac{df(x)}{f(x)} = \ln|f(x)| + C \]
F.1. Unbestimmte Integrale

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM00, pp. 445])

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^n</td>
<td>$\int x^n , dx = \frac{x^{n+1}}{n+1}$ \quad $n \neq -1$</td>
</tr>
<tr>
<td>$\frac{1}{x}$</td>
<td>$\int \frac{dx}{x} = \ln</td>
</tr>
<tr>
<td>$\sin(x)$</td>
<td>$\int \sin(x) , dx = -\cos(x)$</td>
</tr>
<tr>
<td>$\cos(x)$</td>
<td>$\int \cos(x) , dx = \sin(x)$</td>
</tr>
<tr>
<td>$\tan(x)$</td>
<td>$\int \tan(x) , dx = -\ln</td>
</tr>
<tr>
<td>$\cot(x)$</td>
<td>$\int \cot(x) , dx = \ln</td>
</tr>
<tr>
<td>$\frac{1}{\cos^2(x)}$</td>
<td>$\int \frac{dx}{\cos^2(x)} = \tan(x)$</td>
</tr>
<tr>
<td>$\frac{1}{\sin^2(x)}$</td>
<td>$\int \frac{dx}{\sin^2(x)} = -\cot(x)$</td>
</tr>
<tr>
<td>$\frac{1}{a^2+x^2}$</td>
<td>$\int \frac{dx}{a^2+x^2} = \frac{1}{a} \arctan \frac{x}{a}$</td>
</tr>
<tr>
<td>e^x</td>
<td>$\int e^x , dx = e^x$</td>
</tr>
<tr>
<td>a^x</td>
<td>$\int a^x , dx = \frac{a^x}{\ln a}$</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$\int \ln x , dx = x \ln x - x$</td>
</tr>
<tr>
<td>$\sinh x$</td>
<td>$\int \sinh x , dx = \cosh x$</td>
</tr>
<tr>
<td>$\cosh x$</td>
<td>$\int \cosh x , dx = \sinh x$</td>
</tr>
<tr>
<td>$\tanh x$</td>
<td>$\int \tanh x , dx = \ln</td>
</tr>
<tr>
<td>$\coth x$</td>
<td>$\int \coth x , dx = \ln</td>
</tr>
<tr>
<td>$\frac{1}{\cosh^2 x}$</td>
<td>$\int \frac{dx}{\cosh^2 x} = \tanh x$</td>
</tr>
<tr>
<td>$\frac{1}{\sinh^2 x}$</td>
<td>$\int \frac{dx}{\sinh^2 x} = -\coth x$</td>
</tr>
<tr>
<td>$\frac{1}{\sqrt{a^2-x^2}}$</td>
<td>$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a}$</td>
</tr>
</tbody>
</table>

Tabelle F.1.: Unbestimmte Integrale
F.1.1. Bestimmte Integrale und Integrale mit variabler oberer Grenze

Wenn für eine Funktion \(f(x) \) die Stammfunktion

\[
\tilde{F}(x) = \int f(x) dx + C
\]

ist, haben bestimmte Integrale der Funktion \(f(x) \) die Form

\[
F_{a,b} = \int_a^b f(x) dx = F(x)|_a^b = F(b) - F(a)
\]

Der Name der Variablen im bestimmten Integral sind irrelevant

\[
F_{a,b} = \int_a^b f(x) dx = \int_a^b f(\zeta) d\zeta = \int_a^b f(\Xi) d\Xi = F(\Xi)|_a^b = F(b) - F(a)
\]

Wir können nun die obere Grenze variabel machen. Wichtig ist, dass die Variable im Integral eine andere Variable ist wie in der Grenze

\[
\int_a^x f(\zeta) d\zeta = F(\zeta)|_a^x = F(x) - F(a)
\]

Wenn \(F(x) \) nach \(x \) abgeleitet wird, erhält man wieder \(f(x) \).

\[
\frac{d}{dx} \int_a^x f(\zeta) d\zeta = \frac{d}{dx} (F(x) - F(a)) = \frac{dF(x)}{dx} = f(x)
\]

Wenn die Variable \(x \) die untere Grenze ist und die obere Grenze fest ist, \(b \), dann gilt

\[
\int_x^b f(\xi) d\xi = F(\xi)|_x^b = F(b) - F(x)
\]

und

\[
\frac{d}{dx} \int_x^b f(\zeta) d\zeta = \frac{d}{dx} (F(b) - F(x)) = -\frac{dF(x)}{dx} = -f(x)
\]

Ist die obere Grenze eine Funktion \(g(x) \), gilt

\[
\frac{d}{dx} \int_a^g f(\zeta) d\zeta = \frac{d}{dx} (F(g(x)) - F(a)) = -\frac{dF(g(x))}{dx} = f(g(x)) \frac{dg(x)}{dx}
\]

Dies ist nichts anderes als die Kettenregel der Differentiation (Siehe Tabelle E.1).
F.2. Berechnung von Linienintegralen

Gegeben sei ein Vektorfeld \(\mathbf{F}(\mathbf{r}) \). Zu berechnen sei das Linienintegral

\[
\int_{r_1, b}^{r_2} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}
\]

zwischen den Punkten \(r_1 \) und \(r_2 \) entlang der Bahn \(b \). Wir nehmen an, dass die Bahn \(b \) mit der Bahnlänge \(s \) parametrisiert sei. Dann ist \(\mathbf{F}(\mathbf{r}) = \mathbf{F}(\mathbf{r}(s)) \) und der Tangenteneinheitsvektor ist

\[
\tau = \frac{d\mathbf{r}}{ds}
\]

Mit \(\mathbf{r}(s_1) = r_1 \) und \(\mathbf{r}(s_2) = r_2 \) ist das Linienintegral

\[
\int_{r_1, b}^{r_2} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{s_1}^{s_2} \mathbf{F}(\mathbf{r}(s)) \cdot \tau(s) ds \quad \text{(F.2.1)}
\]
G. Umrechnungen zwischen kartesischen, sphärischen und zylindrischen Koordinatensystemen

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM00, pp. 218])
(Siehe Bronstein, Taschenbuch der Mathematik [BSMM00, pp. 667])

Definitionen

Kartesisches System

\[\mathbf{V}_c = V_x \mathbf{e}_x + V_y \mathbf{e}_y + V_z \mathbf{e}_z \]

Sphärisches System

\[\mathbf{V}_s = V_r \mathbf{e}_r + V_\phi \mathbf{e}_\phi + V_\theta \mathbf{e}_\theta \]

Zylindrisches System

\[\mathbf{V}_z = V_r \mathbf{e}_r + V_\phi \mathbf{e}_\phi + V_z \mathbf{e}_z \]

Die Transformation zwischen den Koordinatensystemen läuft auf eine allgemeine Drehung der Koordinaten im Raum hinaus.

G.1. Vom kartesischen ins sphärische System

\[
\begin{align*}
V_r &= V_x \sin \theta \cos \phi + V_y \sin \theta \sin \phi + V_z \cos \theta \\
V_\theta &= V_x \cos \theta \cos \phi + V_y \cos \theta \sin \phi - V_z \sin \theta \\
V_\phi &= -V_z \sin \phi + V_y \cos \phi
\end{align*}
\]

(G.1.1) \hspace{1cm} (G.1.2) \hspace{1cm} (G.1.3) \hspace{1cm} (G.1.4)

G.2. Vom sphärischen ins kartesische System

\[
\begin{align*}
V_x &= V_r \sin \theta \cos \phi + V_\theta \cos \theta \cos \phi - V_\phi \sin \phi \\
V_y &= V_r \sin \theta \sin \phi + V_\theta \cos \theta \sin \phi + V_\phi \cos \phi \\
V_z &= V_r \cos \theta - V_\theta \sin \theta
\end{align*}
\]

(G.2.1) \hspace{1cm} (G.2.2) \hspace{1cm} (G.2.3) \hspace{1cm} (G.2.4)

G.3. Vom kartesischen ins zylindrische System

\[
\begin{align*}
V_\rho &= V_x \cos \phi + V_y \sin \phi \\
V_\phi &= -V_z \sin \phi + V_y \cos \phi \\
V_z &= V_z
\end{align*}
\]

(G.3.1) \hspace{1cm} (G.3.2) \hspace{1cm} (G.3.3) \hspace{1cm} (G.3.4)
G.4. Vom zylindrischen ins kartesische System

Abbildung G.2.: Umrechnung der Koordinaten

\[V_x = V_\rho \cos \phi - V_\phi \sin \phi \]
\[V_y = V_\rho \sin \phi + V_\phi \cos \phi \]
\[V_z = V_z \]
\[(G.4.1) \]
\[(G.4.2) \]
\[(G.4.3) \]
\[(G.4.4) \]

G.5. Vom sphärischen ins zylindrische System

\[V_\rho = V_r \sin \theta + V_\theta \cos \theta \]
\[V_\phi = V_\phi \]
\[V_z = V_r \cos \theta - V_\theta \sin \theta \]
\[(G.5.1) \]
\[(G.5.2) \]
\[(G.5.3) \]
\[(G.5.4) \]

G.6. Vom zylindrischen ins sphärische System

\[V_r = V_\rho \sin \theta + V_z \cos \theta \]
\[V_\theta = V_\rho \cos \theta - V_z \sin \theta \]
\[V_\phi = V_\phi \]
\[(G.6.1) \]
\[(G.6.2) \]
\[(G.6.3) \]
\[(G.6.4) \]
H. Geschwindigkeiten und Beschleunigungen in Kugelkoordinaten

Wir betrachten die Definition der Kugelkoordinaten

Abbildung H.1.: Mitgeführtes orthogonales Koordinatensystem und kartesisches Koordinatensystem

Gegeben sind einerseits die kartesischen Koordinaten x, y und z, andererseits die Kugelkoordinaten r, ϕ, und θ. Am Punkt P definieren wir ein mitgeführtes kartesisches Koordinatensystem. Seine Orientierung hängt also von der Zeit ab! Beide Koordinatensysteme sind jeweils durch ein Tripel von Einheitsvektoren gegeben, die jeweils gegenseitig orthogonal sind. Die Einheitsvektoren sind im kartesischen System e_x, e_y und e_z und im mitgeführten kartesischen System e_r, e_ϕ und e_θ.
Wir betrachten zuerst die xy-Ebene. Die Projektion des Ortsvektors \mathbf{r} auf diese Ebene nennen wir ρ. Wir erhalten also die Beziehungen (Einheitsvektoren!)

\[
\mathbf{e}_\phi = -\sin(\phi)\mathbf{e}_x + \cos(\phi)\mathbf{e}_y \quad (H.0.1)
\]
\[
\rho = \cos(\phi)\mathbf{e}_x + \sin(\phi)\mathbf{e}_y \quad (H.0.2)
\]

Wir betrachten nun die Ebene gebildet aus den Vektoren ρ und \mathbf{e}_z. In dieser Darstellung ist \mathbf{e}_r radial und \mathbf{e}_θ zeigt in die Richtung der positiven θ-Koordinate. Dadurch ist auch \mathbf{e}_r, \mathbf{e}_θ und \mathbf{e}_ϕ in dieser Reihenfolge ein orthogonales Rechtssystem. Aus der Abbildung liest man

\[
\mathbf{e}_r = \cos(\theta)\mathbf{e}_z + \sin(\theta)\rho \quad (H.0.3)
\]
\[
= \cos(\theta)\mathbf{e}_z + \sin(\theta) (\cos(\phi)\mathbf{e}_x + \sin(\phi)\mathbf{e}_y)
\]
\[
= \sin(\theta) \cos(\phi)\mathbf{e}_x + \sin(\theta) \sin(\phi)\mathbf{e}_y + \cos(\theta)\mathbf{e}_z
\]

\[
\mathbf{e}_\theta = -\sin(\theta)\mathbf{e}_z + \cos(\theta)\rho \quad (H.0.4)
\]
\[
= -\sin(\theta)\mathbf{e}_z + \cos(\theta) (\cos(\phi)\mathbf{e}_x + \sin(\phi)\mathbf{e}_y)
\]
\[
= \cos(\theta) \cos(\phi)\mathbf{e}_x + \cos(\theta) \sin(\phi)\mathbf{e}_y - \sin(\theta)\mathbf{e}_z
\]
Dabei merken wir uns, dass θ und φ Funktionen der Zeit sind. Zusammenfassend erhalten wir

\[e_r = \sin(\theta) \cos(\phi) e_x + \sin(\theta) \sin(\phi) e_y + \cos(\theta) e_z \quad (H.0.5) \]
\[e_\theta = \cos(\theta) \cos(\phi) e_x + \cos(\theta) \sin(\phi) e_y - \sin(\theta) e_z \quad (H.0.6) \]
\[e_\phi = -\sin(\phi) e_x + \cos(\phi) e_y \quad (H.0.7) \]

Wir wissen, dass \(e_x, e_y \) und \(e_z \) ein orthogonales Koordinatensystem ist. Also ist insbesondere

\[1 = e_x \cdot e_x = e_y \cdot e_y = e_z \cdot e_z \quad \text{und} \quad 0 = e_x \cdot e_y = e_y \cdot e_x = e_y \cdot e_z = e_z \cdot e_x. \]

Wenn wir mit diesem Wissen \(e_r \cdot e_r, e_\theta \cdot e_\theta \) und \(e_\phi \cdot e_\phi \) berechnen, können wir zeigen, dass auch das Koordinatensystem \(e_r, e_\theta \) und \(e_\phi \) ein orthogonales Koordinatensystem ist.

Wenn wir dieses Gleichungssystem nach \(e_x, e_y \) und \(e_z \) auflösen, erhalten wir die Umkehrrelationen

\[e_x = \sin(\theta) \cos(\phi) e_r + \cos(\theta) \cos(\phi) e_\theta - \sin(\phi) e_\phi \quad (H.0.8) \]
\[e_y = \sin(\theta) \sin(\phi) e_r + \cos(\theta) \sin(\phi) e_\theta + \cos(\phi) e_\phi \quad (H.0.9) \]
\[e_z = \cos(\theta) e_r - \sin(\theta) e_\theta \quad (H.0.10) \]

Durch Rückeinsetzen kann man sich überzeugen, dass dies konsistente Formulierungen sind.

H.1. Geschwindigkeiten

Wir wissen, dass in kartesischen Koordinaten

\[r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x e_x + y e_y + z e_z \quad (H.1.1) \]

der Ortsvektor ist. Die Geschwindigkeit ist dann

\[v = \frac{dr}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \dot{x} e_x + \dot{y} e_y + \dot{z} e_z \quad (H.1.2) \]

Wir verwenden die Beziehungen

\[x = r \sin(\theta) \cos(\phi) \quad (H.1.3) \]
\[y = r \sin(\theta) \sin(\phi) \quad (H.1.4) \]
\[z = r \cos(\theta) \quad (H.1.5) \]

und leiten sie ab. Wir erhalten

\[\dot{x} = \dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \sin(\phi) \dot{\phi} \quad (H.1.6) \]
\[\dot{y} = \dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\theta} + r \sin(\theta) \cos(\phi) \dot{\phi} \quad (H.1.7) \]
\[\dot{z} = \dot{r} \cos(\theta) - r \sin(\theta) \dot{\theta} \quad (H.1.8) \]
Wir setzen in die Gleichung H.1.2 die Gleichungen H.0.8, H.0.9, H.0.10, H.1.6, H.1.7 und H.1.8 ein und ordnen nach \(e_r, e_\theta \) und \(e_\phi \).

\[
\bm{v} = \dot{x} \bm{e}_x + \dot{y} \bm{e}_y + \dot{z} \bm{e}_z
\]
(H.1.9)

\[
\bm{v} = \dot{x} \left[\sin(\theta) \cos(\phi) \bm{e}_r + \cos(\theta) \cos(\phi) \bm{e}_\theta - \sin(\phi) \bm{e}_\phi \right] + \dot{y} \left[\sin(\theta) \sin(\phi) \bm{e}_r + \cos(\theta) \sin(\phi) \bm{e}_\theta + \cos(\phi) \bm{e}_\phi \right] + \dot{z} \left[\cos(\theta) \bm{e}_r - \sin(\theta) \bm{e}_\theta \right]
\]

= \left[\dot{x} \sin(\theta) \cos(\phi) + \dot{y} \sin(\theta) \sin(\phi) + \dot{z} \cos(\theta) \right] \bm{e}_r
+ \left[\dot{x} \cos(\theta) \cos(\phi) + \dot{y} \cos(\theta) \sin(\phi) - \dot{z} \sin(\theta) \right] \bm{e}_\theta
+ \left[-\dot{x} \sin(\phi) + \dot{y} \cos(\phi) \right] \bm{e}_\phi
\]

Der Übersichtlichkeit halber berechnen wir nun die drei Komponenten \(e_r, e_\theta \) und \(e_\phi \) getrennt. Wir beginnen mit \(e_r \).

\[
v_r = \dot{x} \sin(\theta) \cos(\phi) + \dot{y} \sin(\theta) \sin(\phi) + \dot{z} \cos(\theta)
\]
(H.1.10)

= \left[\dot{r} \sin(\theta) \cos(\phi) + \dot{r} \cos(\theta) \cos(\phi) \hat{\theta} - \r \sin(\theta) \sin(\phi) \hat{\phi} \right] \sin(\theta) \cos(\phi)
+ \left[\dot{r} \sin(\theta) \sin(\phi) + \dot{r} \cos(\theta) \sin(\phi) \hat{\theta} + \r \sin(\theta) \cos(\phi) \hat{\phi} \right] \sin(\theta) \sin(\phi)
+ \left[\dot{r} \cos(\theta) - \r \sin(\theta) \hat{\theta} \right] \cos(\theta)
\]

\[
= \dot{r} \left[\sin(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \sin(\theta) \sin(\theta) \sin(\phi) + \cos(\theta) \cos(\theta) \right]
+ \r \dot{\theta} \left[\cos(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \cos(\theta) \sin(\theta) \sin(\phi) \sin(\phi) - \sin(\theta) \cos(\theta) \right]
+ \r \dot{\phi} \left[-\sin^2(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \sin(\phi) \right]
\]

\[
= \dot{r} \left[\sin^2(\theta) \cos^2(\phi) + \sin^2(\theta) \sin^2(\phi) + \cos^2(\theta) \right]
+ \r \dot{\theta} \left[\cos(\theta) \cos(\phi) \sin(\theta) \cos(\phi) + \cos(\theta) \sin^2(\phi) \sin(\theta) - \sin(\theta) \cos(\theta) \right]
+ \r \dot{\phi} \left[-\sin^2(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \sin(\theta) \sin(\phi) \right]
\]

\[
= \dot{r} \left[\sin^2(\theta) \left(\cos^2(\phi) + \sin^2(\phi) \right) + \cos^2(\theta) \right]
+ \r \dot{\theta} \left[\cos(\theta) \sin(\theta) \left(\cos^2(\phi) + \sin^2(\phi) \right) - \sin(\theta) \cos(\theta) \right]
+ \r \dot{\phi} \left[\sin^2(\theta) + \cos^2(\theta) \right]
\]

Wir fahren mit \(e_\theta \) weiter.
Die Beschleunigung ist in kartesischen Koordinaten

\[v_\theta = \dot{x} \cos(\theta) \cos(\phi) + \dot{y} \cos(\theta) \sin(\phi) - \dot{z} \sin(\theta) \]

\[= \left[\dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \sin(\phi) \dot{\phi} \right] \cos(\theta) \cos(\phi) \]

\[+ \left[\dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\theta} + r \sin(\theta) \cos(\phi) \dot{\phi} \right] \cos(\theta) \sin(\phi) \]

\[- \left[\dot{r} \cos(\theta) - r \sin(\theta) \dot{\theta} \right] \sin(\theta) \]

\[= r \left[\sin(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\theta) \sin(\phi) - \cos(\theta) \sin(\theta) \right] \]

\[+ r \dot{\theta} \left[\cos(\theta) \cos(\phi) \cos(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\theta) \sin(\phi) + \sin(\theta) \sin(\theta) \right] \]

\[+ r \dot{\phi} \left[-r \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\phi) \cos(\phi) \right] \]

\[= r \left[\sin(\theta) \cos(\theta) \cos^2(\phi) + \sin(\theta) \cos(\theta) \sin^2(\phi) - \cos(\theta) \sin(\theta) \right] \]

\[+ r \dot{\theta} \left[\cos^2(\theta) \cos^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\theta) \right] \]

\[+ r \dot{\phi} \left[-r \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\phi) \right] \]

\[= r \left[\sin(\theta) \cos(\theta) - \cos(\theta) \sin(\theta) \right] \]

\[+ r \dot{\theta} \left[\cos^2(\theta) + \sin^2(\theta) \right] \]

Wir schliessen mit \(e_\phi \).

\[v_\phi = - \dot{x} \sin(\phi) + \dot{y} \cos(\phi) \]

\[= - \left[\dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \sin(\phi) \dot{\phi} \right] \sin(\phi) \]

\[+ \left[\dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\theta} + r \sin(\theta) \cos(\phi) \dot{\phi} \right] \cos(\phi) \]

\[= r \left[- \sin(\theta) \cos(\phi) \sin(\phi) + \sin(\theta) \sin(\phi) \cos(\phi) \right] \]

\[+ r \dot{\theta} \left[- \cos(\theta) \cos(\phi) \sin(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) \right] \]

\[+ r \dot{\phi} \left[\sin(\theta) \sin(\phi) \sin(\phi) + \sin(\theta) \cos(\phi) \cos(\phi) \right] \]

\[= r \dot{\phi} \left[\sin(\theta) \sin^2(\phi) + \sin(\theta) \cos^2(\phi) \right] \]

\[= r \sin(\theta) \dot{\phi} \]

Zusammenfassend haben wir

\[\mathbf{v} = v_r e_r + v_\theta e_\theta + v_\phi e_\phi \]

\[= \dot{r} e_r + r \dot{\theta} e_\theta + r \sin(\theta) \dot{\phi} e_\phi \]

H.2. Beschleunigung

Die Beschleunigung ist in kartesischen Koordinaten

\[\mathbf{a} = \frac{d^2 \mathbf{r}}{dt^2} = \begin{pmatrix} \frac{d^2 x}{dt^2} \\ \frac{d^2 y}{dt^2} \\ \frac{d^2 z}{dt^2} \end{pmatrix} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \ddot{x} e_x + \ddot{y} e_y + \ddot{z} e_z \]
Wir verwenden die Beziehungen

\[
x = r \sin(\theta) \cos(\phi) \quad (H.2.2) \\
y = r \sin(\theta) \sin(\phi) \quad (H.2.3) \\
z = r \cos(\theta) \quad (H.2.4)
\]

und leiten sie zweimal ab. Wir erhalten aus

\[
\ddot{x} = \dot{r} \sin(\theta) \cos(\phi) + r \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \sin(\phi) \dot{\phi} \\
\ddot{y} = \dot{r} \sin(\theta) \sin(\phi) + r \cos(\theta) \sin(\phi) \dot{\theta} + r \sin(\theta) \cos(\phi) \dot{\phi} \\
\ddot{z} = \dot{r} \cos(\theta) - r \sin(\theta) \dot{\theta}
\]

die Gleichungen

\[
\ddot{x} = \dot{r} \sin(\theta) \cos(\phi) + \dot{r} \cos(\theta) \cos(\phi) \dot{\theta} - \dot{r} \sin(\theta) \sin(\phi) \dot{\phi} \\
+ \dot{r} \cos(\theta) \cos(\phi) \dot{\theta} - r \sin(\theta) \cos(\phi) \dot{\theta}^2 - r \cos(\theta) \sin(\phi) \dot{\phi} + r \cos(\theta) \cos(\phi) \ddot{\theta} \\
- \dot{r} \sin(\theta) \sin(\phi) \dot{\phi} - r \cos(\theta) \sin(\phi) \dot{\phi} \dot{\theta} - r \sin(\theta) \cos(\phi) \dot{\phi}^2 - r \sin(\theta) \sin(\phi) \ddot{\phi} \\
= \ddot{r} \sin(\theta) \cos(\phi) \\
+ \dot{\theta} [\cos(\theta) \cos(\phi) + \cos(\theta) \cos(\phi)] \\
+ \dot{\phi} [-\sin(\theta) \sin(\phi) - \sin(\theta) \sin(\phi)] \\
+ r \dot{\theta} [-\sin(\theta) \cos(\phi)] \\
+ r \dot{\phi} [-\cos(\theta) \sin(\phi) - \cos(\theta) \sin(\phi)] \\
+ r \dot{\theta} [\cos(\theta) \cos(\phi)] \\
+ r \dot{\phi} [-\sin(\theta) \cos(\phi)] \\
+ r \ddot{\theta} [-\sin(\theta) \sin(\phi)] \\
= \ddot{r} \sin(\theta) \cos(\phi) + 2 \dot{\theta} \cos(\theta) \cos(\phi) - 2 \dot{\phi} \sin(\theta) \sin(\phi) - r \dot{\theta}^2 \sin(\theta) \cos(\phi) \\
- 2 r \dot{\phi} \sin(\theta) \sin(\phi) + r \dot{\theta} \cos(\theta) \cos(\phi) - r \dot{\phi} \sin(\theta) \cos(\phi) - r \ddot{\phi} \sin(\theta) \sin(\phi)
\]

und

\[
\]
\[\ddot{y} = \dot{r} \sin(\theta) \sin(\phi) + \dot{r} \cos(\theta) \sin(\phi) \dot{\theta} + \dot{r} \sin(\theta) \cos(\phi) \dot{\phi} \]
\[+ \dot{r} \cos(\theta) \sin(\phi) \dot{\theta} - \dot{r} \sin(\theta) \sin(\phi) \dot{\phi}^2 + r \cos(\theta) \cos(\phi) \dot{\theta} \dot{\phi} + r \cos(\theta) \sin(\phi) \ddot{\theta} \]
\[+ \dot{r} \sin(\theta) \cos(\phi) \dot{\phi} + r \cos(\theta) \cos(\phi) \dot{\theta} \dot{\phi} - r \sin(\theta) \sin(\phi) \dot{\phi}^2 + r \sin(\theta) \cos(\phi) \ddot{\phi} \]
\[= \dot{r} \sin(\theta) \sin(\phi) + \dot{r} \dot{\theta} [\cos(\theta) \sin(\phi) + \cos(\theta) \sin(\phi)] \]
\[+ r \dot{\phi} [\sin(\theta) \cos(\phi) + \sin(\theta) \cos(\phi)] \]
\[+ r \dot{\phi}^2 \sin(\theta) \sin(\phi) \]
\[+ r \dot{\phi} \dot{\theta} [\cos(\theta) \cos(\phi) + \cos(\theta) \cos(\phi)] \]
\[+ r \cos(\theta) \sin(\phi) \ddot{\theta} \]
\[+ r \dot{\theta}^2 \sin(\theta) \sin(\phi) \]
\[+ r \sin(\theta) \cos(\phi) \ddot{\phi} \]
\[= \dot{r} \sin(\theta) \sin(\phi) + 2 \dot{r} \dot{\theta} \cos(\theta) \sin(\phi) + 2 \dot{r} \dot{\phi} \sin(\theta) \cos(\phi) - r \dot{\phi}^2 \sin(\theta) \sin(\phi) \]
\[+ 2 r \dot{\phi} \dot{\theta} \cos(\theta) \cos(\phi) + r \dot{\theta} \cos(\theta) \sin(\phi) - r \ddot{\phi} \sin(\theta) \sin(\phi) + r \ddot{\phi} \sin(\theta) \cos(\phi) \]
\[sowie \]
\[\ddot{z} = \dot{r} \cos(\theta) - \dot{r} \sin(\theta) \dot{\theta} \]
\[= \ddot{r} \cos(\theta) - 2 \dot{r} \sin(\theta) \dot{\theta} - r \cos(\theta) \dot{\phi} - r \sin(\theta) \ddot{\phi} \]

Wir setzen in die Gleichung H.2.1 die Gleichungen H.0.8, H.0.9, H.0.10, H.2.5, H.2.6 und H.2.7 ein und ordnen nach \(e_r\), \(e_\theta\) und \(e_\phi\).

\[a = \ddot{x} e_x + \dot{y} e_y + \ddot{z} e_z \]
\[= \ddot{x} [\sin(\theta) \cos(\phi) e_r + \cos(\theta) \cos(\phi) e_\theta - \sin(\phi) e_\phi] \]
\[+ \ddot{y} [\sin(\theta) \sin(\phi) e_r + \cos(\theta) \sin(\phi) e_\theta + \cos(\phi) e_\phi] \]
\[+ \ddot{z} [\cos(\theta) e_r - \sin(\theta) e_\theta] \]
\[= \ddot{x} [\sin(\theta) \cos(\phi) + \dot{y} \sin(\theta) \sin(\phi) + \ddot{z} \cos(\phi)] e_r \]
\[+ \ddot{x} [\cos(\theta) \cos(\phi) + \dot{y} \cos(\theta) \sin(\phi) - \ddot{z} \sin(\phi)] e_\theta \]
\[+ \ddot{x} [\dot{y} \sin(\phi) + \ddot{y} \cos(\phi)] e_\phi \]

Der Übersichtlichkeit halber berechnen wir nun die drei Komponenten \(e_r\), \(e_\theta\) und \(e_\phi\) getrennt. Wir beginnen mit \(e_r\).
Geschwindigkeiten und Beschleunigungen in Kugelkoordinaten

\[a_r = \ddot{x}\sin(\theta)\cos(\phi) + \ddot{y}\sin(\theta)\sin(\phi) + \ddot{z}\cos(\theta) \]

(H.2.9)

\[= \left[\dot{r}\sin(\theta)\cos(\phi) + 2\dot{r}\dot{\theta}\cos(\theta)\cos(\phi) - 2\dot{r}\dot{\phi}\sin(\theta)\sin(\phi) - r\ddot{\theta}\sin(\theta)\cos(\phi) \right. \]

\[- 2r\dot{\theta}\dot{\phi}\cos(\theta)\sin(\phi) + r\dddot{\theta}\cos(\theta) \]

\[- r\dddot{\phi}\sin(\theta)\cos(\phi) - r\dddot{\phi}\sin(\theta)\sin(\phi) \right] \sin(\theta) \cos(\phi) \]

\[+ \left[\dot{r}\sin(\theta)\sin(\phi) + 2\dot{r}\dot{\theta}\cos(\theta)\sin(\phi) + 2\dot{r}\dot{\phi}\sin(\theta)\cos(\phi) \right. \]

\[- r\dddot{\theta}\sin(\theta)\sin(\phi) + 2r\dddot{\phi}\cos(\theta)\cos(\phi) \]

\[+ r\cos(\theta)\sin(\phi)\dddot{\theta} - r\dddot{\phi}\sin(\theta)\sin(\phi) + r\dddot{\phi}\sin(\theta)\cos(\phi) \right] \sin(\theta) \sin(\phi) \]

\[+ \left[\dddot{r}\cos(\theta) - 2\dddot{r}\sin(\theta) - r\dddot{\theta}\sin(\theta) \right] \cos(\theta) \]

\[= \dddot{r}\left[\sin(\theta)\cos(\phi)\sin(\theta)\cos(\phi) + \sin(\theta)\sin(\phi)\sin(\theta)\sin(\phi) + \cos(\theta)\cos(\theta) \right] \]

\[+ 2r\dddot{\theta}\left[\cos(\phi)\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)\sin(\theta)\sin(\phi) - \sin(\theta)\cos(\theta) \right] \]

\[+ 2r\dddot{\phi}\left[-\sin(\theta)\sin(\phi)\sin(\theta)\cos(\phi) + \sin(\theta)\cos(\phi)\sin(\theta)\sin(\phi) \right] \]

\[+ r\dddot{\theta}\left[-\cos(\theta)\sin(\phi)\sin(\theta)\sin(\phi) + \cos(\phi)\cos(\phi)\sin(\theta)\sin(\phi) \right] \]

\[+ r\dddot{\phi}\left[-\cos(\phi)\cos(\phi)\sin(\theta)\cos(\phi) + \cos(\theta)\cos(\theta)\sin(\theta)\sin(\phi) \right] \]

\[+ r\dddot{\theta}\left[\sin(\theta)\cos(\phi)\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)\sin(\theta)\sin(\phi) - \sin(\theta)\cos(\theta) \right] \]

\[+ r\dddot{\phi}\left[-\sin(\theta)\sin(\phi)\sin(\theta)\cos(\phi) + \sin(\theta)\cos(\phi)\sin(\theta)\sin(\phi) \right] \]

\[= \dddot{r}\left[\sin^2(\theta)\cos^2(\phi) + \sin^2(\theta)\sin^2(\phi) + \cos^2(\theta) \right] \]

\[+ 2r\dddot{\theta}\left[\cos(\theta)\sin(\theta)\cos^2(\phi) + \cos(\theta)\sin(\theta)\sin^2(\phi) - \sin(\theta)\cos(\theta) \right] \]

\[+ 2r\dddot{\phi}\left[-\sin^2(\theta)\sin(\phi)\cos(\phi) + \sin^2(\theta)\cos(\phi)\sin(\phi) \right] \]

\[+ r\dddot{\theta}\left[-\sin^2(\theta)\cos^2(\phi) - \sin^2(\theta)\sin^2(\phi) - \cos^2(\theta) \right] \]

\[+ r\dddot{\phi}\left[\cos(\theta)\sin(\theta)\cos^2(\phi) + \cos(\theta)\sin(\theta)\sin^2(\phi) - \sin(\theta)\cos(\theta) \right] \]

\[+ r\dddot{\phi}\left[-\sin^2(\theta)\cos^2(\phi) - \sin^2(\theta)\sin^2(\phi) \right] \]

\[+ r\dddot{\phi}\left[-\sin^2(\theta)\sin(\phi)\cos(\phi) + \sin^2(\theta)\cos(\phi)\sin(\phi) \right] \]

\[= \dddot{r}\left[\sin^2(\theta) + \cos^2(\theta) \right] \]

\[+ 2r\dddot{\theta}\left[\cos(\theta)\sin(\theta) - \sin(\theta)\cos(\theta) \right] \]

\[+ r\dddot{\theta}\left[-\sin^2(\theta) - \cos^2(\theta) \right] \]

\[+ r\dddot{\phi}\left[\cos(\theta)\sin(\theta) - \sin(\theta)\cos(\theta) \right] \]

\[+ r\dddot{\phi}\left[-\sin^2(\theta) \right] \]

\[= \dddot{r} - r\dddot{\theta}^2 - r\sin^2(\theta)\dddot{\phi}^2 \]

und
\[a_\theta = \ddot{x} \cos(\theta) \cos(\phi) + \ddot{y} \cos(\theta) \sin(\phi) - \ddot{z} \sin(\theta) \]

(H.2.11)

\[
\begin{align*}
= & \left[\ddot{r} \sin(\theta) \cos(\phi) + 2\ddot{\theta} \cos(\theta) \cos(\phi) - 2\ddot{\phi} \sin(\theta) \sin(\phi) - r \dddot{r} \sin(\theta) \cos(\phi) \\
- & 2r \dddot{\phi} \cos(\theta) \sin(\phi) + r \ddot{\theta} \sin(\phi) + 2\ddot{\theta} \cos(\theta) \cos(\phi) - 2\ddot{\phi} \sin(\theta) \sin(\phi) \right] \cos(\theta) \cos(\phi) \\
+ & \left[\ddot{r} \sin(\theta) \sin(\phi) + 2\ddot{\theta} \cos(\theta) \sin(\phi) + 2\ddot{\phi} \sin(\theta) \cos(\phi) - r \dddot{r} \sin(\theta) \sin(\phi) \right] \cos(\theta) \sin(\phi) \\
+ & 2r \dddot{\phi} \cos(\theta) \cos(\phi) + r \ddot{\theta} \cos(\theta) \sin(\phi) - r \dddot{\theta} \sin(\phi) + r \dddot{\phi} \sin(\theta) \cos(\phi) \right] \cos(\phi) \\
- & \left[\ddot{r} \cos(\theta) - 2\ddot{\theta} \sin(\theta) - r \dddot{\theta} \sin(\theta) \right] \sin(\phi) \\
\end{align*}
\]

\[
= \ddot{r} \left[\sin(\theta) \cos(\phi) \cos(\phi) + \sin(\theta) \sin(\phi) \cos(\phi) - \cos(\theta) \sin(\phi) \right] \\
+ & 2\ddot{\theta} \left[\cos(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) - \sin(\theta) \sin(\phi) \right] \\
+ & 2\ddot{\phi} \left[- \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \cos(\phi) - \cos(\theta) \sin(\phi) \right] \\
+ & r \dddot{\phi} \left[\cos(\theta) \cos(\phi) \cos(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) - \sin(\theta) \sin(\phi) \right] \\
+ & r \dddot{\phi} \left[- \sin(\theta) \sin(\phi) \cos(\phi) + \sin(\theta) \cos(\phi) \cos(\phi) - \cos(\theta) \sin(\phi) \right] \\
+ & r \dddot{\phi} \left[\cos(\theta) \cos(\phi) \sin(\phi) + \cos(\theta) \sin(\phi) \sin(\phi) - \sin(\theta) \cos(\phi) \right] \\
= & \ddot{r} \left[\sin(\theta) \cos(\phi) - \cos(\theta) \sin(\phi) \right] \\
+ & 2\ddot{\theta} \left[\cos^2(\theta) \sin^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\phi) \right] \\
+ & r \dddot{\phi} \left[- \sin(\theta) \cos(\phi) \sin(\phi) + \sin(\phi) \sin(\phi) + \cos(\phi) \sin(\phi) \right] \\
+ & \ddot{\theta} \left[\cos^2(\theta) \sin^2(\phi) + \cos^2(\theta) \sin^2(\phi) + \sin^2(\phi) \right] \\
+ & r \dddot{\phi} \left[- \sin(\theta) \cos(\phi) \sin(\phi) - \sin(\theta) \cos(\phi) \sin(\phi) - \cos(\phi) \sin(\phi) \right] \\
= & \ddot{r} \left[\sin(\theta) \cos(\phi) - \cos(\theta) \sin(\phi) \right] \\
+ & 2\ddot{\theta} \left[\cos^2(\theta) + \sin^2(\phi) \right] \\
+ & r \dddot{\phi} \left[- \sin(\theta) \cos(\phi) - \sin(\theta) \cos(\phi) \right] \\
+ & \ddot{\theta} \left[\cos^2(\theta) + \sin^2(\phi) \right] \\
- & r \dddot{\phi} \left[\sin(\theta) \cos(\phi) \right] \\
= & 2\ddot{\theta} + r \dddot{\phi} - r \sin(\theta) \cos(\phi) \phi^2
Zusammenfassend haben wir

$$a_\phi = - \ddot{r} \sin(\phi) + \ddot{\theta} \cos(\phi) \tag{H.2.12}$$

Im Einzelnen haben wir

$$= - \left[\ddot{r} \sin(\theta) \cos(\phi) + 2 \ddot{\theta} \cos(\theta) \cos(\phi) - 2 \dot{r} \dot{\phi} \sin(\theta) \sin(\phi) - r \dot{\theta}^2 \sin(\theta) \cos(\phi)
- 2 r \dot{\theta} \dot{\phi} \cos(\theta) \sin(\phi) + r \ddot{\theta} \sin(\theta) \cos(\phi) - r \dot{\phi} \sin(\theta) \sin(\phi) \right] \sin(\phi)$$

+ \left[\ddot{r} \sin(\theta) \sin(\phi) + 2 \ddot{\theta} \cos(\theta) \sin(\phi) + 2 \dot{r} \dot{\phi} \sin(\theta) \cos(\phi) - r \dot{\theta}^2 \sin(\theta) \sin(\phi)
+ 2 r \dot{\theta} \dot{\phi} \sin(\theta) \cos(\phi) + r \ddot{\theta} \sin(\theta) \cos(\phi) - r \dot{\phi}^2 \sin(\theta) \sin(\phi) + r \ddot{\phi} \sin(\theta) \cos(\phi) \right] \cos(\phi)$$

\[= \ddot{r} \left[- \sin(\theta) \cos(\phi) \sin(\phi) + \sin(\theta) \sin(\phi) \cos(\phi) \right] \]

+ \left[2 r \dot{\theta} \left[- \cos(\theta) \cos(\phi) \sin(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) \right] \]

+ \left[r \dot{\phi}^2 \left[\sin(\theta) \cos(\phi) \sin(\phi) - \sin(\theta) \sin(\phi) \cos(\phi) \right] \right]

+ \left[2 r \dot{\phi} \left[\cos(\theta) \sin(\phi) \sin(\phi) + \cos(\theta) \cos(\phi) \cos(\phi) \right] \right]

+ \left[r \ddot{\phi} \left[- \cos(\theta) \cos(\phi) \sin(\phi) + \cos(\theta) \sin(\phi) \cos(\phi) \right] \right]

+ \left[r \dot{\phi}^2 \left[\sin(\theta) \cos(\phi) \sin(\phi) - \sin(\theta) \sin(\phi) \cos(\phi) \right] \right]

+ \left[r \ddot{\phi} \left[\sin(\theta) \sin(\phi) \sin(\phi) + \sin(\theta) \cos(\phi) \cos(\phi) \right] \right]

+ \left[2 r \ddot{\phi} \left[\sin(\theta) \sin^2(\phi) + \sin(\theta) \cos^2(\phi) \right] \right]

+ \left[2 r \ddot{\phi} \left[\cos(\theta) \sin^2(\phi) + \cos(\theta) \cos^2(\phi) \right] \right]

+ \left[r \ddot{\phi} \left[\sin(\theta) \sin^2(\phi) + \sin(\theta) \cos^2(\phi) \right] \right]

= + 2 r \ddot{\phi} \left[\sin(\theta) \sin^2(\phi) + \sin(\theta) \cos^2(\phi) \right]

+ 2 r \ddot{\phi} \left[\cos(\theta) \sin^2(\phi) + \cos(\theta) \cos^2(\phi) \right]

+ r \ddot{\phi} \left[\sin(\theta) \sin^2(\phi) + \sin(\theta) \cos^2(\phi) \right]

= + 2 r \ddot{\phi} \sin(\theta) + 2 r \ddot{\phi} \cos(\theta) + r \ddot{\phi} \sin(\theta)

= \left[r \ddot{\phi} + 2 r \ddot{\phi} \right] \sin(\theta) + 2 r \ddot{\phi} \cos(\theta)

Zusammenfassend haben wir

$$\mathbf{a} = a_r \mathbf{e}_r + a_\theta \mathbf{e}_\theta + a_\phi \mathbf{e}_\phi \tag{H.2.13}$$

$$= \left[\ddot{r} - r \ddot{\theta}^2 - r \sin^2(\theta) \ddot{\phi}^2 \right] \mathbf{e}_r$$

+ \left[2 \ddot{\theta} + r \ddot{\theta} - r \sin(\theta) \cos(\theta) \ddot{\phi}^2 \right] \mathbf{e}_\theta

+ \left[(r \ddot{\phi} + 2 r \ddot{\phi}) \sin(\theta) + 2 r \ddot{\phi} \cos(\theta) \right] \mathbf{e}_\phi$$

H.2.1. Interpretation

Wir teilen die Beschleunigung in drei Komponenten auf

$$\mathbf{a} = a_p + a_z + a_c \tag{H.2.14}$$

Dies ist in der angegebenen Reihenfolge die Parallelbeschleunigung, die den Betrag der Geschwindigkeit erhöht, die Zentripetalbeschleunigung und die Coriolisbeschleunigung.

Im Einzelnen haben wir

$$a_p = \ddot{r} \mathbf{e}_r + r \ddot{\theta} \mathbf{e}_\theta + r \sin(\theta) \ddot{\phi} \mathbf{e}_\phi \tag{H.2.15}$$

$$a_z = -r \left[\ddot{\theta}^2 + \sin^2(\theta) \ddot{\phi}^2 \right] \mathbf{e}_r - r \sin(\theta) \cos(\theta) \ddot{\phi}^2 \mathbf{e}_\theta \tag{H.2.16}$$

$$a_c = 2 \ddot{\phi} \mathbf{e}_\theta + 2 \left[\dot{r} \sin(\theta) + r \dot{\theta} \cos(\theta) \right] \ddot{\phi} \mathbf{e}_\phi \tag{H.2.17}$$
I. Berechnungen in ebenen schiefwinkligen Dreiecken

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM00, pp. 146])

Abbildung I.1.: Dreieck

halber Dreiecksumfang \(s = \frac{a+b+c}{2} \)

Radius des Umkreises \(R = \frac{a}{2 \sin \alpha} = \frac{b}{2 \sin \beta} = \frac{c}{2 \sin \gamma} \)

Radius des Inkreises \(r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = s \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2} = 4R \sin \frac{\alpha}{2} \beta \gamma \)

Flächeninhalt \(S = \frac{1}{2}ab \sin \gamma = 2R^2 \sin \alpha \sin \beta \sin \gamma = rs = \sqrt{s(s-a)(s-b)(s-c)} \)

Sinussatz \(\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R \)

Projektionssatz \(c = a \cos \beta + b \cos \alpha \)

Kosinussatz oder Satz des Pythagoras im schiefwinkligen Dreieck \(c^2 = a^2 + b^2 - 2ab \cos \gamma \)

Mollweidsche Gleichungen \((a + b) \sin \frac{\gamma}{2} = c \cos \left(\frac{\alpha-\beta}{2} \right) \)

\((a - b) \cos \frac{\gamma}{2} = c \sin \left(\frac{\alpha-\beta}{2} \right) \)

Tangenssatz \(\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}} \)

Halbwinkelsatz \(\tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \)

Tangensformeln \(\tan \alpha = \frac{a \sin \beta}{c-a \cos \beta} = \frac{a \sin \gamma}{b-a \cos \gamma} \)

Beziehungen für halbe Winkel \(\sin \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}} \)

\(\cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}} \)
(Siehe Bronstein, Taschenbuch der Mathematik [BSMM00, pp. 148])

<table>
<thead>
<tr>
<th>gegeben</th>
<th>Formeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1 Seite und 2 Winkel ((a, \alpha, \beta))</td>
<td>(\gamma = \pi - \alpha - \beta, \ b = \frac{a\sin \beta}{\sin \alpha}, \ c = \frac{a\sin \gamma}{\sin \alpha}, \ S = \frac{1}{2}ab\sin \gamma)</td>
</tr>
<tr>
<td>2. 2 Seiten und der eingeschlossene Winkel ((a, b, \gamma))</td>
<td>(\tan \frac{\alpha - \beta}{2} = \frac{a - b}{a + b}\cot \frac{\gamma}{2}, \ \frac{a + b}{2} = \frac{\pi}{2} - \frac{\gamma}{2} \alpha \text{ und } \beta \text{ werden aus } \alpha + \beta \text{ und } \alpha - \beta \text{ berechnet.} \ S = \frac{1}{2}ab\sin \gamma)</td>
</tr>
<tr>
<td>3. 2 Seiten und der einer von ihnen gegenüberliegende Winkel ((a, b, \alpha))</td>
<td>(\sin \beta = \frac{b\sin \alpha}{a} \quad \text{Für } a \geq b \text{ ist } \beta < \frac{\pi}{2} \text{ und eindeutig bestimmt. Für } a < b \text{ sind die folgenden Fälle möglich:})</td>
</tr>
<tr>
<td></td>
<td>1. (\beta \text{ hat für } b\sin \alpha < a \text{ zwei Werte } \beta_2 = \pi - \beta_1)</td>
</tr>
<tr>
<td></td>
<td>2. (\beta \text{ hat genau einen Wert } \left(\frac{\pi}{2}\right) \text{ für } b\sin \alpha = a)</td>
</tr>
<tr>
<td></td>
<td>3. Für (b\sin \alpha > a) ist es unmöglich, ein Dreieck zu konstruieren.</td>
</tr>
<tr>
<td></td>
<td>(\tan \alpha = \frac{r}{s-a}, \ \tan \frac{\beta}{2} = \frac{r}{s-b}, \ tan \frac{\gamma}{2} = \frac{r}{s-c}, \ S = rs = \sqrt{s(s-a)(s-b)(s-c)})</td>
</tr>
<tr>
<td>4. 3 Seiten ((a, b, c))</td>
<td>(r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}, \ tan \frac{\alpha}{2} = \frac{r}{s-a}, \ tan \frac{\beta}{2} = \frac{r}{s-b}, \ \tan \frac{\gamma}{2} = \frac{r}{s-c}, \ S = rs = \sqrt{s(s-a)(s-b)(s-c)})</td>
</tr>
</tbody>
</table>

Tabelle I.1.: Formeln für schiefwinklige ebene Dreiecke
J. Berechnung der Ableitung in rotierenden Bezugssystemen

Dieser Text bezieht sich auf den Abschnitt 5.2.3. Hier wird ein Beispiel gerechnet. Der Maple Quelltext ist:

```maple
> with(LinearAlgebra):
> with(VectorCalculus):
> with(tensor):
> SetCoordinates( 'cartesian'[x,y,z] ):
>
> AA := Matrix(3,3,[[cos(omegaz*t), sin(omegaz*t),0],
> [-sin(omegaz*t),cos(omegaz*t),0],
> [0,0,1]]);
>
> AAinv := MatrixInverse(AA);
> omega := <0,0,omegaz>;
> s := <R*cos(3*omegaz*t),R*sin(3*omegaz*t),rz>;
> sp := convert(MatrixVectorMultiply(AA,s),arctrig);
> res1 :=diff(s,t);
> CrossProduct(omega,s);
> tr1 :=diff(sp,t);
> tr2 := simplify(MatrixVectorMultiply(AAinv,tr1));
> res2 := tr2+CrossProduct(omega,s);
> rr :=simplify(res2-res1);
>
```

Der Mathematica-Quelltext ist
Hier ist angenommen worden, dass der Rotationsvektor ω entlang der z-Richtung des Koordinatensystems angeordnet ist. Dann transformiert die Matrix AA einen Vektor aus dem Laborsystem in das rotierende Bezugssystem. $AAinv$ transformiert zurück. s ist der zeitabhängige Ortsvektor. sp ist der Ortsvektor transformiert in das rotierende Bezugssystem. $tr1$ ist die Ableitung von sp im rotierenden Bezugssystem $tr2$ ist $tr1$ zurücktransformiert in das Laborsystem. Gleichung (5.2.15) gilt dann, wenn die Ableitung im rotierenden Bezugssystem zurück nach dem Laborsystem transformiert ist.

$$AA = \begin{pmatrix} \cos(\omega z t) & \sin(\omega z t) & 0 \\ -\sin(\omega z t) & \cos(\omega z t) & 0 \\ 0 & 0 & 1 \end{pmatrix} = A$$

$$AAinv = \text{Simplify}[\text{MatrixPower}[AA, -1]]$$

$$s = \{fx(t), fy(t), fz(t)\}$$

$$sp = AA.s$$

$$res1 = \frac{\partial s}{\partial t}$$

$$cp = \omega \times s$$

$$tr1 = \text{Simplify}\left[\frac{\partial sp}{\partial t}\right]$$

$$tr2 = \text{Simplify}[AAinv.tr1]$$

$$res2 = cp + tr2$$

$$rr = res2 - res1$$

$$res3\text{falsch} = \text{Simplify}[cp + tr1]$$

Nach der Transformation ins rotierende Bezugssystem erhält man

$$sp = \begin{pmatrix} R \cos(3\omega z t) \\ R \sin(3\omega z t) \\ rz \end{pmatrix} \quad \text{allgemein:} \quad s = \begin{pmatrix} f_x(t) \\ f_y(t) \\ f_z(t) \end{pmatrix}$$

$$s' = \begin{pmatrix} \cos(\omega z t)f_x(t) + \sin(\omega z t)f_y(t) \\ \cos(\omega z t)f_y(t) - \sin(\omega z t)f_x(t) \\ f_z(t) \end{pmatrix}.$$
Das Kreuzprodukt ist zurücktransformiert ins Laborsystem mit $A^{-1} \frac{ds'}{dt}$ erhält man

$$\frac{ds}{dt} = 3\omega z R \begin{pmatrix} -\sin(3\omega z t) \\ \cos(3\omega z t) \\ 0 \end{pmatrix} \quad \text{allgemein:} \quad \frac{ds}{dt} = \begin{pmatrix} \frac{d}{dt} f_x(t) \\ \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix}$$

und im rotierenden Bezugssystem (gestrichenes Bezugssystem)

$$\frac{dsp}{dt} = 2\omega z R \begin{pmatrix} -\sin(2\omega z t) \\ \cos(2\omega z t) \\ 0 \end{pmatrix} \quad \text{allgemein:} \quad \frac{dp}{dt} = \begin{pmatrix} \omega f_y(t) + \frac{d}{dt} f_x(t) \\ -\omega f_x(t) + \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix}$$

Zurücktransformiert ins Laborsystem mit $A^{-1} \frac{ds'}{dt}$ erhält man

$$\frac{\partial s}{\partial t} = 2\omega z R \begin{pmatrix} -\sin(3\omega z t) \\ \cos(3\omega z t) \\ 0 \end{pmatrix} \quad \text{allgemein:} \quad \frac{\partial s}{\partial t} = \begin{pmatrix} \omega f_y(t) + \frac{d}{dt} f_x(t) \\ -\omega f_x(t) + \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix}$$

Das Kreuzprodukt ist

$$\omega \times s = \omega z R \begin{pmatrix} -\sin(3\omega z t) \\ \cos(3\omega z t) \\ 0 \end{pmatrix} \quad \text{allgemein:} \quad \omega \times s = \begin{pmatrix} -\omega f_y(t) \\ \omega f_x(t) \\ 0 \end{pmatrix}$$

und

$$\frac{\partial s}{\partial t} + \omega \times s = 2\omega z R \begin{pmatrix} -\sin(3\omega z t) \\ \cos(3\omega z t) \\ 0 \end{pmatrix} + \omega z R \begin{pmatrix} -\sin(3\omega z t) \\ \cos(3\omega z t) \\ 0 \end{pmatrix} = 3\omega z R \begin{pmatrix} -\sin(3\omega z t) \\ \cos(3\omega z t) \\ 0 \end{pmatrix} = \frac{ds}{dt}$$

allgemein:

$$\frac{\partial s}{\partial t} + \omega \times s = \begin{pmatrix} \omega f_y(t) + \frac{d}{dt} f_x(t) \\ -\omega f_x(t) + \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix} + \begin{pmatrix} -\omega f_y(t) \\ \omega f_x(t) \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{d}{dt} f_x(t) \\ \frac{d}{dt} f_y(t) \\ \frac{d}{dt} f_z(t) \end{pmatrix} = \frac{ds}{dt}$$

so dass sowohl im Spezialfall wie auch allgemein gilt

$$\frac{ds}{dt} = \frac{\partial s}{\partial t} + \omega \times s$$

gilt. Wäre $\frac{ds'}{dt}$ nicht ins Laborsystem zurücktransformiert worden, hätte man
\[
\frac{\partial s}{\partial t} + \omega \times s = \begin{pmatrix}
\frac{d}{dt}f_x(t) \cos(t \omega_z) - \omega_z f_x(t) \sin(t \omega_z) + \frac{d}{dt} f_y(t) \sin(t \omega_z) + \omega_z f_y(t)(\cos(t \omega_z) - 1) \\
- \frac{d}{dt} f_x(t) \sin(t \omega_z) + f_x(t) \omega_z (1 - \cos(t \omega_z)) + \frac{d}{dt} f_y(t) \cos(t \omega_z) - \omega_z f_y(t) \sin(t \omega_z) \\
\frac{d}{dt} f_z(t)
\end{pmatrix}
\]

(3.0.1)

erhalten, was nicht das Resultat im Laborsystem ist.

Wenn mit Vektoren in der Darstellung eines Koordinatensystems gerechnet wird, müssen alle Vektoren im gleichen Koordinatensystem dargestellt werden!
K. Rechnen mit Vektoren

K.1. Vektoridentitäten

(Siehe Bronstein, Taschenbuch der Mathematik [BSMM00, pp. 190])

Im Folgenden sind \(a, b, c \) und \(f \) Vektoren oder vektorielle Funktionen, \(a, b, c \) und \(f \) ihre Längen, \(k \) eine Zahl und \(\varphi(r) \) eine skalare Funktion. Die Komponenten der Vektoren in kartesischen Koordinaten sind

\[
\mathbf{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}
\]

Für die anderen Vektoren werden die Komponenten analog geschrieben.

K.1.1. Produkte mit Vektoren

Skalarprodukt

\[
k = \mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z = ab \cos(\angle(\mathbf{a}, \mathbf{b})) \quad \text{(K.1.1)}
\]

Vektorprodukt

\[
\mathbf{c} = \mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix} \\
|\mathbf{a} \times \mathbf{b}| = ab \sin(\angle(\mathbf{a}, \mathbf{b})) \quad \text{(K.1.2)}
\]

Vertauschung der Reihenfolge (Kommutationsgesetze)

\[
\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} \quad \text{(K.1.3)}
\]

\[
\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \quad \text{(K.1.4)}
\]

Zwei Vektoren sind orthogonal, wenn

\[
\mathbf{a} \cdot \mathbf{b} = 0 \quad \text{(K.1.5)}
\]

Sie sind kollinear, wenn

\[
\mathbf{a} \times \mathbf{b} = 0 \quad \text{(K.1.6)}
\]

Doppeltes Vektorprodukt

\[
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \quad \text{(K.1.7)}
\]

Spatprodukt oder gemischtliches Produkt

\[
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}
\]

\[
= (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}
\]

\[
= -(\mathbf{b} \times \mathbf{a}) \cdot \mathbf{c}
\]

\[
= -(\mathbf{c} \times \mathbf{b}) \cdot \mathbf{a}
\]

\[
= -(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}
\]

\[
= a_x b_y c_z + a_y b_z c_x + a_z b_x c_y - (a_z b_y c_x + a_x b_z c_y + a_y b_x c_z) \quad \text{(K.1.8)}
\]
Drei Vektoren sind komplanar, wenn
\[(a \times b) \cdot c = 0\]
(K.1.9)
Lagrangesche Identität
\[(a \times b) \cdot (c \times f) = (a \cdot c)(b \cdot f) - (a \cdot f)(b \cdot c)\]
(K.1.10)
Vierfaches Vektorprodukt
\[(a \times b) \times (c \times d) = ((a \times b) \cdot f)c - ((a \times b) \cdot c)f\]
(K.1.11)

K.1.2. Ableiten von Vektoren

Ableiten eines Vektors
\[
\frac{d}{dt} \mathbf{a} = \frac{d}{dt} \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} \frac{da_x}{dt} \\ \frac{da_y}{dt} \\ \frac{da_z}{dt} \end{pmatrix} = \begin{pmatrix} \dot{a}_x \\ \dot{a}_y \\ \dot{a}_z \end{pmatrix}
\]
(K.1.12)

Ableitung eines Produktes
\[
\frac{d}{dt} (\varphi(t)a(t)) = \frac{d\varphi}{dt} a + \varphi \frac{d}{dt} a
\]
(K.1.13)

Ableitung des Skalarproduktes
\[
\frac{d}{dt} (a \cdot b) = \frac{da}{dt} \cdot b + a \cdot \frac{db}{dt}
\]
(K.1.14)

Ableitung des Vektorproduktes
\[
\frac{d}{dt} (a \times b) = \frac{da}{dt} \times b + a \times \frac{db}{dt}
\]
(K.1.15)

Ableitung eines Vektors mit konstantem Betrag. Hier ist \(a \cdot a = a^2 = \text{const.}\) Aus Gleichung (K.1.14) folgt
\[
0 = \frac{d a^2}{dt} = \frac{d}{dt} (a \cdot a) = \frac{da}{dt} \cdot a + a \cdot \frac{da}{dt} = \frac{da}{dt} \cdot a \quad \Rightarrow \quad \frac{da}{dt} \perp a
\]
(K.1.16)

Taylorentwicklung einer Vektorfunktion
\[
a(t + \tau) = a(t) + \tau \frac{da}{dt} \bigg|_t + \frac{\tau^2}{2} \frac{d^2 a}{dt^2} \bigg|_t + \ldots + \frac{\tau^n}{n!} \frac{d^n a}{dt^n} \bigg|_t + \ldots
\]
(K.1.17)

K.1.3. Vektorableitungen bei Skalarfeldern

Ableitung eines skalaren Feldes nach einer Richtung
\[
\frac{\partial \varphi(r)}{\partial e_c} = \lim_{\|e\| \to 0} \frac{\varphi(r + \varepsilon e) - \varphi(r)}{\varepsilon}
\]
(K.1.18)

Ableitung \(\frac{\partial \varphi(r)}{\partial e_c}\) in Richtung des Einheitsvektors \(e_c\) in Richtung von \(c\)
\[
\frac{\partial \varphi(r)}{\partial c} = |c| \frac{\partial \varphi(r)}{\partial e_c}
\]
(K.1.19)

Richtungsableitung einer skalaren Funktion im Vergleich zur Richtung mit dem stärksten Abfall (Einheitsvektor \(n\))
\[
\frac{\partial \varphi(r)}{\partial e_c} = \frac{\partial \varphi(r)}{\partial n} \cos(\angle e_c, n)
\]
(K.1.20)
K.1.4. Vektorableitungen bei Vektorfeldern

Ableitung eines Vektorfeldes \mathbf{a} nach einer Richtung

$$\frac{\partial \mathbf{a}(r)}{\partial c} = \lim_{\varepsilon \to 0} \frac{\mathbf{a}(r + \varepsilon c) - \mathbf{a}(r)}{\varepsilon} \quad (K.1.21)$$

Ableitung $\frac{\partial \mathbf{a}(r)}{\partial \varepsilon}$ in Richtung des Einheitsvektors \mathbf{e}_c in Richtung von c

$$\frac{\partial \mathbf{a}(r)}{\partial \varepsilon} = |c| \frac{\partial \mathbf{a}(r)}{\partial \varepsilon} \quad (K.1.22)$$

Richtungsableitung einer Vektorfunktion

$$\frac{\partial \mathbf{a}(r)}{\partial c} = (c \cdot \text{grad} \,) \mathbf{a} \quad (K.1.23)$$

$$= \frac{1}{2} \left(\text{rot} \, (\mathbf{a} \times \mathbf{c}) + \text{grad} \, (c \cdot \mathbf{a}) + c \cdot \text{div} \, \mathbf{a} - \mathbf{a} \cdot \text{div} \, c \right)$$

$$- c \times \text{rot} \, \mathbf{a} - \mathbf{a} \times \text{rot} \, \mathbf{c}$$

Gradient eines Produktes

$$\text{grad} \, (\varphi_1 \varphi_2) = \varphi_1 \text{grad} \, \varphi_2 + \varphi_2 \text{grad} \, \varphi_1 \quad (K.1.24)$$

Kettenregel beim Gradienten

$$\text{grad} \, \varphi_1 (\varphi_2) = \frac{d\varphi_1}{d\varphi_2} \text{grad} \, \varphi_2 \quad (K.1.25)$$

Gradient eines Skalarproduktes

$$\text{grad} \, (\mathbf{a} \cdot \mathbf{b}) = (\mathbf{a} \cdot \text{grad} \,) \mathbf{b} + (\mathbf{b} \cdot \text{grad} \,) \mathbf{a} + \mathbf{a} \times \text{rot} \, \mathbf{b} + \mathbf{b} \times \text{rot} \, \mathbf{a} \quad (K.1.26)$$

Gradient eines Skalarproduktes eines konstanten Vektors \mathbf{k} mit einem Ortsvektor \mathbf{r}

$$\text{grad} \, (\mathbf{r} \cdot \mathbf{k}) = \mathbf{k} \quad (K.1.27)$$

Divergenz eines Produktes

$$\text{div} \, (\varphi \mathbf{a}) = \varphi \text{div} \, \mathbf{a} + \mathbf{a} \text{grad} \, \varphi \quad (K.1.28)$$

Divergenz eines Skalarproduktes eines konstanten Vektors \mathbf{k} mit einem Ortsvektor \mathbf{r}

$$\text{div} \, (\mathbf{r} \cdot \mathbf{k}) = \frac{\mathbf{r} \cdot \mathbf{k}}{|\mathbf{r}|} \quad (K.1.29)$$

Divergenz eines Vektorproduktes

$$\text{div} \, (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot \text{rot} \, \mathbf{a} - \mathbf{a} \cdot \text{rot} \, \mathbf{b} \quad (K.1.30)$$

Rotation eines Produktes

$$\text{rot} \, (\varphi \mathbf{a}) = \varphi \text{rot} \, \mathbf{a} + \text{grad} \, \varphi \times \mathbf{a} \quad (K.1.31)$$
Divergenz eines Vektorproduktes

\[\mathbf{rot} (\mathbf{a} \times \mathbf{b}) = (\mathbf{b} \cdot \mathbf{grad}) \mathbf{a} - (\mathbf{a} \cdot \mathbf{grad}) \mathbf{b} + \mathbf{a} \div \mathbf{b} - \mathbf{b} \div \mathbf{a} \]

(K.1.32)

Rotation eines Potentialfeldes

\[\mathbf{rot} (\mathbf{grad} \varphi) = 0 \quad \forall \varphi \]

(K.1.33)

Divergenz einer Rotation

\[\mathbf{div} (\mathbf{rot} \mathbf{a}) = 0 \quad \forall \mathbf{a} \]

(K.1.34)

Rotation einer Rotation

\[\mathbf{rot} (\mathbf{rot} \mathbf{a}) = \mathbf{grad} (\mathbf{div} \mathbf{a}) - \mathbf{div} (\mathbf{grad} \mathbf{a}) \]

(K.1.35)
L. Drehungen

L.1. Drehmatrizen

Eine Drehung um die x-Achse beschrieben durch den Vektor $e_x = (1, 0, 0)^T$ um den Winkel α wird durch die Matrix

\[
R_x(\alpha) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\alpha) & -\sin(\alpha) \\
0 & \sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\]

(L.1.1)

die Transformation ausgeführt. Für eine Drehung um die y-Achse beschrieben durch den Vektor $e_y = (0, 1, 0)^T$ um den Winkel β wird durch die Matrix

\[
R_y(\beta) = \begin{pmatrix}
\cos(\beta) & 0 & \sin(\beta) \\
0 & 1 & 0 \\
-\sin(\beta) & 0 & \cos(\beta)
\end{pmatrix}
\]

(L.1.2)

die Transformation ausgeführt. Schließlich wird eine Drehung um die y-Achse beschrieben durch den Vektor $e_z = (0, 0, 1)^T$ um den Winkel γ wird durch die Matrix

\[
R_z(\gamma) = \begin{pmatrix}
\cos(\gamma) & -\sin(\gamma) & 0 \\
\sin(\gamma) & \cos(\gamma) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

(L.1.3)

ausgeführt.

Der Vektor $r = (x, y, z)^T$ soll um den Winkel α um die x-Achse gedreht werden. Dies wird mit der Operation

\[
r' = R_x(\alpha)r = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\alpha) & -\sin(\alpha) \\
0 & \sin(\alpha) & \cos(\alpha)
\end{pmatrix}\begin{pmatrix}x \\ y \\ z\end{pmatrix} = \begin{pmatrix}x \\ y\cos(\alpha) - z\sin(\alpha) \\ y\sin(\alpha) + z\cos(\alpha)\end{pmatrix}
\]

(L.1.4)

bewerkstelligt. Im Allgemeinen wird eine Drehung durch die Multiplikation des Vektors von links mit einer Matrix beschrieben.

Die Drehung zurück wird (antisymmetrische reelle Matrix mit der Determinante 1) wird durch die inverse Matrix oder die transponierte Matrix beschrieben. Alternativ kann man auch α durch $-\alpha$ ersetzen.

\[
R_x(-\alpha) = R_x^T(\alpha) = R_x^{-1}(\alpha) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\alpha) & \sin(\alpha) \\
0 & -\sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\]

(L.1.5)

Eine Drehung um einen beliebigen Vektor $r_a = (x_\alpha, y_\alpha, z_\alpha)^T$ mit $x_\alpha^2 + y_\alpha^2 + z_\alpha^2 = 1$ wird durch
beschrieben\footnote{Mat14}. Die Drehung ist bei positivem \(\alpha \) rechtshändig bezüglich der Richtung von \(r_{\alpha} \) (Der Daumen zeigt in die Richtung von \(r_{\alpha} \), die Finger geben die Drehrichtung).

L.2. Drehung von Vektoren und Matrizen (oder Tensoren)

Sei \(R_{e_\alpha}(\alpha) \) die Drehmatrix. Dann ist der aus \(r \) hervorgegangene um die Achse \(e_\alpha \) und den Winkel \(\alpha \) gedrehte Vektor

\[
r' = R_{e_\alpha}(\alpha)r
\]

Ein Beispiel dafür ist in \(\text{(L.1.4)} \) gezeigt.

Die aus der Matrix

\[
A = \begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}
\]

hervorgegangene um die Achse \(e_\alpha \) und den Winkel \(\alpha \) gedrehte Matrix ist

\[
A' = R_{e_\alpha}(\alpha)AR_{e_\alpha}^T(\alpha).
\]

Die Drehung zurück ist dann

\[
R_{e_\alpha}(-\alpha)A'R_{e_\alpha}^T(-\alpha) = R_{e_\alpha}^T(\alpha)A'R_{e_\alpha}(\alpha) = R_{e_\alpha}(\alpha)A_{e_\alpha}^T(\alpha)R_{e_\alpha}(\alpha) = A
\]

Wenn wir als Beispiel die Matrix

\[
A = \begin{pmatrix} a & b & 0 \\ -b & c & 0 \\ 0 & 0 & d \end{pmatrix}
\]

um \(e_\alpha = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right)^T \) drehen, erhalten wir
\[A' = R_{(1/\sqrt{2},0,-1/\sqrt{2})}^T \alpha A R_{(1/\sqrt{2},0,-1/\sqrt{2})}^T \]

(L.2.4)

\[
\begin{pmatrix}
\frac{1}{2} \cos(\alpha) + 1 & \frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2} \cos(\alpha) - 1 \\
-\frac{\sin(\alpha)}{\sqrt{2}} & \cos(\alpha) & -\frac{\sin(\alpha)}{\sqrt{2}} \\
\frac{1}{2} \cos(\alpha) - 1 & \frac{\sin(\alpha)}{\sqrt{2}} & \frac{1}{2} \cos(\alpha) + 1
\end{pmatrix}
\begin{pmatrix}
0 & b & 0 \\
-b & c & 0 \\
0 & 0 & d
\end{pmatrix}
\]

L.3. Allgemeine Drehung mit Eulerwinkeln

Das Koordinatensystem \(e_x, e_y, e_z \) geht durch drei Drehungen aus dem Koordinatensystem \(e'_x, e'_y, e'_z \) hervor.
Die Eulerschen Winkel sind

1. Drehung um $e_z^*: \alpha$
2. Drehung um $0A: \beta$
3. Drehung um $e_z^*: \gamma$

Dabei $0A$ steht senkrecht zur Ebene aufgespannt durch e_z und e_z^*. Die Reihenfolge der Drehungen ist

1. Drehung: Bringe e_z^* senkrecht zu e_z (In der Abbildung L.3 zeigen die Kreise die Ebenen senkrecht zu e_z^* und senkrecht zu e_z Die Schnittlinie der beiden Kreise ist $0A$.
2. Drehung: Bringe z-Achse in richtige Lage
3. Drehung: Bringe x,y-Achsen in die richtige Lage.
M. Hinweise und Links

M.1. Literaturhinweise

In diesem Skript werden alle Vektoren fett gedruckt, d.h. $\mathbf{r} \rightarrow \mathbf{r}$. Begriffe aus dem Index werden kursiv gedruckt.
Abbildungsverzeichnis

2.1 Wo steht die Physik in den Naturwissenschaften? 13
2.1 Die Lage des Punktes P zur Zeit t ist $x(t)$. 22
3.2 Zeitablegende Beschleunigung. ... 23
3.4 Fahrplan eines geworfenen Balls. 24
3.5 Eindimensionaler Stoss, vorher und nachher 25
3.6 Stoss zweier Massen ... 29
3.7 Gleichgewichtslagen und potentielle Energie 38
4.1 Definition der Koordinatensysteme .. 39
4.2 Bewegung eines Massenpunktes. .. 40
4.3 Berechnung der Beschleunigung aus der Geschwindigkeitsänderung 42
4.4 Definition der Kugelkoordinaten .. 43
4.5 Bewegung in einer Ebene ... 44
4.6 Kartesische und komplexe Ebene ... 46
4.7 Tangenteneinheitsvektor und Normaleneinheitsvektor 48
4.8 Berechnung des Krümmungsradius 49
4.9 Tangentialbeschleunigung a_r und Zentripetalbeschleunigung a_n 50
4.10 Feldlinien ... 55
4.11 Gummiband als Kraftfeldquelle ... 55
4.12 Potentielle Energie ... 56
4.13 Unabhängigkeit der potentiellen Energie vom Weg. 56
4.14 Wirbelfreiheit konservativer Felder. 57
4.16 Koordinatensystem zur Berechnung der Arbeit des Gravitationsfeldes 58
4.18 Grafische Addition von Kräften .. 64
4.19 Kräftegleichgewicht .. 64
4.20 Kräfte an einem Kranarm. Die Kraft $F_{Biegung}$ verbiegt den Arm 65
4.21 Kräfte an einem Pendel ... 66
4.22 Kräfte an einer Feder ... 67
4.23 Fallender Ball springt vom Boden hoch. 68
4.24 Kraft während des Aufpralls eines Balls. 68
4.26 Kraft während des Aufpralls eines Balls. 68
4.27 Lineare beschleunigtes Bezugssystem 72
4.28 Rotierendes Bezugssystem ... 72
4.29 Skizze der Koordinaten in einem Teilchensystem 73
4.30 Lokales Koordinatensystem in einer Massenverteilung 75
<table>
<thead>
<tr>
<th>Seite</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.31</td>
<td>Potentielle Energie des Erdschwerefeldes</td>
</tr>
<tr>
<td>4.32</td>
<td>Definition der Grössen beim Zweikörperproblem</td>
</tr>
<tr>
<td>4.33</td>
<td>Kollision zweier Massepunkte</td>
</tr>
<tr>
<td>4.34</td>
<td>Stoss zweier Massen</td>
</tr>
<tr>
<td>4.35</td>
<td>Stoss in einer Ebene</td>
</tr>
<tr>
<td>4.36</td>
<td>Definition des Stossparameters b</td>
</tr>
<tr>
<td>4.37</td>
<td>Situation nach einem ebenen Stoss</td>
</tr>
<tr>
<td>4.38</td>
<td>Rückstoss bei einer Armbrust</td>
</tr>
<tr>
<td>4.39</td>
<td>Kräfte an einer Raketendüse. Die Rakete ist fixiert</td>
</tr>
<tr>
<td>4.40</td>
<td>Kräfte an einer Rakete</td>
</tr>
<tr>
<td>4.41</td>
<td>Definition der Drehwinkel bei einer Zentralbewegung</td>
</tr>
<tr>
<td>4.42</td>
<td>Definition des Winkelgeschwindigkeitsvektors ω</td>
</tr>
<tr>
<td>4.43</td>
<td>Transformation eines Drehvektors an einem Spiegel</td>
</tr>
<tr>
<td>4.44</td>
<td>Definition des Drehmomentes</td>
</tr>
<tr>
<td>4.45</td>
<td>Hebelgesetz</td>
</tr>
<tr>
<td>4.46</td>
<td>Eindimensionale Formulierung des Hebelgesetzes</td>
</tr>
<tr>
<td>4.47</td>
<td>Definition des Dralls oder des Drehimpulses</td>
</tr>
<tr>
<td>4.48</td>
<td>2. Keplersches Gesetz</td>
</tr>
<tr>
<td>4.49</td>
<td>Newtonsches Gravitationsgesetz</td>
</tr>
<tr>
<td>4.50</td>
<td>Gravitationswaage</td>
</tr>
<tr>
<td>4.51</td>
<td>Wegunabhängigkeit der Arbeit im Gravitationsfeld</td>
</tr>
<tr>
<td>4.52</td>
<td>Berechnung der Kraft</td>
</tr>
<tr>
<td>4.53</td>
<td>Oberflächenintegrale: Definition der Grössen</td>
</tr>
<tr>
<td>4.54</td>
<td>Koordinaten des Oberflächenelementes</td>
</tr>
<tr>
<td>4.55</td>
<td>Anordnung von Massenpunkten</td>
</tr>
<tr>
<td>4.56</td>
<td>Koordinaten zur Berechnung eines Oberflächenintegrals</td>
</tr>
<tr>
<td>4.57</td>
<td>Gravitationsfeld einer homogenen Kugel</td>
</tr>
<tr>
<td>4.58</td>
<td>Gravitationsfeldvektor und Gravitationspotential</td>
</tr>
<tr>
<td>4.59</td>
<td>Kräfte auf eine Punktmasse im Inneren einer Hohlkugel</td>
</tr>
<tr>
<td>4.60</td>
<td>Berechnung des Kreisringes</td>
</tr>
<tr>
<td>4.61</td>
<td>Berechnung einer Kugelschale zusammengesetzt aus Kreisringen</td>
</tr>
<tr>
<td>4.62</td>
<td>Mathematisches Pendel</td>
</tr>
<tr>
<td>4.63</td>
<td>Herleitung des 3. Keplerschen Gesetzes</td>
</tr>
<tr>
<td>5.1</td>
<td>2 Koordinatensysteme</td>
</tr>
<tr>
<td>5.2</td>
<td>Situation für einen ruhenden Beobachter</td>
</tr>
<tr>
<td>5.3</td>
<td>Situation für einen mitbewegten Beobachter</td>
</tr>
<tr>
<td>5.4</td>
<td>Berechnung einer Ableitung im Laborsystem</td>
</tr>
<tr>
<td>5.5</td>
<td>Berechnung der Ableitung im rotierenden Bezugssystem</td>
</tr>
<tr>
<td>5.6</td>
<td>Beziehung zwischen den Ableitungen</td>
</tr>
<tr>
<td>5.7</td>
<td>Lage von r^* und R relativ zu ω</td>
</tr>
<tr>
<td>5.8</td>
<td>Zentrifugalkraft und Corioliskraft</td>
</tr>
<tr>
<td>5.9</td>
<td>Prinzipbild eines mikromechanischen Drehratensensors basierend auf der Corioliskraft</td>
</tr>
<tr>
<td>5.10</td>
<td>Raumfestes und mitbewegtes Koordinatensystem auf der Erde</td>
</tr>
<tr>
<td>5.11</td>
<td>Foucault-Pendel</td>
</tr>
<tr>
<td>5.12</td>
<td>Erde und Mond</td>
</tr>
<tr>
<td>5.13</td>
<td>Raumfestes Koordinatensystem der Erde</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.14 „Schwerkraft“ in einem Raumschiff</td>
<td>133</td>
</tr>
<tr>
<td>5.15 „Schwerkraft“ in einem Raumschiff in radierer Richtung</td>
<td>134</td>
</tr>
<tr>
<td>5.16 Schwimmen mit und senkrecht zur Strömung</td>
<td>134</td>
</tr>
<tr>
<td>5.17 Vorhalten des Schwimmers 2</td>
<td>135</td>
</tr>
<tr>
<td>5.19 Rückdatierung</td>
<td>139</td>
</tr>
<tr>
<td>5.20 Raum-Zeit-für eine Raumdimension</td>
<td>140</td>
</tr>
<tr>
<td>5.21 Gleichzeitigkeit</td>
<td>141</td>
</tr>
<tr>
<td>5.22 Gleichzeitigkeit, zweite Betrachtungsweise</td>
<td>143</td>
</tr>
<tr>
<td>5.23 Massstabsvergleich</td>
<td>144</td>
</tr>
<tr>
<td>5.24 Uhrenvergleich</td>
<td>146</td>
</tr>
<tr>
<td>5.25 Vergrößerte Darstellung aus der vorherigen Abbildung 5.24.</td>
<td>146</td>
</tr>
<tr>
<td>5.26 Uhrenvergleich nach Gerthsen</td>
<td>148</td>
</tr>
<tr>
<td>5.27 Der longitudinale relativistische Dopplereffekt</td>
<td>149</td>
</tr>
<tr>
<td>5.28 Bewegungsrichtung beim transversalen relativistischen Dopplereffekt.</td>
<td>150</td>
</tr>
<tr>
<td>5.29 Drei gegeneinander sich bewegende Inertialsysteme</td>
<td>152</td>
</tr>
<tr>
<td>5.30 Addition von Geschwindigkeiten</td>
<td>152</td>
</tr>
<tr>
<td>5.31 Gedankenexperiment zur Bestimmung der relativistischen Masse</td>
<td>155</td>
</tr>
<tr>
<td>5.32 Relativistische Geschwindigkeit und Beschleunigung, konstanter Kraft</td>
<td>161</td>
</tr>
<tr>
<td>5.33 Kinetische Energie relativistisch und klassisch</td>
<td>162</td>
</tr>
<tr>
<td>5.34 Zurückgelegte Distanz relativistisch und klassisch</td>
<td>163</td>
</tr>
<tr>
<td>5.35 Eigenzeit relativistisch und klassisch</td>
<td>164</td>
</tr>
<tr>
<td>5.36 Zurückgelegte Strecke als Funktion der Eigenzeit.</td>
<td>165</td>
</tr>
<tr>
<td>5.37 Punktäreignisse in zwei Bezugsystemen</td>
<td>166</td>
</tr>
<tr>
<td>5.38 Transformation eines Punktes auf der (x')-Achse in das ungestrichene Koordinatensystem</td>
<td>166</td>
</tr>
<tr>
<td>5.39 Transformation eines Punktes auf der (ct')-Achse in das ungestrichene Koordinatensystem</td>
<td>167</td>
</tr>
<tr>
<td>5.40 Skalen im Minkowski-Diagramm</td>
<td>169</td>
</tr>
<tr>
<td>5.41 Lorentztransformation als Drehung</td>
<td>171</td>
</tr>
<tr>
<td>5.42 Weltlinie beim Zwillingsparadoxon</td>
<td>173</td>
</tr>
<tr>
<td>5.43 Zwillingsparadoxon</td>
<td>174</td>
</tr>
<tr>
<td>6.1 Starrer Körper</td>
<td>177</td>
</tr>
<tr>
<td>6.2 Schwerpunktsystem</td>
<td>178</td>
</tr>
<tr>
<td>6.3 Rotation eines starren Körpers</td>
<td>178</td>
</tr>
<tr>
<td>6.4 Definition der Eulerschen Winkel</td>
<td>179</td>
</tr>
<tr>
<td>6.5 Wir betrachten die die (xy)-Ebene von der (z)-Achse aus</td>
<td>181</td>
</tr>
<tr>
<td>6.6 Angriffspunkt einer Kraft in einem starren Körper.</td>
<td>182</td>
</tr>
<tr>
<td>6.7 Definition eines Kräftepaarees.</td>
<td>183</td>
</tr>
<tr>
<td>6.8 Berechnung der Wirkung einer Kraft am Punkte (i)</td>
<td>184</td>
</tr>
<tr>
<td>6.9 Wirkung der Gravitationskraft auf einen starren Körper.</td>
<td>185</td>
</tr>
<tr>
<td>6.10 Bezeichnungen an einem starren Rotator</td>
<td>186</td>
</tr>
<tr>
<td>6.11 Trägheitsmoment für eine beliebige Drehachse.</td>
<td>188</td>
</tr>
<tr>
<td>6.12 Rollende Walze</td>
<td>190</td>
</tr>
</tbody>
</table>
6.13 Berechnung des Drehimpulses .. 191
6.14 Aufspaltung des Drehimpulses 193
6.15 Rollender Zylinder .. 196
6.16 Kippen eines starren Körpers 196
6.17 Kreisel ... 198
6.18 Polkegel ... 198
6.19 Kräftefreier Kreisel .. 203
6.20 Poinsotsche Konstruktion .. 204
6.21 Trägheitsellipsoid .. 206
6.22 Interpretation der Poinsotschen Konstruktion 207
6.23 Poinsot-Ellipsoid .. 208
6.24 Präzedierender Kreisel ... 211
6.25 Flaschenzug: Berechnung mit virtuellen Verschiebungen 212
6.26 Kurbelwelle und Pleuel berechnet mit virtuellen Verschiebungen .. 213

7.1 Arten der Deformation eines deformierbaren Körpers 215
7.2 Allgemeine Kräfte an einem Würfel 216
7.3 Scherung eines Würfels .. 219
7.4 Verdrillation .. 220
7.5 Biegebalken .. 221
7.6 Mikrotechnologische Herstellung eines Biegebalkens 222
7.7 REM-Bilder eines Kraftmikroskopsensors 222
7.8 Zusammenhang zwischen Scherung und Dehnung 223
7.9 Spannungs-Dehnungs-Kurven von Stahl und Grauguss 225
7.10 Flüssigkeitsoberfläche .. 226
7.11 Oberfläche einer rotierenden Flüssigkeitsfläche 227
7.12 Definition des Druckes ... 228
7.13 Hydraulische Presse. Kräfte bezogen auf die Wirkung auf die Außenwelt .. 229
7.14 Druckarbeit .. 229
7.15 Berechnung des Schwereendruckes 230
7.16 Auftrieb in Flüssigkeiten .. 231
7.17 Schwimmen .. 231
7.18 Stabilität eines schwimmenden Körpers 232
7.19 Aräometer ... 233
7.20 Quecksilber-Barometer .. 234
7.21 Druckänderung mit der Höhe 235
7.22 Druck auf ein Volumenelement 236
7.23 Kräfte auf ein Volumenelement Wasser 236
7.25 Berechnung der Kraft eines Flüssigkeitsfilms 240
7.26 Tropfenzähler .. 240
7.27 Krümmungsradien bei einer freien Oberfläche 241
7.28 Oberflächenspannung und Druck in einer Kugel 241
7.29 Benetzende Flüssigkeiten ... 242
7.30 Kräftegleichgewicht an der Grenzfläche 243
<p>| 7.31 | Kohäsion und Adhäsion bei Benetzung und ohne Benetzung | 244 |
| 7.32 | Vektorfeld der Strömung | 246 |
| 7.33 | Fluss | 246 |
| 7.34 | Berechnung der Divergenz | 247 |
| 7.35 | Geschwindigkeitsgradient und Rotation | 248 |
| 7.36 | Mitbewegtes System | 249 |
| 7.37 | Stromlinien in einer inkompressiblen Flüssigkeit | 250 |
| 7.38 | Innere Reibung in einer Flüssigkeit | 251 |
| 7.39 | Viskose Strömung um einen Quader | 252 |
| 7.40 | Strömung durch einen Spalt | 253 |
| 7.41 | Rohrströmung | 254 |
| 7.42 | Strömung um eine Kugel | 255 |
| 7.43 | Prandtl-Grenzschicht | 255 |
| 7.44 | Ideale Strömung | 257 |
| 7.45 | Manometer | 258 |
| 7.46 | Prandtlsches Staurohr | 258 |
| 7.47 | Ausströmen aus einem Loch | 258 |
| 7.48 | Stromlinie | 259 |
| 7.49 | Reales Bild einer Wirbelstrasse | 259 |
| 7.50 | Potentialwirbel | 259 |
| 7.51 | Helmholtzsche Wirbelsätze | 260 |
| 8.1 | Masse-Feder-System als Modell eines schwingungsfähigen Systems | 261 |
| 8.2 | Zusammenhang zwischen der Kreisbewegung und einer Schwingung | 263 |
| 8.3 | Phasenbild eines harmonischen Oszillators | 266 |
| 8.4 | Schwingendes System im Schwerefeld | 267 |
| 8.5 | Mathematisches Pendel im Schwerefeld | 268 |
| 8.6 | Physikalisches Pendel | 269 |
| 8.7 | Torsionspendel (analog zur Gravitationswaage) | 270 |
| 8.8 | Mit einem Exzenter angetriebenes Federpendel | 275 |
| 8.9 | Amplitude und Phase eines getriebenen harmonischen Oszillators mit $z_0 = 1$, $\omega_0 = 1$, $Q = 10$ (unterkritische Dämpfung). | 278 |
| 8.10 | Amplitude und Phase eines getriebenen harmonischen Oszillators mit $z_0 = 1$, $\omega_0 = 1$, $Q = 2$ (unterkritische Dämpfung). | 278 |
| 8.11 | Amplitude und Phase eines getriebenen harmonischen Oszillators mit $z_0 = 1$, $\omega_0 = 1$, $Q = 0.5$ (kritische Dämpfung). | 278 |
| 8.12 | Amplitude und Phase eines getriebenen harmonischen Oszillators mit $z_0 = 1$, $\omega_0 = 1$, $Q = 0.1$ (überkritische Dämpfung). | 279 |
| 8.13 | Zeigerdiagramm | 281 |
| 8.14 | Synthese einer Schwingung | 283 |
| 8.15 | Synthese einer Schwingung | 284 |
| 8.16 | Synthese einer Schwingung | 284 |
| 8.17 | Synthese einer Schwingung | 285 |
| 8.18 | Synthese einer Schwingung | 285 |
| 8.19 | Synthese einer Schwingung | 286 |
| 8.20 | Gekoppelte Pendel | 287 |
| 8.21 | Reflexion einer Seilwelle: eingespanntes Ende | 291 |
| 8.22 | Reflexion einer Seilwelle: loses Ende | 292 |</p>
<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.23 Wasserwelle ... 293</td>
</tr>
<tr>
<td>8.24 Überlagerung gleichphasiger Wellen 294</td>
</tr>
<tr>
<td>8.25 Überlagerung zweier Wellen gleicher Amplitude 294</td>
</tr>
<tr>
<td>8.26 Überlagerung zweier Wellen mit unterschiedlichen Amplituden 295</td>
</tr>
<tr>
<td>8.27 Kräfteverhältnisse an einem Wellenberg 295</td>
</tr>
<tr>
<td>8.28 Der Schnappschuss einer Welle mit der Wellenlänge λ 296</td>
</tr>
<tr>
<td>8.29 Interferenz als Funktion der Phase 298</td>
</tr>
<tr>
<td>C.1 Berechnung der Ableitung ... 317</td>
</tr>
<tr>
<td>C.2 Integration einer Funktion .. 318</td>
</tr>
<tr>
<td>C.3 Approximationen der Funktion f(x) = cos(x) mit dem Grad 1, 2 und 3. 319</td>
</tr>
<tr>
<td>C.4 Approximationen der Funktion f(x) = cos(x) mit dem Grad 1, 2 und 3. 321</td>
</tr>
<tr>
<td>C.5 Approximationen der Funktion f(x) = cos(x) mit dem Grad 1, 2 und 3. 322</td>
</tr>
<tr>
<td>C.6 Definition von Vektoren .. 322</td>
</tr>
<tr>
<td>E.1 Gradient als Richtung der stärksten Steigung 332</td>
</tr>
<tr>
<td>E.2 Vektorfeld mit Umrandung ... 333</td>
</tr>
<tr>
<td>E.3 Drehung eines schwimmenden Klotzes, Rotation 334</td>
</tr>
<tr>
<td>G.1 Kartesisches, zylindrisches und sphärisches Koordinatensystem 343</td>
</tr>
<tr>
<td>G.2 Umrechnung der Koordinaten ... 345</td>
</tr>
<tr>
<td>H.1 Mitgeführtes orthogonales Koordinatensystem und kartesisches Koordi-</td>
</tr>
<tr>
<td>H.2 Betrachtung in der xy-Ebene für e 348</td>
</tr>
<tr>
<td>H.3 Betrachtung in der ρz-Ebene zur Bestimmung von e 348</td>
</tr>
<tr>
<td>I.1 Dreieck ... 357</td>
</tr>
<tr>
<td>L.1 Definition der Eulerschen Winkel 370</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

2.1 SI (Système Internationale) Grundeinheiten ... 14
2.2 cgs-System: Grundeinheiten ... 15
2.3 Arten der Messunsicherheit ... 15

3.1 Simulierte Messwerte für einen Stoss auf einer Gerade. 25
3.2 Größe $m_i \cdot v_i$ aus den Messdaten. .. 26
3.3 Größe $m_i \cdot v_i^2$ aus den Messdaten. .. 27
3.4 Kräftegleichgewicht beim Hebel .. 35

4.1 Bewegung in der Zeit Δt. ... 40
4.2 Kräftegleichgewicht beim Hebel .. 61
4.3 Gravitationsfeld als Funktion der Distanz ... 105
4.4 Parameter des Kreisringes .. 110

5.1 Galileitransformation .. 118
5.2 Ableitungen in zwei Koordinatensystemen .. 122
5.3 Trägheitskräfte ... 125
5.4 Trägheitskräfte ... 128
5.5 Parameter von Erde und Mond ... 131
5.6 Vergleich von Galilei- und Lorentz-Transformation 173

6.1 Form der Transformationsmatrix T ... 182
6.2 Trägheitsellipsoide verschiedener Körper ... 202

7.1 Aggregatzustände .. 226
7.2 Analogie zwischen Gravitation und Druck ... 237

8.1 Interferenz und Phase .. 299

A.1 Bedeutung von Symbolen ... 301
A.2 Vorfaktoren von Einheiten ... 312
A.3 Griechische Buchstaben ... 313

B.1 Konstanten ... 315

C.1 Beispiele für Ableitungen ... 318
C.2 Beispiele für Integrale ... 319

E.1 Differentiationsregeln .. 328
E.2 Ableitung einiger Funktionen ... 329
E.3 Reiheentwicklungen .. 331

F.1 Unbestimmte Integrale ... 339
I.1 Formeln für schiefwinklige ebene Dreiecke 358
Literaturverzeichnis

Stichwortverzeichnis

Ableitung, 317–318
Bezugssystem
 rotierend, 359–362
drei Dimensionen, 332–335
 lokal, 249–251
total, 249–251
Ableitung von Vektoren, 364–366
Ableitung:Näherungslösungen, 319–322
Abstandsmass
 relativistisch, 172–173
Addition
 Geschwindigkeiten, 151–154
Adhäsionskräfte, 243
Äquivalenz
 Masse-Energie, 158–160
Aggregatzustand, 226
d’Alembert
 Prinzip, 119–120
Anelastisches Verhalten, 224–225
Anziehung, 92
Aräometer, 233
 Beschleunigung, 33
 Druck, 229–230
geschlossener Weg, 56
 Wegunabhängigkeit, 56–57
Arbeitsvermögen, 57–59
Armbrust
 Rückstoss, 84–85
Atmosphäre
 Höhe, 234–235
Atmosphärendruck, 234–235
Auftrieb, 231
 Ausbreitungsgeschwindigkeit, 295–296
Auswuchten, 195
Bahn
 Satelliten, 113–115
Bahnbewegung, 49–50
 eben, 51–52
Benetzung, 242–245
Bernoulli-Gleichung, 257
Beschleunigte Bezugssysteme
 Kräfte, 72
Beschleunigung, 14, 23–24, 42, 44–47, 49, 50, 72, 84, 113, 119, 120, 123, 154–156, 162, 250, 262, 263, 275
eindimensional, 23–24
Massenmittelpunkt, 75–76
Messung, 154–155
 relativistisch, 160–165
Beschleunigungsarbeit, 33
Beschreibung
 Strömung, 246–249
Bewegte Masse, 155–158
Bewegtes Bezugssystem
 Einheit, 169–170
Bewegung
 Freiheitsgrade, 182
 gerade, 21–24
 gewichtsbedingt, 112–113
 Kugelkoordinaten, 42–47
 Massenpunkt, 21–24
 Punktmasse, 21–24
 Raum, 39–52
 um Gleichgewichtspunkt, 271
Bewegungsgleichung
 Flüssigkeit, 256–257
Bezugssystem
 beschleunigt, 72
 rotierend, 121
 Ableitung, 122
rotierend und linear beschleunigt,
126–129
rotiernd
Erde, 129–134
gleichförmig, 121–126
Biegung, 220–222
Boyle-Mariotte
Gesetz, 233
Brownsche Bewegung, 238
Bruchdehnung, 225
cgs
System, 15
cgs-System, 15
Coriolis-Kraft, 72
Coriolisbeschleunigung, 123
Corioliskraft, 121, 126
d’Alembert
Prinzip, 119–120
Dampfbildung, 259
Definition
Länge, 15
Zeit, 15
Deformierbare Medien, 215–260
Dehnung, 217–219
Determinante, 290, 291
Dichte, 177
Differentiation, 327–335
einfache Funktionen, 329–330
Regeln, 328
Differentiationsregeln, 328
Dimension, 25, 88, 256, 291
Divergenz, 247, 333–334
Dopplereffekt
relativistisch, 149–151
Draht
Verdrillung, 220
Drall, 91
Drallsatz, 194–195
Drehbewegung
Vektorcharakter, 88–89
Drehimpuls, 91, 191–193, 195, 198
Kinematik, 198–202
Kreisel, 198–202
Starrer Rotator, 191–194
Drehmatrizen, 367–368
Drehmoment, 89–91, 183–185, 194, 195, 210, 217, 220, 221, 232, 269,
287
Rotator, 195
Drehratensensor, 126
Drehschwingungen, 195–197
Drehung
Matrix, 368–369
starrer Körper, 178–182
Tensor, 368–369
Vektor, 368–369
Drehungen, 367–370
Dreieck, 142, 147, 357, 358
schiefwinklig, 357–358
Druck, 228–230, 254, 260
Gas, 233
Potential, 236–237
Wirkung, 228–229
Druckarbeit, 229–230
Druckgradient, 260
Durchschnittsgeschwindigkeit
eindimensional, 22–23
Dynamo, 183–185
Dynamik, 63–72
Grundgesetz, 67
Eigenschwingung, 290–291
Einheit auf Achse, 169–170
Einheiten, 14–19
Einheitensysteme, 14–15
Einstein
Theorie, 137–143
Elastische Konstanten
Beziehungen, 223–224
Elastomechanik, 215–225
empirisch, 25
Energie
gesamt, 28, 34, 59, 115, 159, 264, 291, 297
Kraft, 37–38, 62–63
linear, 35
Massenverteilung, 76
Energie-Masse-Äquivalenz, 158–160
Energieübertrag
Wellen, 297
Energiebilanz
Harmonische Schwingung, 264–265
Energieerhaltung, 27–28
mechanisches System, 34–35, 59–60
Erde
rotierendes Bezugssystem, 129–134
Erhaltung
Impuls, 73
Erhaltungsgrößen, 53–63
eindimensional, 25–38
Erhaltungssätze, 53–63
eindimensional, 25–38
Erzwungene Schwingung, 274–280
ESP
Elektronisches Stabilitäts-Programm, 126
Eulersche Winkel, 179–182, 369–370
Fahrplan, 22, 24, 50, 174
Fakultät, 320
Feder, 54, 66, 67, 264, 267, 268, 275, 287, 289, 290
Masse
Schwerefeld, 266–268
Federpendel, 275
Fehlerfortpflanzung, 16–19
Feld
Gravitation, 96, 104, 105, 226, 265
Feldkraft, 57, 58, 99
Feldlinie, 99
Feldlinien, 54–55
Festigkeitsgrenze, 222, 225
Finiten Elemente Rechnung, 215
Flüssigkeit, 226, 231–233, 242, 243, 250, 251, 256
benetzend, 242–245
Bewegungsgleichung, 256–257
ideal
Strömung, 257–259
Oberfläche
Gestalt, 226–227
Flüssigkeiten, 226–237
Fluchtgeschwindigkeit, 115
Fluss, 246–249
Foucault
Pendel, 130
Foucault-Pendel, 130
Fourierreihen, 282–286
Freie Oberfläche, 241–242
Freiheitsgrad
Bewegung, 182
Frequenz, 149, 150, 174, 175, 262, 263, 279, 281, 282, 288, 296, 298
Resonanz, 280
Fundamentalschwingung, 290–291
Güte, 272–274
Galilei-Transformation
Vergleich Lorentz-Transformation, 173
Galileitransformation, 118
Gasdruck, 233
Gase, 226–237
Gedämpfte Schwingung, 272–274
erzwungen, 274–280
Gekoppelte Schwingungen, 286–289
Geometrie, 256
Gesamtenergie, 28, 34, 59, 115, 159, 264, 291, 297
Addition, 151–154
Ausbreitung, 295–296
Durchschnitt
eindimensional, 22–23
Massenmittelpunkt, 75
momentan, 22, 23
eindimensional, 22–23
Raum, 41
relativistisch, 161
Strömung, 71
Gesetz
Boyle-Mariotte, 233
Kepler, 92–93
Navier-Stokes, 256
Newton
2, 67
3, 66–67
4, 63–66
Gestalt
Flüssigkeitsoberfläche, 226–227
Gewicht, 112–113
<table>
<thead>
<tr>
<th>Stichwortverzeichnis</th>
<th>386</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtsbedingte Bewegung</td>
<td>112–113</td>
</tr>
<tr>
<td>Gezeiten</td>
<td>131–134</td>
</tr>
<tr>
<td>Gleichförmig rotierendes Bezugsystem</td>
<td>121–126</td>
</tr>
<tr>
<td>Gleichgewicht</td>
<td>37–38</td>
</tr>
<tr>
<td>Kräfte</td>
<td>35, 61, 64, 240, 243, 272, 295</td>
</tr>
<tr>
<td>Gleichgewichtspunkt Bewegung</td>
<td>271</td>
</tr>
<tr>
<td>Gleichzeitigkeit</td>
<td>140–143</td>
</tr>
<tr>
<td>Gleitreibung</td>
<td>36</td>
</tr>
<tr>
<td>Grössen physikalisch</td>
<td>14–19</td>
</tr>
<tr>
<td>Gradient</td>
<td>332–333</td>
</tr>
<tr>
<td>Druck</td>
<td>260</td>
</tr>
<tr>
<td>Gravitation</td>
<td>54, 58, 92–115, 134, 237, 257, 267, 268, 287</td>
</tr>
<tr>
<td>Ensemble von Massenpunkten</td>
<td>102–103</td>
</tr>
<tr>
<td>Kugel</td>
<td>104–111</td>
</tr>
<tr>
<td>Gravitationsfeld</td>
<td>96, 104, 105, 226, 265</td>
</tr>
<tr>
<td>Massenpunkt</td>
<td>96–98</td>
</tr>
<tr>
<td>Potentielle Energie</td>
<td>99–102</td>
</tr>
<tr>
<td>Gravitationsgesetz Newton</td>
<td>93–111</td>
</tr>
<tr>
<td>Gravitationskraft</td>
<td>237</td>
</tr>
<tr>
<td>Grenzschicht</td>
<td>255, 256</td>
</tr>
<tr>
<td>Prandtl</td>
<td>255–256</td>
</tr>
<tr>
<td>grosse Halbachse</td>
<td>94</td>
</tr>
<tr>
<td>Grundgesetz Dynamik</td>
<td>67</td>
</tr>
<tr>
<td>Höhe</td>
<td>234–235</td>
</tr>
<tr>
<td>Atmosphäre</td>
<td>242–245</td>
</tr>
<tr>
<td>Halbachse gross</td>
<td>94</td>
</tr>
<tr>
<td>Harmonische Schwingungen</td>
<td>261–271</td>
</tr>
<tr>
<td>Energiebilanz</td>
<td>264–265</td>
</tr>
<tr>
<td>Kreisbewegung</td>
<td>263–264</td>
</tr>
<tr>
<td>Harmonische Schwingung</td>
<td>296–297</td>
</tr>
<tr>
<td>harmonische Wellen</td>
<td>265</td>
</tr>
<tr>
<td>Helmholtzsche Wirbelsätze</td>
<td>260</td>
</tr>
<tr>
<td>Herpolhoide</td>
<td>209</td>
</tr>
<tr>
<td>Hydraulische Presse</td>
<td>229</td>
</tr>
<tr>
<td>Ideale Flüssigkeit</td>
<td>257–259</td>
</tr>
<tr>
<td>Strömung</td>
<td>257–259</td>
</tr>
<tr>
<td>Impuls</td>
<td>26, 27, 33, 53, 67, 159, 162</td>
</tr>
<tr>
<td>Massenmittelpunkt</td>
<td>74–75</td>
</tr>
<tr>
<td>Impulserhaltung</td>
<td>26–28, 53, 73</td>
</tr>
<tr>
<td>Inertialsystem</td>
<td>31, 32, 67</td>
</tr>
<tr>
<td>innere Energie</td>
<td>28</td>
</tr>
<tr>
<td>Innere Reibung</td>
<td>251</td>
</tr>
<tr>
<td>Integrale bestimmt</td>
<td>340</td>
</tr>
<tr>
<td>Rechenverfahren</td>
<td>337</td>
</tr>
<tr>
<td>unbestimmt</td>
<td>339</td>
</tr>
<tr>
<td>variable obere Grenze</td>
<td>340</td>
</tr>
<tr>
<td>Integralform Kraftgesetz</td>
<td>68–69</td>
</tr>
<tr>
<td>Integration</td>
<td>318–319, 327–335</td>
</tr>
<tr>
<td>Interferenz</td>
<td>298, 299</td>
</tr>
<tr>
<td>harmonische Wellen</td>
<td>298–299</td>
</tr>
<tr>
<td>Internationales System (SI)</td>
<td>14–15</td>
</tr>
<tr>
<td>Körper</td>
<td>196–197</td>
</tr>
<tr>
<td>Kipppung</td>
<td>196–197</td>
</tr>
<tr>
<td>Kapilarität</td>
<td>242–245</td>
</tr>
<tr>
<td>Kartesische Koordinaten</td>
<td>325, 343–345</td>
</tr>
<tr>
<td>Kavitation</td>
<td>259</td>
</tr>
<tr>
<td>Kepler 3. Gesetz</td>
<td>93, 94</td>
</tr>
<tr>
<td>Keplersche Gesetze</td>
<td>92–93</td>
</tr>
<tr>
<td>Kinematik</td>
<td>21–24</td>
</tr>
<tr>
<td>Bahn im Raum</td>
<td>48–52</td>
</tr>
<tr>
<td>Drei Dimensionen</td>
<td>39–52</td>
</tr>
<tr>
<td>Kreisel</td>
<td>198</td>
</tr>
<tr>
<td>Starrer Rotator</td>
<td>186</td>
</tr>
<tr>
<td>Kreisel</td>
<td>198–202</td>
</tr>
<tr>
<td>kinetische Energie</td>
<td>33</td>
</tr>
<tr>
<td>Kippung Körper</td>
<td>196–197</td>
</tr>
<tr>
<td>Klassische Relativität beschleunigt</td>
<td>118–134</td>
</tr>
<tr>
<td>Inertialsystem</td>
<td>117–118</td>
</tr>
<tr>
<td>Widersprüche</td>
<td>134–137</td>
</tr>
<tr>
<td>Knautschzone</td>
<td>69</td>
</tr>
<tr>
<td>Kohäsionskräfte</td>
<td>238, 243</td>
</tr>
<tr>
<td>Kollisionen</td>
<td>78</td>
</tr>
<tr>
<td>Komplexe Zahlen</td>
<td>46–47</td>
</tr>
<tr>
<td>Kompressibilität isotherm</td>
<td>233</td>
</tr>
<tr>
<td>Kompression</td>
<td>217–219</td>
</tr>
<tr>
<td>Konservative Kraftfelder</td>
<td>55–59</td>
</tr>
</tbody>
</table>
Konstanten
 elastisch
 Beziehungen, 223–224
Konstruktion
 Poinset, 204–210
Kontaktzeit, 69
Kontinuierliche Massenverteilung, 103–104
Kontinuitätsgleichung, 250–251
Koordinaten
 kartesisch, 325, 343–345
 sphärisch, 343–345
 zylindrisch, 343–345
Koordinatensystem, 58, 75, 76, 118, 129, 132, 138, 144, 166, 172, 178, 179, 186, 193, 200, 203, 295, 369
Kräftefreier Kreisel, 203–210
Kräftegleichgewicht, 35, 61, 64, 240, 243, 272, 295
Kräftepaare, 183
Bezugssystem
 beschleunigt, 72
Coriolis, 72
eindimensional, 31–32
Gesetz
 Integralform, 68–69
konstante Masse, 32
Kreisel, 210–212
Parallelogramm, 63–66
potentielle Energie, 37–38, 62–63
starrer Körper, 182–183
Kraft-Distanz-Kurve, 271
Kraftfelder, 54
 konservativ, 55–59
 Wirbelfreiheit, 57
Kraftgesetz
 Integralform, 68–69
Kreisbahn, 94
Kreisbewegung, 44–46
 Harmonische Schwingung, 263–264
 komplexe Zahlen, 46–47
Kreisel, 197–212
Energie
 kinetisch, 198–202
Kinematik, 198
kräftefrei, 203–210
Kraft, 210–212
Kreisfrequenz, 262, 297
Kugel
 Gravitation, 104–111
 Oberflächenintegral, 100–102
 Strömung, 255
Kugelkoordinaten
 Bewegung, 42–47
Länge
 Definition, 15
Längenkontraktion, 144–145
Laborsystem, 122
Lageenergie, 28
Laminare Strömung, 252–256
Leistung, 35–37, 60–62, 272, 297
Lichtgerade, 142
Linear
 potentielle Energie, 35
Linienintegral, 341
Loch
 Strömung, 258–259
Lokale Ableitung, 249–251
Längstabilisierung, 292–293
Lorentz-Transformation, 165–173
 3 Raumdimensionen, 170
 Drehung, 171–172
 Vergleich Galilei-Transformation, 173
Luftwiderstand, 36
Manometer, 258
Maschinen
 mechanisch, 212–214
Mass
 relativistisch, 140
bewegt, 155–158
Feder
 Schwerefeld, 266–268
Stichwortverzeichnis

Punkt, 21, 39
scher, 113
trag, 113
Masse-Energie-Äquivalenz, 158–160
Massenmittelpunkt, 74–76
Massenmittelpunkt, 75
Massenmittelpunktsbeschleunigung, 75–76
Massenmittelpunktsimpuls, 74–75
Massenmittelpunktssystem
2 Massen, 77–78
Massenpunkt
Gravitationsfeld, 96–98
Potentielle Energie, 99–102
Massenpunkte, 21, 39
Ensemble
Gravitation, 102–103
Realisierung, 21, 39
Massenverteilung
kontinuierlich, 103–104
potentielle Energie, 76
Mathematik, 317–324
Mathematisches Pendel, 268–269
Mechanik, 21–38
Drei Dimensionen, 39–115
Mechanische Maschinen, 212–214
Mechanisches System
Energieerhaltung, 34–35, 59–60
Messen, 15–19
Messung
Beschleunigung, 154–155
Messunsicherheit, 15–16
Minkowski-Diagramm, 143
Momentangeschwindigkeit, 22, 23
eindimensional, 22–23
Momentangeschwindigkeit in einer Dimension, 22
Momentengleichung, 287
Navier-Stokes
Gesetz, 256
Newton, 94
Gesetz
2, 67
3, 66–67
4, 63–66
Gravitationsgesetz, 93–111
Newtonscne Gesetze, 31, 32
Noether
Emilie, 26
Oberfläche
Flüssigkeit, 226–227
frei, 241–242
Oberflächenintegral, 102–103
Kugel, 100–102
Oberflächenspannung, 238–245
Ort, 138
Parallelogramm
Kraft, 63–66
Parameterdarstellung, 265
Foucault, 130
mathematisch, 268–269
physikalisch, 269–270
Schwerefeld, 268–271
Torsion, 270–271
Periodendauer T, 296
Phasenbild, 265
Phasensprung, 292
Physikalisches Pendel, 269–270
Plastischer Stoss
1D, 30–31
Poinsot
Konstruktion, 204–210
Polhoide, 209
Potential
Druck, 236–237
Kraft, 37–38, 62–63
Massenverteilung, 76
potentielle Energie, 28
Präzession, 210–212
Prandtl-Grenzschicht, 255–256
Prandtlsches Staurohr, 258
Presse
hydraulisch, 229
Prinzip
d’Alembert, 119–120
Produkte mit Vektoren, 363–364
Punktmasse
Bewegung, 21–24
Punktereignis, 138
Punktmasse, 21, 39, 268, 287
Quecksilber, 243
Rückdatierung, 138–140
Rückstoss, 84–87
Armbrust, 84–85
Rakete, 84–87
Raketengleichung, 86–87
Raum, 39, 40, 81, 83, 172, 198, 291
rußartig, 140
Reaktionsprinzip, 66–67
Rechnen mit Vektoren, 363–366
reduzierte Masse, 31, 81
Refl ektion, 293–295
Reibung, 69–71
innere, 251
Reihen, 330–331
Fourier, 282–286
Relativistische Beschleunigung, 160–165
relativistische Masseenergie, 28
Relativistischer Dopplereffekt, 149–151
Relativistisches Mass, 140
Relativität, 117–175
klassisch
beschleunigt, 118–134
Inertialsystem, 117–118
Widersprüche, 134–137
Relativitätstheorie, 134–175
Resonanzfrequenz, 272, 279, 280, 289, 291
Reynoldszahl, 256
Rohr
Strömung, 254
Rotation, 334–335
Rotator, 186, 194, 195, 200
Drehmoment, 195
starr, 186–197
Drehimpuls, 191–194
Kinematik, 186
Trägheitsmoment, 186–191
Rotierendes Bezugssystem
Erde, 129–134
gleichförmig, 121–126
Satelliten, 113–115
Bahn, 113–115
Satz
Steiner, 188–191
Scherung, 219
Scherviskosität, 251, 256
Schiefwinkliges Dreieck, 357–358
Schub, 85
Schwebung, 281–282
Schwere Masse, 113
Schweredruck, 230–233
Schwerefeld
Feder-Masse, 266–268
Pendel, 268–271
Schwerkraft, 93, 185
Schwerpunkt, 177–178
Schwimmen, 231–232
Schwingung
Überlagerung, 280–286
gedämpft, 272–274
erzwungen, 274–280
gekoppelt, 286–289
Schwingungen, 261–291
harmonisch, 261–271
Energiebilanz, 264–265
Kreisbewegung, 263–264
Schwingungsgleichung, 264, 269, 271, 274, 290, 291
SI
Internationales System, 14–15
Skalarprodukt, 325
Sonne, 92, 136
Spalt, 253
Strömung, 253
Spezielle Relativitätstheorie, 134–175
Sphärische Koordinaten, 343–345
Stöße, 78–87
Ebene, 81–83
ungleiche Massen, 82–83
Gerade, 29–31, 79–81
Raum, 83–84
Stabilität, 37–38
Standardabweichung
Messwert, 16
Mittelwert, 16
Starrer Körper, 177–214
Definition, 177
Drehung, 178–182
Grundbegriffe, 177–182
Kraft, 182–183
Statik, 182–185
Starrer Rotator, 186–197
Drehimpuls, 191–194
Kinematik, 186
Trägheitsmoment, 186–191
Stichwortverzeichnis

Statik starrer Körper, 182–185
Stationäre Strömung, 251
Staurohr
 Prandtl, 258
Stehende Wellen, 299
Steiner
 Satz, 188–191
Stoss
 eine Dimension, 25–26
 inelastisch, 28–29
 plastisch
 1D, 30–31
Strömung, 134, 246, 248, 249, 251–253, 255–257
 ideale Flüssigkeit, 257–259
 Kugel, 255
 laminar, 252–256
 Loch, 258–259
 Rohr, 254
 Spalt, 253
 stationär, 251
Strömungen, 246–260
 Beschreibung, 246–249
 Strömungsgeschwindigkeit, 71
Strömungswiderstand, 259–260
Superposition, 293–295
 harmonische Wellen, 298–299
System
 mechanisch, 34–35, 59–60
Tangenten, 22, 23
Taylorreihe, 271, 330–331
Teilchensysteme, 72–78
Theorie
 Einstein, 137–143
Tintenfisch, 84–87
Torsionspendel, 270–271
Torsionswaage, 95
Totale Ableitung, 249–251
Träge Masse, 113
Trägheitsbeschleunigung, 123
Trägheitsellipsoid, 201–202
Trägheitskräfte, 118–119
Trägheitsmoment, 89, 186, 188, 197, 201, 269–271, 287
 Starrer Rotator, 186–191
Transformation
 Galilei, 118, 173
 Lorentz, 165–173
 3 Raumdimensionen, 170
 Drehung, 171–172
Transformationsgesetze, 121
Transformationsmatrix, 182
Transversalwellen, 292–293
Überlagerung, 293–295
 Schwingung, 280–286
gleiche Richtung, 281
 Schwebung, 281–282
 unterschiedliche Richtungen, 280
Uhrenvergleich, 146–148
Umrechnung
 kartesisch zu sphärisch, 344
 kartesisch zu zylindrisch, 344
 sphärisch zu kartesisch, 344
 sphärisch zu zylindrisch, 345
 zylindrisch zu kartesisch, 345
 zylindrisch zu sphärisch, 345
Vektorcharakter
 Drehbewegung, 88–89
Vektoren, 322–324
 Ableitung, 364–366
 Vektorprodukt, 363–364
Vektoridentitäten, 363
Vektorprodukt, 325, 363–364
Verdrillung
 Draht, 220
Vergleich
 Galilei-Transformation und Lorentz-
 Transformation, 173
Uhr, 146–148
Verhalten
 anelastisch, 224–225
Vierdimensionale Lorentz-Transformation, 170
Viererabstand, 172
Vierervektor, 172
Volumen, 218, 228, 233, 236, 247, 250, 323
Volumenstrom, 254
Volumenviskosität, 256
Weg
 geschlossen
 Arbeit, 56
Wegunabhängigkeit
 Arbeit, 56–57

©2001-2014 Ulm University, Othmar Marti
Welle, 291, 293, 296, 297, 299
Wellen
 Überlagerung, 293–295
eindimensional, 291–299
Energieübertrag, 297
harmonisch, 296–297
 Interferenz, 298–299
 Superposition, 298–299
longitudinal, 292–293
Reflexion, 293–295
stehend, 299
 Superposition, 293–295
transversal, 292–293
Wellenberge, 291–295
Wellenlänge λ, 296
Wellenvektor, 296
Wellenzahl, 296
Widersprüche
 klassische Relativität, 134–137
Widerstand
 Strömung, 259–260
Windkanal, 256
Winkel
 Euler, 179–182, 369–370
Winkelbeschleunigung, 87–88, 271
Winkelgeschwindigkeit, 45, 47, 87, 121, 186, 200
Wirbelfreiheit
 konservative Kraftfelder, 57
Wirbelsätze
 Helmholtz, 260
Wirkung
 Druck, 228–229

Zeit, 23, 138
 Definition, 15
zeitartig, 140
Zeitkonstante, 272
Zentralbewegung, 87–91
Zentrifugalbeschleunigung, 123
Zentrifugalkraft, 121, 125, 129, 132, 133
Zentripetalbeschleunigung, 124
Zentripetalkraft, 93
Zwillingsparadoxon, 173–175
Zylinderkoordinaten, 343–345