Vorlesungsskript

PHYS2000.0 Optik
Bachelor Physik
Bachelor Wirtschaftsphysik
Lehramt Physik

Othmar Marti
Institut für Experimentelle Physik
Universität Ulm

veröffentlicht unter Lizenzinformationen

DOI 10.13140/RG.2.1.3086.0325

Inhaltsverzeichnis

1 Einleitung 5
 1.1 Lizenzinformationen ... 5
 1.2 Literaturhinweise .. 6

2 Geometrische Optik 7
 2.1 Lichtgeschwindigkeit .. 9
 2.2 Licht in der geometrischen Optik 12
 2.3 Bilderzeugung durch Brechung 14
 2.3.1 Dünne Linsen .. 16
 2.3.2 Bildkonstruktion bei Linsen 19
 2.3.3 Dicke Linsen .. 20
 2.3.4 Mehrere Linsen .. 21
 2.4 Ebene Spiegel .. 23
 2.5 Bilderzeugung mit sphärischen Spiegeln 24
 2.5.1 Konvexspiegel ... 25
 2.5.2 Bildkonstruktion beim Hohlspiegel 27
 2.6 Abbildungsfehler .. 29

3 Optische Instrumente 33
 3.1 Das Auge ... 33
 3.2 Die Lupe .. 34
 3.3 Die Kamera ... 35
 3.4 Das Mikroskop .. 36
 3.5 Das Teleskop oder Fernrohr 38
 3.6 Das Prisma: ein optisches Instrument mit Dispersion 40

4 Physikalische Begründung der geometrischen Optik 49
 4.1 Das Fresnel-Huygenssche Prinzip 49
 4.2 Reflexion .. 52
 4.3 Brechung .. 54
 4.3.1 Totalreflexion .. 56
 4.4 Das Fermatsche Prinzip ... 57
 4.4.1 Reflexion .. 57
 4.4.2 Brechung .. 58
 4.4.3 Das Fermatsche Prinzip und die Interferenz 59
 4.5 Polarisation .. 61
 4.5.1 Polarisation durch Absorption (Dichroismus) 62
 4.5.2 Polarisation durch Streuung 64
 4.5.3 Polarisation durch Reflexion 65
4.5.4 Polarisation durch Doppelbrechung 66
4.5.5 Beschreibung der Polarisation 70
4.5.6 Beispiele zur Polarisation 86
4.6 Die Fresnelschen Formeln ... 88
4.6.1 Evaneszente Wellen ... 98

5 Interferenz und Beugung ... 101
5.1 Phasendifferenz und Kohärenz 102
5.1.1 Stehende Wellen .. 103
5.1.2 Mach-Zehnder-Interferometer 104
5.1.3 Das Michelson-Interferometer 105
5.1.4 Sagnac-Interferometer .. 106
5.1.5 Das Fabry-Perot-Interferometer 109
5.2 Wellen in 2 und mehr Dimensionen 116
5.2.1 Ebene Wellen ... 117
5.2.2 Kugelwellen ... 117
5.3 Interferenzmuster an einem Doppelspalt 120
5.4 Vektoraddition von harmonischen Wellen 122
5.5 Interferenzmuster bei drei und mehr äquidistanten Quellen 123
5.6 Interferenz an dünnen Schichten 125
5.7 Beugungsmuster an einem Einzelspalt 128
5.7.1 Berechnung der Intensitätsverteilung 129
5.8 Interferenz- und Beugungsmuster beim Doppelspalt 132
5.9 Fraunhoffersche und Fresnelsche Beugung 133
5.9.1 Fresnelsche Näherung ... 134
5.9.2 Fraunhofer-Beugung ... 138
5.9.3 Vergleich .. 138
5.10 Beugungsgitter und Spektrographen 140
5.10.1 Blaze-Gitter ... 141
5.10.2 Hologramme ... 142
5.11 Beugung und Auflösung ... 147
5.11.1 Impulsantwort und Faltungssatz 147

6 Resonatoren und ihre Lichtmoden 153
6.1 Matrixformulierung der Lichtpropagation 153
6.1.1 Stabilität .. 157
6.2 Resonatoren mit sphärischen Spiegeln 158
6.3 Gaussche Strahlen .. 159
6.3.1 Divergenz und Strahlendurchmesser 163
6.3.2 Wirkung optischer Elemente auf Gausssche Strahlen ... 164
6.3.3 Moden ... 166

Abbildungsverzeichnis .. 177
Tabellenverzeichnis .. 181
Index .. 185
1 Einleitung

1.1 Lizenzinformationen

Diese Skript wird unter der Creative Commons Lizenz CC-BY-SA 4.0 veröffentlicht. Dies heisst,

• Sie dürfen das Werk ganz oder in Teilen in allen denkbaren Formaten weiterverwenden, vervielfältigen und weiterverbreiten
• das Werk oder Teile davon neu zusammenstellen, verändern und darauf weitere Werke aufbauen,

sofern Sie

• den Namen der Verfassers dieses Werkes sowie deren Institution, die Universität Ulm, nennen und angemessene Rechte- und Urheberrechtssangaben machen, einen Link zur Lizenz beifügen und angeben, ob Sie Änderungen vorgenommen haben. Dabei darf nicht der Eindruck entstehen, die Verfasser oder die Universität Ulm würden Sie oder Ihre Nutzung unterstützen.

• Wenn Sie Dieses Werk oder Teile davon neu zusammenstellen, verändern und darauf weitere Werke aufbauen, dürfen Sie ihre Beiträge nur unter der gleichen Lizenz wie dieses Werk wie dieses Original verbreiten.

Sie dürfen insbesondere keine weiteren Einschränkungen einsetzen und auch keine technischen Verfahren wie z.B. DRM verwenden, die anderen Nutzern etwas untersagt oder daran hindert, das abgeleitete Werk nach dieser Lizenz zu nutzen. Der Lizenzgeber kann diese Freiheiten nicht widerrufen solange Sie sich an die Lizenzbedingungen halten. Eine detaillierte Erklärung finden Sie unter http://www.uni-ulm.de/en/einrichtungen/e-learning/blog/article/was-sind-eigentlich-cc-lizenzen.html oder unter http://creativecommons.org/licenses/by-sa/4.0/ oder unter https://creativecommons.org/licenses/by-sa/4.0/deed.de

Die CC-Icons und -Buttons wurden unter der Lizenz CC BY von http://creativecommons.org/about/downloads veröffentlicht.

Der Aufbau dieser Vorlesung richtet sich nach dem studienbegleitenden Praktikum zur Optik. Wir beginnen deshalb mit der geometrischen Optik, ohne eine Ableitung der Gesetze aus der Wellennatur des Lichtes.

1.2 Literaturhinweise

2 Geometrische Optik

Licht ist aus der modernen Forschung nicht mehr wegzudenken, wie die folgenden Beispiele zeigen:

Abbildung 2.1: Links sehen sie ein konfokales Ramanmikroskop aus dem Institut für Experimentelle Physik, rechts ein Fluoreszenz-Laserscanningmikroskop, wie es im Institut für Biophysik steht.
Die geometrische Optik, das Thema dieses Kapitels, befasst sich mit den Experimenten, bei denen die Wellennatur des Lichtes vernachlässigt werden kann, bei
2.1 Lichtgeschwindigkeit

(Aus Hecht, Optik [Hec05, pp. 71]) (Aus Tipler, Physik [TM04, pp. 1025])

Abbildung 2.5: Bestimmung der Lichtgeschwindigkeit mit Hilfe der Periodendauer

der Umlaufzeit des Jupitermondes Io.

Astronomische Beobachtungen waren schon immer sehr genau. **Ole Rømer**
beobachtete 1675, dass der Eintritt des Jupitermondes Io in den Kernschatten
sich abhängig von den Sternkonstellationen verschob. Die Periode der Umlaufzeit
beträgt 42.5 Stunden und nimmt zu, wenn die Erde sich vom Jupiter weg bewegt
und ab, wenn sie sich auf den Jupiter zu bewegt. Der maximale Zeitunterschied
ist $2 \cdot 150 \cdot 10^8 \frac{m}{s} = 1000 \text{ s}$. Zwischen zwei Einträgen in den Kernschatten
ist der Zeitunterschied zum mittleren Zeitunterschied $150 \cdot 10^8 \frac{m}{s} / (365.24 \cdot 24 \text{ h}) = 2.42 \text{ s}$. Ole Rømer brauchte also eine Uhr, die in 24 h
weniger als eine Sekunde Fehler hatte. Ole Rømer mass eine Lichtgeschwindigkeit
von ungefähr $2 \cdot 10^8 \frac{m}{s}$. Daraus kann geschlossen werden, dass seine Zeitmes-
sung eine relative Genauigkeit von $3 \cdot 10^{-7}$ hatte, besser als manche Armbanduhr
heute.

Eine gewalthafte Verbesserung der Genauigkeit erzielte **Bradley** mit seiner Beobach-
tung der Abrasion des Lichtes. Analog zum Regen, der, wenn man steht von
oben kommt und der wenn man geht schräg von vorne fällt, ändert das Licht sei-
ne Einfallsrichtung. Aus der Winkeländerung kann auf die Lichtgeschwindigkeit
geschlossen werden, wenn man die Eigengeschwindigkeit kennt.
Abbildung 2.6: Bradley beobachtete die Position eines Fixsterns (möglichst unendlich weit weg) zu verschiedenen Zeiten.

In der Abbildung sind zwei extreme Positionen aufgezeichnet, da wo die Erde mit maximaler Geschwindigkeit auf den Stern sich hinbewegt und da, wo sie sich mit maximale Geschwindigkeit entfernt. Die Bahngeschwindigkeit der Erde ist etwa $v_{\text{Erde}} = 3 \cdot 10^4$ m/s. Alternativ könnte man die Position des Sterns auch im Abstand von 12 Stunden ausmessen. dabei müsste die Umfangsgeschwindigkeit, die in Ulm etwa $v_{\text{Umfang}, \text{Ulm}} = 327$ m/s und damit etwa 100 mal kleiner ist, verwendet werden.

Abbildung 2.7: Dreiecke zur Berechnung der Lichtgeschwindigkeit nach Bradley

Zur Berechnung verwenden wir den Sinussatz:

$$
\frac{v_{\text{Erde}}}{\sin \phi} = \frac{c}{\sin (\pi - \alpha - \phi)}
$$

(2.1.1)

Praktischerweise ergeben sich für beide Fälle, sowohl auf die Erde zu wie von der Erde weg die gleiche Gleichung. Diese Beziehung formen wir um
\[c = \frac{\sin(\pi - \alpha - \phi)}{\sin \phi} v_{\text{Erde}} \]
(2.1.2)

\[= \frac{\sin(\alpha + \phi)}{\sin \phi} v_{\text{Erde}} \]

\[= \frac{\sin \alpha \cos \phi + \cos \alpha \sin \phi}{\sin \phi} v_{\text{Erde}} \]

Für kleine Winkel \(\phi \ll \pi \) bekommen wir

\[c = \frac{\sin \alpha}{\tan \phi} v_{\text{Erde}} \]
(2.1.3)

Wie gross ist nun der zu messende Winkel \(\phi \)? Wir betrachten einen Stern, der etwa \(\pi/4 \) über der Ekliptik (der Bahnebene der Erde) liegt. Mit \(v_{\text{Erde}} = 30 \text{ km/s} \) und \(c = 300000 \text{ km/s} \) und \(\alpha = \pi/4 \) erhalten wir

\[\phi \approx \tan \phi = \sin \alpha \frac{v_{\text{Erde}}}{c} = \frac{\sqrt{2}}{2} \cdot 0.0001 \approx 7 \cdot 10^{-5} = 0.24' \]
(2.1.4)

Der gemessene Winkelunterschied zwischen den Punkten \(A \) und \(B \) ist somit

\[\Delta \Phi = 2\phi \approx 0.48' \]
(2.1.5)

Wenn wir nur im Zeitabstand von einem Tag messen, ist der der Winkel \(\Delta \Phi = 0.29'' \).

Abbildung 2.8: Lichtgeschwindigkeitsmessung nach Armand Fizeau (1849)

Fizeau verwendete einen Weg von 8.63 km. Bei bestimmten Geschwindigkeiten (welchen?) wurde der Weg des Lichtes blockiert, bei anderen durchgelassen. Nehmen wir an, dass das Zahnrad mit 100 Umdrehungen pro Sekunde rotiere. Das Licht wird blockiert, wenn das Zahnrad sich um einen halben Zahn weiter dreht in der Laufzeit des Lichts. Die Laufzeit ist \(t = 8630 \text{ m}/3 \cdot 10^8 \text{ m/s} = 2.877 \cdot 10^{-5} \text{ s} \). Die Umdrehungszeit des Rades ist 0.01 s. Also hat das Rad \(n = 0.01/(2 \times 2.877 \cdot 10^{-5}) = 174 \) Zähne, machbar!.
Versuch zur Vorlesung:
Messung der Lichtgeschwindigkeit mit der Drehspiegelmethode (Versuchskarte O-030)

Die Lichtgeschwindigkeit im Vakuum beträgt 299 792 458 m/s. Sie ist eine Definitionsgrösse.

2.2 Licht in der geometrischen Optik

(Siehe Hecht, Optik [Hec05, pp. 41]) (Siehe Pérez, Optik [Pér96, pp. 7])

Versuch zur Vorlesung:
Brechung und Reflexion (Versuchskarte O-068)

In der geometrischen Optik hat das Licht die folgenden Eigenschaften:

- Licht bewegt sich in homogenen Medien geradlinig aus.
- Licht wird durch Lichtstrahlen dargestellt (Im Wellenbild entspricht dies ebenen Wellen).
- Licht hat nur eine Farbe, das heisst es ist monochromatisch.
Wenn die Farbe von Licht keinen Einfluss auf die Ausbreitung des Lichtes hat, verwendet man auch weisses Licht.

Licht wird an Oberflächen reflektiert. Dabei gilt das Reflexionsgesetz (Siehe Abschnitt 4.2).

Abbildung 2.10: Reflexionsgesetz: links die Querschnittsansicht und rechts eine dreidimensionale Skizze

Der einfallende Strahl und der reflektierte Strahl liegen in einer Ebene, in der auch die Oberflächenormale zur reflektierenden Oberfläche liegt. Für die Winkel zwischen den Lichtstrahlen und der Oberflächenormale gilt

\[\alpha = \gamma \] \hspace{1cm} (2.2.1)

Tritt ein Lichtstrahl von einem transparenten Medium mit der Lichtgeschwindigkeit \(c_1 \) in ein zweites transparentes Medium mit der Lichtgeschwindigkeit \(c_2 \) ein, so wird er gebrochen.
Abbildung 2.11: Strahlengang bei Brechung. Links ist der Strahlengang gezeigt, wenn Licht aus dem optisch dünneren Medium mit c_1 in das optisch dichtere Medium mit $c_2 < c_1$ eintritt. Die rechte Zeichnung zeigt den umgekehrten Verlauf der Strahlung, aus dem optisch dichteren Medium in das optisch dünnere Medium.

Das Brechungsgesetz oder das Gesetz von Snellius lautet

$$\frac{\sin \alpha}{c_1} = \frac{\sin \beta}{c_2} \quad (2.2.2)$$

Mit dem Brechungsindex, der definiert ist als das Verhältnis der Lichtgeschwindigkeit im Vakuum c und der Lichtgeschwindigkeit im Medium i, c_i

$$n_i = \frac{c}{c_i} \quad (2.2.3)$$

lautet das Brechungsgesetz

$$n_1 \sin \alpha = n_2 \sin \beta \quad (2.2.4)$$

Mit diesen beiden Gesetzen können die Phänomene der geometrischen Optik berechnet werden.

Versuch zur Vorlesung:
Applet Lichtbrechung (Versuchskarte -)

2.3 Bilderzeugung durch Brechung

(Siehe Hecht, Optik [Hec05, pp. 238]) (Siehe Tipler, Physik [TM04, pp. 1068]) (Siehe Pérez, Optik [Pér96, pp. 41])

Versuch zur Vorlesung:
Optische Scheibe (Versuchskarte O-046)
Abbildung 2.12: Brechung von Licht an einer gekrümmten Glasoberfläche

Gleich wie mit Spiegeln können Abbildungen mit Linsen durchgeführt werden. Für kleine Winkel gilt \(\sin \Theta \approx \Theta \). Wir erhalten

\[
n_1 \Theta_1 = n_2 \Theta_2 \quad (2.3.1)
\]

\(\beta \) ist der Aussenwinkel von \(P'CA \). Also ist

\[
\beta = \Theta_2 + \gamma = \frac{n_1}{n_2} \Theta_1 + \gamma \quad (2.3.2)
\]

\(\Theta_1 \) ist der Aussenwinkel von \(PAC \).

\[
\Theta_1 = \alpha + \beta \quad (2.3.3)
\]

Nach Elimination von \(\Theta_1 \) folgt

\[
n_1 \alpha + n_2 \gamma = (n_2 - n_1) \beta \quad (2.3.4)
\]

Für kleine Winkel (paraxiale Näherung) gilt, dass \(\alpha \approx s/g \), \(\beta = s/r \) und \(\gamma = s/b \) ist, wobei \(g \) die Gegenstandsweite, \(b \) die Bildweite und \(r \) der Krümmungsradius der Oberfläche ist. Eingesetzt:

\[
\frac{n_1}{g} + \frac{n_2}{b} = \frac{n_2 - n_1}{r} \quad (2.3.5)
\]

Hier sind, im Gegensatz zum sphärischen Spiegel, die reellen Bilder hinter der Grenzfläche.

Nach dem Strahlensatz ist \(n_1 \frac{\text{Gegenstandsgrösse}}{g} = n_2 \frac{\text{Bildgrösse}}{b} \). Der Abbildungsmassstab ist also

\[
V = \frac{\text{Bildgrösse}}{\text{Gegenstandsgrösse}} = -\frac{n_1 b}{n_2 g} \quad (2.3.6)
\]

Winlens Software
2.3.1 Dünne Linsen

(Siehe Hecht, Optik [Hec05, pp. 242]) (Siehe Pérez, Optik [Pér96, pp. 106]) (Siehe Tipler, Physik [TM04, pp. 1071])

Versuch zur Vorlesung:

Optische Scheibe (Versuchskarte O-046)

Wir betrachten eine dünne Linse, das heisst, dass wir die Dicke des Glases vernachlässigen. Die Linsenoberflächen sollen die Krümmungsradien \(r_1 \) und \(r_2 \) (rechts) haben. \(r_1 \) ist der Krümmungsradius einer konvexen Oberfläche, aus der Sicht des ankommenden Lichtstrahles) und damit positiv. \(r_2 \) ist der Krümmungsradius einer konkaven Grenzfläche (wieder aus der Sicht des ankommenden Lichtstrahles) und damit negativ. Die Linse mit dem Brechungsindex \(n \) ist in Luft (Brechungsindex \(= 1 \)). Ein Gegenstand befindet sich im Abstand \(g \) links vor der ersten Ebene, und damit auch im Abstand \(g \) vor der Mittelebene. Die Bildweite \(b_1 \) aufgrund der ersten Oberfläche nach wird Gleichung (2.3.5) mit

\[
\frac{1}{g} + \frac{n}{b_1} = \frac{n-1}{r_1}
\]

(2.3.7)

Das Bild ist virtuell, da das Licht auch noch an der zweiten Grenzfläche gebrochen wird. In unserer Abbildung ist die Bildweite \(b_1 \) negativ. Diese Bildweite \(b_2 \) ist für die zweite Oberfläche die Gegenstandsweite \(g_2 = -b_1 \). Die Abbildungsgleichung dort lautet

\[
\frac{n}{g_2} + \frac{1}{b} = \frac{1-n}{r_2}
\]

(2.3.8)

Eingesetzt und addiert ergibt sich

\[
\frac{1}{g} + \frac{1}{b} = \frac{n-1}{r_1} + \frac{1-n}{r_2} = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)
\]
\[
\frac{1}{f} = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)
\]

wobei wir \(g = \infty \) gesetzt haben. Dann ist \(b = f \) die \textit{Brechnweite}. Bei einer symmetrischen Linse ist \(r_1 = -r_2 = r \) und damit \(f = \frac{2}{(n-1)r} \).

Abbildungsgleichung

\[
\frac{1}{g} + \frac{1}{b} = \frac{1}{f}
\]

(2.3.10)

- Strahlen, die die \textit{Linse} auf der optischen Achse schneiden, werden nicht abgelenkt.
- Achsenparallele Strahlen werden im \textit{Brennpunkt} fokussiert
- Strahlen aus dem \textit{Brennpunkt} werden zu achsenparallelen Strahlen.

Versuch zur Vorlesung:
Brennweitenbestimmung nach Bessel (Versuchskarte O-055)

Abbildung 2.14: Die zwei Positionen einer Linse, bei denen eine scharfe Abbildung erreicht wird.
Zur Berechnung verwenden wir die Abbildungsgleichung

\[\frac{1}{f} = \frac{1}{g} + \frac{1}{b} \quad (2.3.11) \]

mit der Nebenbedingung

\[g + b = \ell \quad (2.3.12) \]

Aus den beiden Gleichungen erhalten wir

\[\frac{1}{f} = \frac{1}{g} + \frac{1}{\ell - g} = \frac{\ell}{g(\ell - g)} \quad (2.3.13) \]

Damit bekommen wir

\[g(\ell - g) = \ell f \quad (2.3.14) \]

\[g^2 - \ell g + \ell f = 0 \]

Die Lösung der quadratischen Gleichung ist:

\[g = \frac{\ell \pm \sqrt{\ell^2 - 4\ell f}}{2} \quad (2.3.15) \]

Die Linse wird auf die zwei Positionen eingestellt, in denen eine scharfe Abbildung geschieht. Der Abstand dieser zwei Positionen ist:

\[\Delta g = g_+ - g_- = \ell \sqrt{1 - 4 \frac{f}{\ell}} \quad (2.3.16) \]

Dann ist

\[\left(\frac{\Delta g}{\ell} \right)^2 = 1 - 4 \frac{f}{\ell} \quad (2.3.17) \]

Somit ist die Brennweite

\[f = \frac{\ell}{4} \left(1 - \frac{\Delta g^2}{\ell^2} \right) \quad (2.3.18) \]
2.3 Bilderzeugung durch Brechung

Abbildung 2.15: Wellenfronten beim Durchgang durch eine Linse

Licht breitet sich in einem optisch dichteren Medium langsamer aus als im dünneren. Bei einer Konvexlinse treffen die achsennahen Lichtstrahlen eher auf das Glas als die achsenferneren. Diese überholen deshalb die achsennahen Lichtstrahlen. Im Wellenbild bedeutet dies, dass ebene Wellen zu konzentrisch auf einen Punkt zulaufenden Wellen werden: die Linse fokussiert.

Abbildung 2.16: Zerstreuungslinse

Bei einer Zerstreuungslinse sind die Oberflächen konkav gekrümmt. Die Krümmungsradien sind negativ. Eine Konkavlinsen (Zerstreuungslinse) wirkt wie ein Konvexspiegel.

2.3.2 Bildkonstruktion bei Linsen

(Siehe Hecht, Optik [Hec05, pp. 250]) (Siehe Pérez, Optik [Pér96, pp. 107]) (Siehe Tipler, Physik [TM04, pp. 1075])

Bei einer Linse gelten die folgenden Regeln zur Konstruktion der Bilder:

- Achsparallele Strahlen werden in den Fokus fokussiert. Bei Konkavlinsen scheinen die aus achsparallelen Strahlen hervorgegangenen Strahlen aus dem Brennpunkt zu kommen.
• Strahlen, die die Linse auf ihrer optischen Achse treffen, werden nicht abgelenkt.

Die Konstruktion der Abbildung bei einer Konvexlinse ist in der obigen Abbildung gezeigt. \(g \) ist die Gegenstandsweite, \(b \) die Bildweite und \(f \) die Brennweite. Die Vergrößerung ist:

\[
V = \frac{B}{G} = -\frac{b}{g}
\]

(2.3.19)

Die Bildkonstruktion bei einer Konkavlinse verläuft analog zu der bei einer Konvexlinse.

2.3.3 Dicke Linsen

(Siehe Hecht, Optik [Hec05, pp. 363]) (Siehe Pérez, Optik [Pér96, pp. 100]) (Siehe Tipler, Physik [TM04, pp. 1077])
Eine dicke \textit{Linse} wird wie eine dünne berechnet, mit der Ausnahme, dass alle Messungen von Distanzen von den jeweiligen Hauptebenen aus gemacht werden müssen.

2.3.4 Mehrere Linsen

(Siehe Hecht, Optik [Hec05, pp. 258]) (Siehe Pérez, Optik [Pér96, pp. 116]) (Siehe Tipler, Physik [TM04, pp. 1078])

Bei mehreren Linsen berechnet man aus der Brennweite f_1 und der Gegenstandsweite g_1 die \textit{Bildweite} b_1. Die Lage des Bildes gibt die Gegenstandsweite g_2 der zweiten \textit{Linse}. Mit der \textit{Brennweite} der zweiten \textit{Linse} f_2 kann das Bild b_2 berechnet werden. Zur Berechnung benötigen wir noch den Abstand der Linsen ℓ. Die Gegenstandsweite der zweiten Linse ist $g_2 = \ell - b_1$. Aus der Abbildungsgleichung erhalten wir
\[b_1 = \frac{f_1 g_1}{g_1 - f_1} \]
\[b_2 = \frac{f_2 g_2}{g_2 - f_2} \]

(2.3.20)

Durch die Kombination der beiden Gleichungen erhalten wir

\[
b_2 = \frac{f_2(\ell - b_1)}{\ell - b_1 - f_2} = \frac{f_2(\ell - \frac{f_1 g_1}{g_1 - f_1})}{\ell - \frac{f_1 g_1}{g_1 - f_1} - f_2} = \frac{f_2(\ell(g_1 - f_1) - f_1 g_1)}{(\ell - f_2)(g_1 - f_1) - f_1 g_1}
\]

(2.3.21)

Diese Gleichung hat eine Divergenz bei \((\ell - f_2)(g_1 - f_1) - f_1 g_1 = 0\), das heisst bei der Gegenstandsweite

\[
g_1 = \frac{(\ell - f_2) f_1}{\ell - f_1 - f_2}
\]

(2.3.22)

Beispiel

- Die Linse 1 sei bei der Position \(x_1 = 0\) cm, die Linse 2 bei der Position \(x_2 = 20\) cm.

- Die Brennweiten seien \(f_1 = 5\) cm und \(f_2 = 10\) cm

- Der Gegenstand sei bei \(x_g = -6\) cm

- Dann ist \(g_1 = 6\) cm. Daraus folgt mit der Linsengleichung \(b_1 = 1/(1/f_1 - 1/g_1) = 30\) cm

- Es ist also \(x_b = 30\) cm

- Da \(x_2 = 20\) cm ist \(g_2 = -10\) cm

- Damit erhalten wir \(b_2 = 1/(1/f_2 - 1/g_2) = 1/(1/10\text{ cm} - 1/(-10\text{ cm})) = 5\) cm
2.4 Ebene Spiegel

(Siehe Hecht, Optik [Hec05, pp. 271]) (Siehe Pérez, Optik [Pér96, pp. 169]) (Siehe Tipler, Physik [TM04, pp. 1059])

Versuch zur Vorlesung:
Virtuelles Bild: Reflexion am ebenen Spiegel (Versuchskarte O-111)

aufeinander stehen, reflektieren das Licht in die gleiche Richtung zurück, aus der es gekommen ist.

2.5 Bilderzeugung mit sphärischen Spiegel

(Siehe Hecht, Optik [Hec05, pp. 277]) (Siehe Pérez, Optik [Pér96, pp. 170]) (Siehe Tipler, Physik [TM04, pp. 1062])

Bei einem gekrümmten Spiegel wird der Gegenstand P in das Bild P' abgebildet. C ist der Krümmungsmittelpunkt des Spiegels, deshalb sind die Winkel Θ der einfallenden und reflektierten Strahlen zu dieser Linie gleich. Es gilt (Aussenwinkel)

$$\beta = \Theta + \alpha \quad (2.5.1)$$

und (auch Außenwinkel)

$$\gamma = \alpha + 2\Theta \quad (2.5.2)$$

Wir eliminieren Θ

$$2\beta = \alpha + \gamma \quad (2.5.3)$$

Für kleine Winkel (paraxiale Näherung) gilt, dass $\alpha \approx h/g$, $\beta = s/r \approx h/r$ und $\gamma \approx h/b$ ist, wobei g die Gegenstandsweite, b die Bildweite, r der Krümmungsradius des Spiegels und h der Abstand der Strahlen von der optischen Achse ist. Eingesetzt:

$$\frac{1}{g} + \frac{1}{b} = \frac{2}{r} \quad (2.5.4)$$

Wenn der Gegenstand im unendlichen ist, $g = \infty$ ist $b = r/2$. Wir nennen diese Weite die
2.5 Bilderzeugung mit sphärischen Spiegel

Brennweite

\[f = \frac{r}{2} \quad (2.5.5) \]

Die *Abbildungsgleichung*, die nicht nur für sphärische Spiegel gilt, sondern auch für Linsen, ist also

\[\frac{1}{g} + \frac{1}{b} = \frac{1}{f} \quad (2.5.6) \]

Abbildungsgleichung eines sphärischen Spiegels

Der obige Spiegel ist ein *Konkavspiegel* (französisch: la cave: Keller (mit einem Kellergewölbe)). Bei einem *Konvexspiegel* gilt die Abbildungsgleichung auch, die *Brennweite* ist aber negativ.

Abbildung 2.24: Sphärische Aberration

Strahlen, die die *paraxiale Näherung* verletzen, werden nicht auf einen Punkt fokussiert. Sie bilden eine *Kaustik*, das Bild eines Punktes ist ausgedehnt. Dieser Abbildungsfehler, der allen sphärischen abbildenden Geräten eigen ist, heisst *sphärische Aberration*.

2.5.1 Konvexspiegel

(Siehe Pérez, Optik [Pér96, pp. 178]) (Siehe Tipler, Physik [TM04, pp. 1067])
Die Berechnung der Abbildungsgleichung ist analog zu der eines Konkavspiegels. Für die Winkel können die folgenden Relationen aufgeschrieben werden:

\[\alpha + \gamma = 2\Theta \quad (2.5.7) \]

sowie

\[\beta + \Theta = \gamma \quad (2.5.8) \]

Wir eliminieren \(\Theta \) und erhalten

\[2\beta = \gamma - \alpha \quad (2.5.9) \]

Für kleine Winkel gilt wieder \(\alpha s/g \approx h/g \), \(\beta = s/r \approx h/r \) und \(\gamma \approx h/b \). Eingesetzt bekommen wir

\[\frac{1}{f} = \frac{2}{r} = \frac{1}{b} - \frac{1}{g} \quad (2.5.10) \]

Vergleichen wir diese Gleichung mit der Gleichung (2.5.4) so sehen wir, dass formal die gleiche Abbildungsgleichung gilt, wenn wir die Bildweite und die Brennweite negativ wählen.

Wir halten fest:

Bei einem Konvexspiegel ist die Brennweite negativ (Zerstreuungsspiegel), bei einem Konkavspiegel positiv (Sammelspiegel).
2.5.2 Bildkonstruktion beim Hohlspiegel

(Siehe Pérez, Optik [Pér96, pp. 177]) (Siehe Tipler, Physik [TM04, pp. 1065])

Versuch zur Vorlesung:
Optische Scheibe (Versuchskarte O-046)

Die Bildkonstruktion bei einem Hohlspiegel verläuft nach den folgenden Regeln:

- Jeder achsparallele Strahl verläuft nach der Reflexion durch den Brennpunkt (oder seine Verlängerung nach rückwärts geht durch den Brennpunkt).

- Jeder Strahldurch den Brennpunkt wird zu einem achsparallelen Strahl (oder jeder Strahl, dessen Verlängerung durch den Brennpunkt ginge, wird nach der Reflexion zu einem achsparallelen Strahl).

- Jeder radiale Strahl verläuft durch den Krümmungsmittelpunkt eines Spiegels und wird in sich selber zurück abgebildet.

- Jeder Strahl, der auf den Scheitel des Spiegels (da wo die optische Achse auf den Spiegel trifft) gerichtet ist, wird unter dem gleichen Winkel zur optischen Achse reflektiert.

Abbildung 2.26: Bildentstehung beim Konkavspiegel

Die Abbildung zeigt, wie nach den obigen Regeln, ein Bild konstruiert wird. Dass die Strahlen sich nicht in einem Punkt kreuzen, liegt daran, dass wir keine paraxialen Strahlen haben.
Der Abbildungsmassstab wird berechnet, indem wir den Strahl auf den Scheitel analysieren. Aus dem Strahlensatz ergibt sich

\[V = \frac{B}{G} = \frac{b}{g} \quad (2.5.11) \]

wobei \(G \) die Höhe des Gegenstandes und \(B \) die Höhe des Bildes ist.

Für paraxiale Strahlen kann die Konstruktion vereinfacht werden, indem man die gekrümmte Fläche durch eine Tangentialebene am Scheitel des Spiegels ersetzt. Aus der Abbildung ist ersichtlich, dass die durch die sphärische Aberration ungenau gewordene Abbildung wieder genau wird. Die neu eingeführte Ebene nennt man
2.6 Abbildungsfehler

2.6 Abbildungsfehler

(siehe Hecht, Optik [Hec05, pp. 380]) (siehe Pérez, Optik [Pér96, pp. 117,130]) (siehe Tipler, Physik [TM04, pp. 1081])

Es gibt die folgenden Abbildungsfehler

1 Moderne *Objektive* haben asphärische Linsen, die bei grossen Blendenöffnungen eine bessere Abbildung ermöglichen

chromatische Aberration Durch die chromatische Dispersion (Siehe Abschnitt 3.6) werden verschiedene Farben unterschiedlich stark gebrochen.
Abbildung 2.32: Intensitätsverteilung im Fokus bei chromatischer Aberration

Blaues Licht wird stärker gebrochen als rotes, also ist die Brennweite für rotes Licht länger als für blaues. Die Abbildung zeigt oben den Strahlengang und in der Mitte die Farbzusammensetzung des Fokus. Unten ist die Verschiebung des Fokus als Funktion der Farbe angegeben. Berechnet worden sind die Darstellungen mit WinLens3D Basic.

Astigmatismus schiefer Bündel
Abbildung 2.34: Astigmatismus

Schiefe parallele Bündel von Licht werden auf einen Punkt fokussiert, dessen Abstand von der Linsenhauptebene umso grösser wird, je schiefer der Einfallswinkel ist. Deshalb sind Fotografien am Rand weniger scharf als im Zentrum.
3 Optische Instrumente

(Siehe Tipler, Physik [TM04, pp. 1089])

3.1 Das Auge

(Siehe Hecht, Optik [Hec05, pp. 304]) (Siehe Tipler, Physik [TM04, pp. 1089])

Versuch zur Vorlesung:
Augen-Modell (Versuchskarte O-132)
3.2 Die Lupe

(Siehe Hecht, Optik [Hec05, pp. 318]) (Siehe Pérez, Optik [Pér96, pp. 100,105])
(Siehe Tipler, Physik [TM04, pp. 1093])

Versuch zur Vorlesung:
Lupe und Mikroskop (Versuchskarte O-081)

Die Wirkungsweise einer Lupe kann nur verstanden werden, wenn wir das Auge mit berücksichtigen. Auf der linken Seite finden sie eine Skizze, wie ein Bild auf der Netzhaut des Auges entsteht. Die Brennweite des Auges sei dabei \(f_a \). Der blaue Pfeil wird entsprechend den Abbildungsgesetzen auf die Netzhaut abgebildet. Die Lupe (rechtes Bild) wird nun so vor das Auge gehalten, dass ihr Brennpunkt auf der Linsenachse des Auges ist. Die vom roten Pfeil (innerhalb der Brennweite
3.3 Die Kamera

Die Kamera besteht aus einem Objektiv, das in einer Führung verschiebbar gelagert ist, dem Film oder der CCD und einer Beobachtungsoptik. Bei einer Spiegelreflexkamera sind die Beobachtungsoptik und der Strahlengang des Objektivs teilweise identisch. Wie weit müssen Objektive bewegt werden? Wir verwenden $1/f = 1/b + 1/g$ und beachten, dass bei einer auf ∞ eingestellten Kamera das Objektiv gerade f vom Film entfernt ist.
<table>
<thead>
<tr>
<th>Distanz</th>
<th>20 mm</th>
<th>50 mm</th>
<th>100 mm</th>
<th>200 mm</th>
<th>1000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m</td>
<td>20.004 mm</td>
<td>50.025 mm</td>
<td>100.1 mm</td>
<td>200.4 mm</td>
<td>1010.1 mm</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>0.004 mm</td>
<td>0.025 mm</td>
<td>0.1 mm</td>
<td>0.4 mm</td>
<td>10.1 mm</td>
</tr>
<tr>
<td>30 m</td>
<td>20.013 mm</td>
<td>50.08 mm</td>
<td>100.3 mm</td>
<td>201.3 mm</td>
<td>1034.4 mm</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>0.013 mm</td>
<td>0.08 mm</td>
<td>0.3 mm</td>
<td>1.3 mm</td>
<td>34.4 mm</td>
</tr>
<tr>
<td>10 m</td>
<td>20.04 mm</td>
<td>50.25 mm</td>
<td>101 mm</td>
<td>204.1 mm</td>
<td>1111 mm</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>0.04 mm</td>
<td>0.25 mm</td>
<td>1 mm</td>
<td>4.1 mm</td>
<td>111 mm</td>
</tr>
<tr>
<td>3 m</td>
<td>20.13 mm</td>
<td>50.85 mm</td>
<td>103.4 mm</td>
<td>214 mm</td>
<td>1500 mm</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>0.13 mm</td>
<td>0.85 mm</td>
<td>3.4 mm</td>
<td>14 mm</td>
<td>500 mm</td>
</tr>
<tr>
<td>1 m</td>
<td>20.4 mm</td>
<td>52.6 mm</td>
<td>111 mm</td>
<td>250 mm</td>
<td>-</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>0.4 mm</td>
<td>2.6 mm</td>
<td>11 mm</td>
<td>50 mm</td>
<td>-</td>
</tr>
<tr>
<td>0.3 m</td>
<td>21.4 mm</td>
<td>60 mm</td>
<td>150 mm</td>
<td>600 mm</td>
<td>-</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>1.4 mm</td>
<td>10 mm</td>
<td>15 mm</td>
<td>400 mm</td>
<td>-</td>
</tr>
<tr>
<td>0.1 m</td>
<td>25 mm</td>
<td>100 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>5 mm</td>
<td>50 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.03 m</td>
<td>60 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>50 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fett angegeben sind die Kombinationen von Distanzen und Brennweiten, die wahrscheinlich nicht einstellbar sind, weil die Verschiebungen zu klein sind. **Rot** angegeben sind die Kombinationen von Distanzen und Brennweiten, die wahrscheinlich nicht einstellbar sind, weil die Verschiebungen zu gross sind.

Die Blendenzahl ist das Verhältnis der Brennweite f zum Durchmesser der d der Öffnung der Blende.

$$\text{Blendenzahl} = \frac{f}{d} \quad (3.3.1)$$

Bei einem Objektiv mit der Brennweite 50 mm und einer Blendenzahl von 8 ist die Öffnung also $d = 6.25 \text{ mm}$.

3.4 Das Mikroskop

(Siehe Hecht, Optik [Hec05, pp. 324]) (Siehe Pérez, Optik [Pér96, pp. 147]) (Siehe Tipler, Physik [TM04, pp. 1098])

Versuch zur Vorlesung:
Lupe und Mikroskop (Versuchskarte O-081)
Bei einem Mikroskop ist ein Gegenstand so nahe am Brennpunkt einer Objektivlinse, dass ein stark vergrößertes Bild erzeugt wird. Dieses Bild, Zwischenbild genannt, wird in einer Ebene im Abstand t vom zweiten Brennpunkt des Okulars erzeugt. Würde man in dieser Ebene eine Kamera anbringen, könnte man ein Bild des Gegenstandes aufnehmen. Der Abbildungsmassstab ist

$$V_{\text{Objektiv}} = \frac{t}{f_1} \quad (3.4.1)$$

Die Strahlen gehen jedoch weiter und werden von einer zweiten Linse, dem Okular weiterverarbeitet. Das Okular ist so platziert, dass das von der ersten Linse erzeugte Bild genau auf seinem Brennpunkt erzeugt wird. Die Strahlen aus der ersten Linse, dem Objektiv, werden nun so gebrochen, dass sie parallel sind. Dies ist die gleiche Funktion, wie sie die Lupe (Siehe Abschnitt 3.2) hatte. Nur das Auge, hier nicht eingezeichnet, kann wieder ein Bild formen, das nun aber sehr stark vergrößert ist.

Die Winkelvergrößerung des Okulars (Lupe) ist

$$V_{\text{Okular}} = \frac{s_0}{f_O} \quad (3.4.2)$$

Damit wird die Gesamtvergrößerung

$$V = V_{\text{Objektiv}} V_{\text{Okular}} = \frac{t s_0}{f_1 f_O} \quad (3.4.3)$$

Ein Objektiv mit der Vergrößerung 60 bei einer Tubuslänge von 180 mm hat eine
Brennweite $f_1 = 3$ mm. Ein Okular mit der Vergrösserung 20 hat die Brennweite $f_O = 12.5$ mm.

3.5 Das Teleskop oder Fernrohr

(Siehe Hecht, Optik [Hec05, pp. 332]) (Siehe Pérez, Optik [Pér96, pp. 158]) (Siehe Tipler, Physik [TM04, pp. 1099])

Abbildung 3.7: Das Teleskop. Die angegebenen Strahlen werden zur Konstruktion des Bildes benötigt. Sie stellen jedoch nicht den Strahlengang dar!

Der Zweck eines Teleskops ist, den Schwinkel zu vergrössern. Das Objektiv sammelt dabei möglichst viel Licht, ändert den Winkel aber nicht. Das Zwischenbild des Objektivs hat die Grösse $B = f_1 \alpha$. Das Okular (Lupe) erzeugt also den Winkel $\beta = \frac{B}{f_2}$ Zusammen ergibt sich die Vergrösserung

$$V = \frac{\beta}{\alpha} = \frac{f_1}{f_2} \quad (3.5.1)$$

Ob ein Stern gesehen werden kann, hängt allein vom Verhältnis

$$\left(\frac{\text{Ø Linse}}{\text{ØAugenpupille}}\right)^2$$

ab. Deshalb hätte man gerne möglichst grosse Teleskope in der Astronomie.
3.5 Das Teleskop oder Fernrohr

Abbildung 3.8: Das Spiegelteleskop

Da Linsen mit Durchmessern von mehr als einigen 10 cm unhandlich schwer sind und schwierig herzustellen, verwendet man für die lichtstärksten Teleskope Spiegel. Im folgenden sind einige hübsche Bilder des Hubble-Teleskops gezeigt.

Abbildung 3.9: Links: Eine Hubble-Aufnahme, die den Blasen-Nebel NGC 7635 zeigt ([NU99]). Rechts: Der so genannte Ameisen-Nebel 'Menzel 3. Die Sternengruppe erhielt ihren Namen aufgrund der Ähnlichkeit zu Kopf und Brustkorb der gemeinen Gartenameise ([NAS97]).
Abbildung 3.10: Links: Zwei Galaxien tauschen Materie aus ([NAS10]), sichtbar als dunkles Band in der Mitte. Rechts: Gigantische Gasgebilde, die einen verglühenden Stern umkreisen. ([FHT96])

3.6 Das **Prisma**: ein optisches Instrument mit Dispersion

(Siehe Hecht, Optik [Hec05, pp. 106, 284]) (Siehe Pérez, Optik [Pér96, pp. 415]) (Siehe Tipler, Physik [TM04, pp. 1038])
3.6 Das Prisma: ein optisches Instrument mit Dispersion

Versuch zur Vorlesung:
Optische Scheibe (Versuchskarte O-046)

Im allgemeinen Falle hängt die Phasengeschwindigkeit einer Welle von der Frequenz und vom Medium ab. Das heisst für Licht, dass jede Farbe eine eigene Ausbreitungsgeschwindigkeit hat.

Versuch zur Vorlesung:
$n(\lambda)$ Abhängigkeit beim Prisma (Versuchskarte O-074)

Durch die Dispersion des Lichtes, das heisst, dass die Brechzahl von der Wellenlänge abhängt, werden die verschiedenen Farben unterschiedlich gebrochen. Jedes Mal, wenn Licht durch die Grenzfläche Luft-Materie geht, werden unterschiedliche Farben unterschiedlich gebrochen. Dies bewirkt die folgenden Effekte:

- die Chromatische Aberration bei Linsen (Farbsäume)
- die Möglichkeit, ein Prisma als Spektralapparat zu verwenden
- das Auseinanderlaufen von Signalen in Glasfasern
- den Regenbogen

Um die Physik der Dispersion zu klären, müssen wir ein physikalisches Modell finden, bei dem eine Frequenzabhängigkeit auftritt. Wir erinnern uns aus der Mechanik, dass bei Oszillatoren eine Resonanz auftritt. Als Beispiel kann man ein Feder-Masse-System betrachten.
Abbildung 3.13: Modell eines Oszillators

In diesem Feder-Masse-Modell wird die Schwingung durch \(\hat{x}(t) = x_0 \cos \omega t \) ange-
gernt. Die Amplitude verhält sich als Funktion der Frequenz wie

\[
x(\omega) = \frac{x_0}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + \omega^2 \omega_0^2}} \quad (3.6.1)
\]

Abbildung 3.14: Resonanzkurve links als Funktion der Frequenz \(\omega \) und rechts als Funktion der Wellenlänge \(\lambda \). Der Ausschnitt zeigt, dass es einen Bereich der Resonanzkurve gibt, der genau so aussieht wie der Verlauf des Brechungsindexes.

Aus diesen Kurven gewinnt man die Anregung, dass ein Feder-Masse-System als Modell für die Dispersion geeignet sein könnte.
Ein fester Körper besteht aus Atomen. Diese bestehen aus Elektronen, deren Aufenthaltswahrscheinlichkeit über einen Durchmesser von 100 pm ausgeschmiert ist, sowie aus einem Atomkern, der im Zentrum der Elektronenwolke liegt und einen Durchmesser von ungefähr 1 fm hat. Wenn ein elektrisches Feld \(E \) angelegt wird, dann verschiebt sich die Elektronenwolke gegen den Kern um eine Distanz \(\Delta x \). Diese Verschiebung soll klein gegen den Durchmesser der Elektronenwolke sein. Dann können wir annehmen, dass die Ladung der Elektronenwolke homogen verteilt ist. Da das Coulombgesetz für die elektrostatischen Kräfte die gleiche Form wie das Gravitationsgesetz hat, hängt die Kraft für die Testladung des Kerns linear von der Auslenkung ab, und zwar so, dass der Schwerpunkt des Kerns und der Elektronenwolke wieder übereinander gelegt werden sollen. Wir haben also eine zur Auslenkung proportionale rücktreibende Kraft, wie bei einer Feder.

Wir betrachten eine longitudinalen Welle auf einem Feder-Masse-System. Die Be-
wegungsgleichung für die n-te Masse ist

\[m\ddot{\xi}_n = -k (\xi_n - \xi_{n-1}) + k (\xi_{n+1} - \xi_n) = k (\xi_{n+1} + \xi_{n-1}) - 2k\xi_n \] \hspace{1cm} (3.6.2)

analog zur Gleichung für ein inneres Pendel bei gekoppelten Pendeln. Bei sehr kleinen Frequenzen schwingen alle Massen in Phase: wie bei den gekoppelten Pendeln gibt die gleichsinnige Bewegung aller Massen die tiefste Frequenz, die hier, da wir eine unendliche Anzahl Massen annehmen, null ist. Die maximale Frequenz erhält man dann, wenn jeweils zwei benachbarte Massen gegensinnig schwingen. Eine höher Schwingungsfrequenz ist nicht möglich. Die minimale Wellenlänge ist \(\lambda_{\text{min}} = 2a \) und entsprechend \(k_{\text{max}} = \frac{\pi}{a} \). **Beachte, dass \(k_{\text{max}} = 2\pi/\lambda \) die Wellenzahl ist, während \(k \) die Federkonstante bedeutet.**

Wir setzen \(\Omega_0^2 = \frac{4k}{m} \) und erhalten

\[\ddot{\xi}_n = \Omega_0^2 \left[\frac{1}{4} (\xi_{n+1} + \xi_{n-1}) - \frac{1}{2}\xi_n \right] \] \hspace{1cm} (3.6.3)

Wir setzen als vorläufige Lösung für \(\lambda > 2a \) an: \(\xi(x, t) = Ae^{i(kx-\omega t)} \). Da die Schwingung nur für diskrete Positionen definiert ist, ersetzen wir \(x = na \) und erhalten als endgültigen Lösungsansatz

\[\xi_n = \xi(n, t) = Ae^{i(ka - \omega t)} \] \hspace{1cm} (3.6.4)

Eingesetzt in die Bewegungsgleichung erhalten wir

\[-\omega^2 e^{ika} = \Omega_0^2 \left[\frac{1}{4} (e^{ik(n-1)a} + e^{ik(n+1)a}) - \frac{1}{2}e^{ika} \right] \]

\[\omega^2 = \frac{1}{2}\Omega_0^2 \left[1 - \frac{1}{2} (e^{ika} + e^{-ika}) \right] \]

\[= \frac{1}{2}\Omega_0^2 [1 - \cos(ka)] \]

\[= \Omega_0^2 \sin^2 \frac{ka}{2} \] \hspace{1cm} (3.6.5)

Die Dispersionsbeziehung für die Feder-Masse-Kette ist

\[\omega(k) = \Omega_0 \sin \frac{ka}{2} \] \hspace{1cm} (3.6.6)

* Für lange Wellen \(\lambda \gg a \) oder \(ka \ll 2\pi \) ist \(\sin \frac{ka}{2} \approx \frac{ka}{2} \). Damit ist \(\omega(k) \approx \frac{1}{2}\Omega_0 ka \).

Mit der Definition der Phasengeschwindigkeit \(c_P = \omega/k \) erhalten wir

\[c_P \approx \frac{1}{2}\Omega_0 a = \frac{1}{2} \sqrt{\frac{k}{m} a} \]
Die Gruppengeschwindigkeit \(c_G = \frac{d\omega}{dk} \) ist

\[
c_G \approx \frac{1}{2} \Omega_0 a = c_P
\]

- Für Wellen mit \(\lambda = \lambda_{\text{min}} = 2a \) ist die Phasengeschwindigkeit

\[
c_P = \frac{\Omega_0}{\pi/a} = \frac{\Omega_0 a}{\pi} = \frac{2}{\pi} \sqrt{\frac{k}{m a}}
\]

und die Gruppengeschwindigkeit

\[
c_G = \frac{d}{dk} \Omega_0 \sin \left(\frac{ka}{2} \right) \bigg|_{\pi/a} = \Omega_0 \frac{a}{2} \cos \left(\frac{ka}{2} \right) \bigg|_{\pi/a} = 0
\]

- Für \(\lambda < 2a \) wird die Welle exponentiell gedämpft.

Wir können das Gefundene auf das Problem des Brechungsindexes wie folgt zurückrechnen:

- Die Phasengeschwindigkeit \(c_P \) ist für die Berechnung der Ausbreitung zu nehmen.

- Die Phasengeschwindigkeit ist

\[
c_P(k) = \frac{\omega(k)}{k} = \frac{\Omega_0 \sin \frac{ka}{2}}{k}
\]

- Der dazugehörige Brechungsindex ist

\[
n(k) = \frac{c_0}{c_P} = \frac{c_0 k}{\Omega_0 \sin \frac{ka}{2}}
\]

wobei \(c_0 \) die Vakuumlichtgeschwindigkeit ist.

- Mit \(k = 2\pi/\lambda \) erhalten wir

\[
n(\lambda) = \frac{c_0 2\pi}{\lambda \Omega_0 \sin \frac{2a}{2\lambda}} = \frac{2\pi c_0}{\Omega_0 \lambda \sin \frac{a}{\lambda}}
\]

- Wir verwenden die Werte für Silikat-Flintglas und passen die obige Gleichung an.
<table>
<thead>
<tr>
<th>λ</th>
<th>n_{ist}</th>
<th>n_{berechnet}</th>
</tr>
</thead>
<tbody>
<tr>
<td>400nm</td>
<td>1.660</td>
<td>1.655</td>
</tr>
<tr>
<td>450nm</td>
<td>1.645</td>
<td>1.636</td>
</tr>
<tr>
<td>500nm</td>
<td>1.630</td>
<td>1.622</td>
</tr>
<tr>
<td>550nm</td>
<td>1.620</td>
<td>1.612</td>
</tr>
<tr>
<td>600nm</td>
<td>1.610</td>
<td>1.605</td>
</tr>
<tr>
<td>650nm</td>
<td>1.605</td>
<td>1.599</td>
</tr>
<tr>
<td>700nm</td>
<td>1.600</td>
<td>1.595</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Brechungsindex für Flintglas

Diese Werte wurden mit den folgenden Parametern erreicht:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>3 \cdot 10^8 m/s</td>
</tr>
<tr>
<td>k/m</td>
<td>1.322 \cdot 10^{15} s^{-2}</td>
</tr>
<tr>
<td>oder mit k = 1N/m: m</td>
<td>7.56 \cdot 10^{-16} kg</td>
</tr>
<tr>
<td>a</td>
<td>7.24 \cdot 10^{-8} m</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Parameter für die Berechnung

Die Werte für a und m sind größer als die erwarteten Werte von a = 10^{-10} m und m = 1.6 \cdot 10^{-27} kg \times 28 = 4.5 \cdot 10^{-26} kg. Der Wert für a deutet darauf hin, dass man nicht ein Atom für sich, sondern eine Gruppe von 724 Atomen betrachten muss. Die Masse in diesem Volumen wäre dann etwa m = 1.7 \cdot 10^{-17} kg. Damit kann man berechnen, dass die Federkonstante k = 1.322 \cdot 10^{15} s^{-2} \times 1.7 \cdot 10^{-17} kg = 0.023 N/m sein muss.
3.6 Das Prisma: ein optisches Instrument mit Dispersion

Dispersion einer zweiatomigen Federkette

Abbildung 3.17: Dispersionsrelation für Federketten mit zwei unterschiedlichen Atomen.

Wenn eine Federkette mit einer regelmässigen Anordnung zweier ungleicher Massen gebildet wird, tritt zum von den vorherigen Ausführungen bekannten akustischen Zweig ein optischer Zweig. Zusätzlich gibt es Frequenzen, für die es keinen reellen \(k \)-Vektor gibt. Diese Frequenzen (oder über \(E = \hbar \omega \) auch diese Energien) sind keine propagierenden Wellen möglich. Gibt es neben longitudinalen auch transversale Wellen, zeigt die Dispersionsrelation nicht einen sondern drei Zweige akustischer Phononen.

Schwerewellen im tiefen Wasser haben die Dispersionsbeziehung

\[
\frac{c_s^2}{k} = \frac{g}{\frac{1}{2\pi} g \lambda} \quad (3.6.7)
\]

Eine Konsequenz ist, dass sehr lange Wellen sehr schnell sind (Bsp. Tsunamis)

- \(c_s = 300 \text{ m/s} \)
- Dann ist \(\lambda = 2\pi c_s^2 / g \approx 2 \cdot 3 \cdot 300 \cdot 300/10 = 54000 \text{ m} \)

Ein Puls oder eine Wellengruppe besteht aus Wellen benachbarter Frequenz. Analog zur Modulation\(^1\) besteht ein Puls aus einer Einhüllenden sowie einer Phase, die für sich aber keine Information trägt. Eine längere Rechnung\(^{[Kän78]}\) ergibt, dass die resultierende Wellenfunktion aus harmonischen Welle \(e^{i(k_0 x - \omega t)} \) sowie der Modulation \(G \left(\left. x - \frac{d\omega}{dk} \right|_{k_0} t \right) \). Die resultierende Welle ist

\[
\xi(x, t) = \frac{1}{\sqrt{2\pi}} e^{i(k_0 x - \omega t)} G \left(\left. x - \frac{d\omega}{dk} \right|_{k_0} t \right) \quad (3.6.8)
\]

\(^1\)Dabei muss \(\omega t \) durch \(kx - \omega t \) ersetzt werden.

©2002-2016 Ulm University, Othmar Marti
Die Gruppengeschwindigkeit

\[v_G = \frac{d\omega}{dk} \bigg|_{k_0} \]

(3.6.9)

Bei unserem Feder-Masse-System ist \(v_G = 0 \) wenn \(\lambda = 2a \) ist. Das heisst, der Puls, der die Information trägt, ist ortsfest. Wenn \(v_G \) nicht konstant ist, bewegen verändert sich die Form des Pulses, da die verschiedenen Frequenzanteile sich unterschiedlich schnell ausbreiten.

Versuch zur Vorlesung:
Gruppen- und Phasengeschwindigkeit bei Dispersion (Versuchskarte SW-093)

Lösungsmöglichkeiten

- Dispersionskompensation. Sie ist aufwendig und wird hauptsächlich bei Kurzpuls-Lasersystemen angewandt.

- Betrieb des Systems bei einer Wellenlänge, bei der die Dispersion minimal, also \(v_G \) möglichst konstant ist. Dies wird bei der optischen Kommunikation angewandt (Wellenlängen 1300 nm und 1500 nm).

- Man setzt die Datenrate auf niedrigere Werte, verbreitert also die Pulse und minimiert so die Fehler durch die Dispersion. Bis zu einer Verringerung der übertragenen Datenrate um den Faktor 2 kann der Geschwindigkeitsverlust meist durch die Anwendung von Kompressionsalgorithmen minimiert werden.
4 Physikalische Begründung der geometrischen Optik

4.1 Das Fresnel-Huygenssche Prinzip

(Siehe Hecht, Optik [Hec05, pp. 163, 650]) (Siehe Pérez, Optik [Pér96, pp. 328]) (Siehe Tipler, Physik [TM04, pp. 1028])

Die Beugung von Wasserwellen an einem Objekt kann mit dem Prinzip von Fresnel-Huygens erklärt werden.

Das Huygenssche Prinzip
Jeder Punkt einer bestehenden Wellenfront ist Ausgangspunkt einer neuen kugelförmigen Elementarwelle, die die gleiche Ausbreitungsgeschwindigkeit und Frequenz wie die ursprüngliche Welle hat. Die Einhüllende aller Elementarwellen ergibt die Wellenfront zu einem späteren Zeitpunkt.

Man nimmt eine Momentaufnahme des Wellenbildes eines bestimmten Wellenberges und nimmt jeden Punkt auf diesem Wellenberg als Ausgangspunkt einer neuen Kreiswelle (Kugelwelle in 3 Dimensionen).
Abbildung 4.1: *Huygensches Prinzip*. Links die Interferenz von 5 *Kreiswellen* auf einer horizontalen Linie, die 4 mal so lang ist wie die Bildkante. Rechts das gleiche mit 9 *Kreiswellen*.

Abbildung 4.2: *Huygensches Prinzip*. Links die Interferenz von 17 *Kreiswellen* auf einer horizontalen Linie, die 4 mal so lang ist wie die Bildkante. Rechts das gleiche mit 33 *Kreiswellen*.
4.1 Das Fresnel-Huygenssche Prinzip

Die Beugung an einem Spalt kann so verstanden werden, dass nicht mehr *Kreiswellen* aus einem grossen Bereich, sondern nur noch *Kreiswellen* aus dem Spalt zum neuen *Wellenbild* beitragen.

4.2 Reflexion

(Siehe Hecht, Optik [Hec05, pp. 153]) (Siehe Pérez, Optik [Pér96, pp. 20]) (Siehe Tipler, Physik [TM04, pp. 1030])

Versuch zur Vorlesung:
Optische Scheibe (Versuchskarte O-046)

\begin{center}
Abbildung 4.7: Geometrie der Reflexion
\end{center}

Bei der Reflexion gilt:
\begin{center}
Einfallswinkel = Ausfallswinkel
\end{center}

In einem Medium bewegt sich Licht langsamer: die Lichtwelle regt die gebundenen Elektronen zum Schwingen an. Diese erzeugen Huygenssche Elementarwellen (Siehe Abschnitt 4.1), aber mit einer Phasenverschiebung oder, in anderen Worten, einer Zeitverzögerung. Dies bedeutet, dass Licht sich langsamer ausbreitet. Die Ausbreitungsgeschwindigkeit von Licht im Medium ist

\begin{equation}
 c_m = \frac{c}{n}
\end{equation}

wobei c die Lichtgeschwindigkeit im Vakuum und n der Brechungsindex des Mediums ist\(^1\). Die Brechkraft n gibt an, um wieviel langsamer Licht in einem Medium ist als im Vakuum. Die Intensität ist gegeben durch

\begin{equation}
 I = \frac{1}{2} \sqrt{\frac{\epsilon_0 \mu_0}{\epsilon_0 \mu_0}} E^2 = \frac{n \epsilon_0 c}{2} E^2
\end{equation}

\(^1\)Es ist auch $n = \sqrt{\epsilon}$, wobei ϵ die relative Dielektrizitätszahl bei der Frequenz des Lichtes ist
wenn \(E \) das elektrische Feld, d.h. die Amplitude der Lichtwelle ist. \(\varepsilon_0 = 8.8542 \cdot 10^{-12} \text{AS} \ \text{V}^{-1} \text{m} \) ist die \textit{Dielektrische Feldkonstante} und \(c = 2.9979 \cdot 10^8 \text{m} \ \text{s}^{-1} \) die Lichtgeschwindigkeit im Vakuum. Der Vorfaktor \(\frac{1}{2} \) kommt von der Mittelung über viele Wellen her. Gleichung (4.2.2) kann auch so geschrieben werden:

\[
I = nE^2 \cdot 1.3272 \cdot 10^{-3} \frac{A}{V}
\]

(4.2.3)

Bei senkrechtem Einfall ist die \textit{Intensität} des reflektierten Lichtes (ohne Beweis)

\[
I = \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 I_0
\]

(4.2.4)

Dabei sind \(n_1 \) und \(n_2 \) die Brechzahlen der beiden Medien und \(I_0 \) die einfallende \textit{Intensität}. Bei \(n_1 = 1 \) (Luft) und \(n_2 = 1.33 \) (Wasser) ist \(I/I_0 = 0.02 \). Für \(n_2 = 1.5 \) (Glas) ist \(I/I_0 = 0.04 \) und für \(n_2 = 2.5 \) (etwa Diamant) ist \(I/I_0 = 0.18 \). Bei \(n_2 = 3.5 \) ist \(I/I_0 = 0.31 \! \) !

Bei zwei Medien mit unterschiedlichen Brechzahlen heisst dasjenige das \textbf{optisch dichtere Medium}, dessen Brechzahl grösser ist.

4.3 Brechung

(Siehe Hecht, Optik [Hec05, pp. 166]) (Siehe Pérez, Optik [Pér96, pp. 20]) (Siehe Tipler, Physik [TM04, pp. 1032])

\textbf{Versuch zur Vorlesung:}
Optische Scheibe (Versuchskarte O-046)

Da jede \textit{Huygenssche Elementarwelle} eine periodische Schwingung mit einer gegebenen Frequenz \(\nu \) darstellt, ändert sich die Frequenz beim Übergang von einem Medium in das zweite nicht. Da die Ausbreitungsgeschwindigkeit \(c_m = c/n \) kleiner ist, gilt für die \textit{Wellenlänge}

\[
\lambda_m = \frac{c_m}{\nu} = \frac{c/n}{\nu} = \frac{\lambda}{n}
\]

(4.3.1)

In einem Medium mit einer \textit{Brechzahl} \(n > 1 \) ist die Wellenlänge kleiner. So hat rotes Licht \(\lambda = 600 \ \text{nm} \) in Glas die Wellenlänge \(\lambda_m = 400 \ \text{nm} \).
Wir betrachten nun den Weg, den das Licht im Inneren eines Mediums zurücklegt. Wir berücksichtigen, dass die Geschwindigkeit im Medium um den Brechungsindex n kleiner ist. Aus dem rechtwinkligen Dreieck wissen wir, dass

$$AB \sin \phi = AB' \quad (4.3.2)$$

Weiter ist

$$AB' = \frac{c \Delta t}{n_1}$$
$$BA' = \frac{c \Delta t}{n_2} \quad (4.3.3)$$

Also gilt

$$\frac{c \Delta t}{n_1 \sin \phi} = \frac{c \Delta t}{n_2 \sin \phi'} \quad (4.3.4)$$

Wir kürzen mit $c \Delta t$ und setzen $\phi = \phi_1$ und $\phi' = \phi_2$ und erhalten das Snelliusche Brechungsgesetz.

Brechungsgesetz

$$n_1 \sin \phi_1 = n_2 \sin \phi_2 \quad (4.3.5)$$

Bei diesem Gesetz gibt es nur dann immer eine Lösung, wenn $n_1 \leq n_2$ ist. Sonst gibt es den Winkel der Totalreflexion. Wenn der vom optisch dichteren Medium einfallende Lichtstrahl gegen die Grenzflächen normale den Winkel ϕ_{tot} hat und der Winkel des resultierenden Lichtstrahls gegen die Grenzflächen normale im optisch
dünneren Medium $\pi/2$ ist, hat das Brechungsgesetz gerade noch eine reelle Lösung.

\[\phi_{\text{tot}} = \arcsin \left(\frac{n_1}{n_2} \right) \quad \text{mit} \quad n_1 < n_2 \]

(4.3.6)

Für Winkel, die grösser als ϕ_{tot} sind, wird Licht aus dem optisch dünneren Medium total reflektiert. Die Reflection geschieht in einer Tiefe von etwa 100 nm innerhalb des optisch dünneren Mediums.

4.3.1 Totalreflexion

(Siehe Hecht, Optik [Hec05, pp. 191]) (Siehe Pérez, Optik [Pér96, pp. 21]) (Siehe Tipler, Physik [TM04, pp. 1035]) (Siehe Gerthsen, Physik [Mes06, pp. 485])

Versuch zur Vorlesung:
Brechung und Reflexion (Versuchskarte O-068)

Versuch zur Vorlesung:
Wasserstrahl als Lichtleiter (Versuchskarte O-072)

![Abbildung 4.9: Transport von Licht in einer Stufenindexfaser](image)

Wenn der Faserkern den Durchmesser d hat, ist der effektive Weg vom Winkel α gegen die Achse abhängig. Die Hypotenuse ist $\ell_H = d / \sin \alpha$ lang, der direkte Weg wäre $\ell = d / \tan \alpha$. Die relative Längenänderung ist

\[\frac{\ell_H}{\ell} = \frac{d}{\sin \alpha} \frac{\tan \alpha}{d} = \frac{\sin \alpha}{\tan \alpha} = \frac{1}{\cos \alpha} \approx 1 + \frac{1}{2} \alpha^2 \]

(4.3.7)

Die Laufzeit hängt also davon ab, wie das Licht durch eine Glasfaser läuft. Zusätzlich tritt Dispersion (Siehe Abschnitt 3.6) auf. bei allen Gläsern ist

\[n_{\text{blau}} > n_{\text{grün}} > n_{\text{gelb}} > n_{\text{rot}} \]

(4.3.8)
Deshalb ist die Laufzeit für die verschiedenen Farben auch unterschiedlich. Da \(c_{\text{Medium}} = c/n_{\text{Medium}} \) ist auch

\[
c_{\text{blau}} < c_{\text{grün}} < c_{\text{gelb}} < c_{\text{rot}} \tag{4.3.9}
\]

4.4 Das Fermatsche Prinzip

(Siehe Hecht, Optik [Hech05, pp. 166]) (Siehe Pérez, Optik [Pére96, pp. 13]) (Siehe Tipler, Physik [TM04, pp. 1042])

Eine alternative Art, die Ausbreitung von Licht zu beschreiben, ist das Fermatsche Prinzip.

Der Weg, den das Licht nimmt, um von einem Punkt zu einem anderen zu gelangen, ist stets so, dass die benötigte Zeit minimal ist.

Die genauere Formulierung lautet:

Der Weg, den das Licht nimmt, um von einem Punkt zu einem anderen zu gelangen, ist stets so, dass die Zeit, die das Licht benötigt, invariant gegen kleine Änderungen des Weges ist.

Mathematisch lautet das Fermatsche Prinzip: Die Zeit

\[
t = \int_{s_1}^{s_2} \frac{n(s)}{c} ds = \frac{1}{c} \int_{s_1}^{s_2} n(s) ds \tag{4.4.1}
\]

Wenn man den Weg nicht kennt, kann man Testfunktionen \(s(r) \) verwenden. Diejenige, die die kürzeste Zeit ergibt, ist die wahrscheinlichste.

4.4.1 Reflexion

(Siehe Tipler, Physik [TM04, pp. 1042])

4.4.2 Brechung

(Siehe Hecht, Optik [Hec05, pp. 166]) (Siehe Tipler, Physik [TM04, pp. 1043])

Abbildung 4.11: Anwendung des Fermatschen Prinzips auf die Berechnung des \textit{Brechungsgesetzes}

Zur Berechnung des Brechungsgesetzes nehmen wir an, dass das Licht von S (ge-
geben) über 0 (verschiebbar, Koordinate x) nach P (gegeben) sich ausbreitet. Die Zeit, um von S nach P ist

$$t_{SP} = t_{S0} + t_{0P}$$ \hspace{1cm} (4.4.2)

Diese Zeit soll extremal sein, das heisst

$$\frac{\partial t_{SP}}{\partial x} = 0$$ \hspace{1cm} (4.4.3)

Nun ist

$$t_{SP} = \frac{S0}{v_1} + \frac{0P}{v_2}$$ \hspace{1cm} (4.4.4)

Nach der obigen Skizze ist

$$S0 = \sqrt{x^2 + h_1^2}$$ \hspace{1cm} (4.4.5)

$$0P = \sqrt{(a - x)^2 + h_2^2}$$

Also ist

$$0 = \frac{\partial t_{SP}}{\partial x} = \frac{1}{2v_1} \frac{1}{\sqrt{x^2 + h_1^2}} \cdot 2x - \frac{1}{2v_2} \frac{1}{\sqrt{(a - x)^2 + h_2^2}} \cdot 2(a - x)$$ \hspace{1cm} (4.4.6)

$$= \frac{x}{v_1 \sqrt{x^2 + h_1^2}} - \frac{(a - x)}{v_2 \sqrt{(a - x)^2 + h_2^2}}$$

Die Betrachtung der in der Skizze auftretenden Dreiecke zeigt, dass

$$\sin \alpha = \frac{x}{\sqrt{x^2 + h_1^2}}$$ \hspace{1cm} (4.4.7)

$$\sin \beta = \frac{(a - x)}{\sqrt{(a - x)^2 + h_2^2}}$$

ist. Mit $v_1 = c/n_1$ und $v_2 = c/n_2$ erhalten wir das Brechungsgesetz nach Snellius

$$n_1 \sin \alpha = n_2 \sin \beta$$ \hspace{1cm} (4.4.8)

4.4.3 Das Fermatsche Prinzip und die Interferenz

(Siehe Känzig, Mechanik und Wellenlehre [Kän78, pp. 253])
Abb. 4.12: Der kürzeste Weg \overline{ACB} und nahe benachbarte Wege haben fast gleiche Längen. Im Gegensatz dazu sind ändert sich bei den längeren Wegen \overline{ADB} und \overline{AEB} die Länge schnell.

Vom Punkt A soll Licht zum Punkt C gelangen. Es gibt viele mögliche Wege. nach dem Fermatschen Prinzip folgt Licht dem Weg, der sich am wenigsten in der optischen Länge2 von seinen benachbarten Wegen unterscheidet. Wenn die Weglängenfunktion stetig differenzierbar ist, ist dies auch der kürzeste Weg. Wir berechnen nun die Phase einer Welle, die entlang eines beliebigen Weges sich ausbreitet, wobei w ein Parameter ist, der die möglichen Wege beschreibt.

Man nimmt an, dass alle Amplituden gleich sind und erhält

$$A_B(t) = \sum_{\text{alle Wege } j} Ae^{i(ks_j - \omega t)}$$

$$= Ae^{-i\omega t} \sum_{\text{alle Wege } j} e^{iks_j}$$ (4.4.9)

Die verbleibende Summation wird auf graphischem Wege in der komplexen Ebene durchgeführt. Die im Punkt B beobachtete Intensität ist das Resultat der Interferenz aller möglichen Wege.

2Das ist die Länge, die mit dem Brechungsindex gewichtet ist.

In dieser Abbildung tragen nur die Wege in der Nähe des kürzesten Weges zur konstruktiven Interferenz bei. Nur dort ist die Ableitung der Weglänge gegen den Parameter w null: Alle Summanden interferieren konstruktiv. Die Wege über D und E ändern die Länge schnell mit w. Sie bilden die beiden Spiralen auf der linken und auf der rechten Seite und tragen nichts zur Summe bei. Wir können das Fermatsche Prinzip auch so formulieren:

In der Quantenelektrodynamik werden Prozesse durch das Aufsummieren aller möglichen Feynmanschen Diagramme berechnet. Nur wenige Diagramme tragen zum Resultat wesentliches bei, die anderen sind Korrekturen höherer Ordnung. Die Summe Feynmanschen Diagramme ist nichts anderes als das Fermatsche Prinzip angewandt auf die Quantenelektrodynamik.

4.5 Polarisation

(Siehe Hecht, Optik [Hec05, pp. 475]) (Siehe Tipler, Physik [TM04, pp. 1044])

Versuch zur Vorlesung: Polarisiertes Licht: Polarisator und Analysator

Licht ist eine transversale elektromagnetische Welle. Das heisst, dass das elek-
trische und das magnetische Feld senkrecht zur Ausbreitungsrichtung schwingen.
Die Wellengleichung für das elektrische Feld und damit auch für Licht ist durch
\(E(x,t) = E_0(x) \cos(k(x) \cdot x - \omega t) \) gegeben. Die Tatsache, dass wir eine Transversalwelle haben erfordert, dass \(E_0 \) der Bedingung
\[E_0 \cdot k = 0 \]
(4.5.1) gilt.
Wenn wir nun, ohne Einschränkung der Allgemeinheit, die Ausbreitungsrichtung der Welle in die x-Richtung legen, dann sind
- der Wellenvektor \(k = (k; 0; 0) \)
- und die Amplitude \(E_0 = (0; E_y; E_z) \)
Diese Wahl erfüllt die Bedingung der Transversalität.
Es gibt zwei mögliche orthogonale Orientierungen von \(E_0 \) sowie die daraus folgenden Linearkombinationen. Die Richtung, in die \(E_0 \) zeigt ist die Polarisationsrichtung.

4.5.1 Polarisation durch Absorption (Dichroismus)

(Siehe Pérez, Optik [Pér96, pp. 323]) (Siehe Hecht, Optik [Hec05, pp. 487]) (Siehe Tipler, Physik [TM04, pp. 1044])

Versuch zur Vorlesung: Polarisiertes Licht: Polarisator und Analysator

Abbildung 4.14: Polarisation durch Absorption in einem Drahtpolarisator

Wenn das elektrische Feld einer Mikrowelle entlang eines Drahtes zeigt, kann dieses Feld im Draht Ladungen bewegen und so Energie abgeben. Die Intensität der Welle und damit die die Absorption hängen von der Polarisation ab. Ebenso gibt es Moleküle mit Doppelbindungen zwischen den Kohlenstoffatomen, bei denen π-Elektronen beweglich sind, die wie Drähte wirken. Werden diese Moleküle orientiert zu einer Folie gemacht, so erhält man eine polarisierende Folie.
Abbildung 4.15: Licht durch einen Polarisator und einen Analysator mit gekreuzten Polarisationsrichtungen. Darunter die gleiche Anordnung, aber der Analysator ist nun um $\pi/4$ gedreht.

Bei einer Anordnung von Analysator und Polarisator polarisiert der Polarisator das Licht. Der Analysator lässt nur die Projektion des E-Feldes auf seine Durchlassachse durch. Für die Amplitude gilt

$$ E = E_0 \cos \theta $$

(4.5.2)

wobei θ der Winkel zwischen den Polarisationsrichtungen von Polarisator und Analysator ist. Da die Intensität durch $I = \frac{n \varepsilon_0}{2} E^2$ ist und somit proportional zum Quadrat der Amplitude $I \propto E^2$, gilt für die Intensität

$$ I = I_0 \cos^2 \theta $$

(4.5.3)

(Gesetz von Malus). Wenn zwischen gekreuzten Polarisatoren und Analysatoren eine optisch active Substanz eingebracht wird, kann mit dieser Anordnung die Größe der optischen Aktivität gemessen werden3.

3Die Analyse von Spannungen in Bauteilen nachgebildet mit Plexiglas war eine wichtige Anwendung (heute gibt es Programme zur Finite-Elemente-Analyse)
Abbildung 4.16: Dichroismus in einem \(NaVO_4Mn \)-Kristall (gezüchtet von A. Lentz, fotografiert von M. Pietralla).

4.5.2 Polarisation durch Streuung

(Siehe Hecht, Optik [Hec05, pp. 507]) (Siehe Tipler, Physik [TM04, pp. 1046])

Versuch zur Vorlesung:
Sonnenuntergang (Versuchskarte O-042)

Wenn Licht von links auf ein streuendes Teilchen (z.B. ein Wassertröpfchen) fällt, dann kann nur die Komponente des \(E \)-Feldes, die auch senkrecht zur Streuerichtung steht, eine Lichtwelle anregen. Die dazu senkrechte Komponente würde eine propagierende, longitudinal polarisierte Welle erzeugen. Propagierende, longitudinalen Lichtwellen stehen aber im Widerspruch zu den Maxwellschen Gleichungen und treten deshalb nicht auf.

Abbildung 4.17: Polarisation durch Streuung an einem Teilchen.
4.5.3 Polarisation durch Reflexion

(Siehe Hecht, Optik [Hec05, pp. 509]) (Siehe Pérez, Optik [Pér96, pp. 320]) (Siehe Tipler, Physik [TM04, pp. 1047])

Versuch zur Vorlesung:
Spiegelanalysator (Versuchskarte O-115)

Wenn Licht in ein dichteres Medium eindringt und es zur Reflexion (Siehe Abschnitt 4.2) und zur Brechung kommt gelten zwei Gesetze

- Einfallswinkel = Ausfallswinkel (Impulserhaltung für die zur Grenzfläche tangentielle Komponenten des Lichtes)
- Das Gesetz von Snellius \(n \sin \theta_P = n_2 \sin \theta_2 \)

Wenn nun der Winkel zwischen dem gebrochenen Licht und dem reflektierten Licht \(\pi/2 \) ist, haben wir wieder die Situation wie bei der Streuung: im reflektierten Licht kann keine Lichtwelle angeregt werden, deren Polarisationsrichtung \(E! \) in der durch den einfallenden und gebrochenen Lichtstrahl definierten Einfallsebene liegt. Das heisst, der reflektierte Strahl ist vollkommen polarisiert mit der Polarisationsebene senkrecht zur Einfallsebene. Der Winkel \(\theta_P \) heisst nach seinem Entdecker Brewster-Winkel. Eine Betrachtung der Winkel in der Abbildung ergibt, dass \(\theta_P + \theta_2 = \pi/2 \) ist. Damit wird der Brewster-Winkel

\[
n \sin \theta_P = n_2 \sin \theta_2 = n_2 \sin(\pi/2 - \theta_P) = n_2 \cos \theta_P
\] (4.5.4)
und damit
\[\tan \theta_P = \frac{n_2}{n} \] \hspace{1cm} (4.5.5)

Für Glas \((n_2 = 1.5)\) gegen Luft \((n = 1)\) ist \(\theta_P = \arctan(1.5) = 0.3128\pi = 56.31^0.\) Der Brewster-Winkel wird zum Beispiel beim Resonator von Gaslasern angewandt um die Polarisationsrichtung zu definieren.

4.5.4 Polarisation durch Doppelbrechung

(Siehe Hecht, Optik [Hec05, pp. 492]) (Siehe Pérez, Optik [Pér96, pp. 322]) (Siehe Tipler, Physik [TM04, pp. 1048])

Versuch zur Vorlesung:
Doppelbrechung (Versuchskarte O-005)

Viele Materialien haben isotrope optische Eigenschaften. Analog zu den elastomechanischen Eigenschaften von isotropen Materialien, die durch den Elastizitätsmodul \(E\) beschrieben werden, werden isotrope optische Materialien durch eine Brechzahl \(n = \varepsilon^2\) beschrieben. Die mechanischen Eigenschaften anisotroper Materialien werden durch Tensoren beschrieben. Analog werden optische Eigenschaften anisotroper Medien durch Tensoren \(\varepsilon\) oder \(n\) beschrieben. Die Mathematik sagt, dass solche Tensoren in einem *Hauptachsensystem* nur Komponenten auf ihren Hauptdiagonalen haben. Für den Brechungsindex heisst dies, dass nicht einer, \(n\) sondern drei Indizes \(n_1, n_2\) und \(n_3\) angegeben werden müssen.

<table>
<thead>
<tr>
<th>Material</th>
<th>Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalkspat</td>
<td>Differenz-Interferenz-Kontrast-Objekte</td>
</tr>
<tr>
<td>Quarz</td>
<td>Anzeigen ...</td>
</tr>
<tr>
<td>Flüssigkristalle</td>
<td>Spannungsuntersuchung</td>
</tr>
<tr>
<td>Plexiglas unter mechanischer Spannung</td>
<td></td>
</tr>
<tr>
<td>usw.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4.1: Doppelbrechende Materialien
Bei einem λ/4- oder einem λ/2-Plättchen wird die Polarisationsrichtung des einfallenden Lichtes so gewählt, dass sie π/4 zu den beiden Hauptachsen mit \(n_{\text{schnell}} < n_{\text{langsam}} \) ist. Dann wird **diese Welle** wie in der unten stehenden Zeichnung gezeigt, langsamer propagiert als **die andere (die rote)**. Es entsteht eine Phasenverschiebung, die bei λ/4-Plättchen gerade eine viertel Wellenlänge ausmacht. Das Licht ist dann zirkular polarisiert.

Ist der Gangunterschied λ/2, wie in der oben stehenden Zeichnung, dann wird die Polarisationsrichtung um π/2 gedreht.

Wir beschreiben kohärentes Licht durch die Gleichung

\[
E(x, t) = E_0 e^{i(k \cdot x - \omega t - \phi)} \tag{4.5.6}
\]

wobei \(E_0 \cdot k = 0 \) ist (Transversalität) und \(E_0 \) die Polarisationsrichtung angibt. \(\phi \) ist die Phase, die die Anfangsbedingung am Ort 0 und zur Zeit 0 angibt.

Ohne Einschränkung der Allgemeinheit können wir \(k = (k; 0; 0) \) setzen. Dann ist \(E_0 = (0; E_y; E_z) \) die möglichen Polarisationsrichtungen. Der Vektor des elektrischen Feldes hat also nur Komponenten in die \(y \)- und die \(z \)-Richtung.

Abbildung 4.19: Wirkungsweise eines λ/4-Plättchens oder eines λ/2-Plättchens

Abbildung 4.20: Wellen in einem λ/4-Plättchen
Unser dichroitisches Plättchen habe die schnelle Achse \((\text{Brechungsindex } n_1)\) entlang \(y'\) und die langsame Achse \((\text{Brechungsindex } n_2)\) entlang \(z'\) und die Dicke \(\ell\). Die \(x\)-Achse sollen übereinstimmen. Das gestrichene Koordinatensystem sei um den Winkel \(\alpha\) gegen das ungestrichene verdreht. Dann ist

\[
\begin{align*}
x' &= x \\
y' &= y \cos(\alpha) - z \sin(\alpha) \\
z' &= y \sin(\alpha) + z \cos(\alpha)
\end{align*}
\tag{4.5.7}
\]

Für Licht mit einer beliebigen Polarisation und einer Ausbreitung entlang der \(x\)-Achse muss das elektrische Feld auf das gestrichene Koordinatensystem projiziert werden. Am Anfang des Plättchens sei zudem die Phase \(\phi = 0\). Wir bekommen dann

\[
\begin{align*}
E_{y'} &= E_y \cos \alpha - E_z \sin \alpha \\
E_{z'} &= E_y \sin \alpha + E_z \cos \alpha
\end{align*}
\tag{4.5.8}
\]

Die Feldkomponente mit der Polarisation \(E_{y'}\) breitet sich mit der Geschwindigkeit \(c_1 = c/n_1\) aus, die Polarisation \(E_{z'}\) mit der Geschwindigkeit \(c_2 = c/n_2\). Damit sind die Wellenlängen der Polarisation entlang \(y'\) \(\lambda_1 = \lambda/n_1 = \frac{2\pi}{k_1} = \frac{2\pi}{n_1 k}\) und entlang \(z'\) \(\lambda_2 = \lambda/n_1 = \frac{2\pi}{k_2}\). Für die \(k\) gilt dann

\[
\begin{align*}
k_1 &= n_1 k \\
k_2 &= n_2 k
\end{align*}
\tag{4.5.9}
\]

Die Laufzeit durch ein Plättchen der Dicke \(\ell\) ist dann \(t_1 = \ell/c_1 = \ell n_1/c\) und \(t_2 = \ell/c_2 = \ell n_2/c\). Wir betrachten zu einer feststehenden Zeit (praktischerweise \(t = 0\)) das Wellenmuster. Am Ausgang des Plättchens haben wir

\[
\begin{align*}
E_{y'}(\ell, 0) &= E_{y'} e^{ik_1 \ell} = E_{y'} e^{i\phi_1 \ell} \\
E_{z'}(\ell, 0) &= E_{z'} e^{ik_2 \ell} = E_{z'} e^{i\phi_2 \ell}
\end{align*}
\tag{4.5.10}
\]

Der Phasenunterschied der beiden Wellen ist die Differenz der Argumente der Exponentialfunktion, also \(\phi(\ell)(n_2 - n_1)k\ell\) Wir können also auch schreiben

\[
\begin{align*}
E_{y'}(\ell, 0) &= E_{y'} e^{i\phi_1 \ell} \\
E_{z'}(\ell, 0) &= E_{z'} e^{i\phi_2 \ell} e^{i\phi(\ell)}
\end{align*}
\tag{4.5.11}
\]

Wenn wir den gemeinsamen Faktor abspalten, dann wird die \(z'\)-Komponente gegen der \(y'\)-Komponente um \(\phi(\ell)\) phasenverschoben. Diese neuen Polarisationen müssen wir auf das \(x, y, z\)-Koordinatensystem mit
Ausmultipliziert erhält man für die Matrix

\[
\begin{pmatrix}
E_y(\ell) \\
E_z(\ell)
\end{pmatrix} = \begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
E_y'(\ell) \\
E_z'(\ell)
\end{pmatrix}
\]

und erhalten

\[
\begin{pmatrix}
E_y(\ell) \\
E_z(\ell)
\end{pmatrix} = \begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
E_y' \\
E_z'e^{i\phi(\ell)}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
e^{i\phi(\ell)/2} & 0 \\
0 & -e^{-i\phi(\ell)/2}
\end{pmatrix}
\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
E_y \\
E_z
\end{pmatrix}
\]

Ausmultipliziert erhält man für die Matrix

\[
\begin{pmatrix}
e^{i\phi(\ell)/2} \cos^2 \alpha + e^{-i\phi(\ell)/2} \sin^2 \alpha & \sin \alpha \cos \alpha (e^{i\phi(\ell)/2} - e^{-i\phi(\ell)/2}) \\
\sin \alpha \cos \alpha (e^{i\phi(\ell)/2} - e^{-i\phi(\ell)/2}) & e^{i\phi(\ell)/2} \sin^2 \alpha + e^{-i\phi(\ell)/2} \cos^2 \alpha
\end{pmatrix}
\]

oder (nur für die Matrix)

\[
\begin{pmatrix}
e^{i\phi(\ell)/2} \frac{1 + \cos 2\alpha}{2} + e^{-i\phi(\ell)/2} \frac{1 - \cos 2\alpha}{2} & \sin 2\alpha (e^{i\phi(\ell)/2} - e^{-i\phi(\ell)/2}) \\
\frac{\sin 2\alpha}{2} (e^{i\phi(\ell)/2} - e^{-i\phi(\ell)/2}) & e^{i\phi(\ell)/2} \frac{1 - \cos 2\alpha}{2} + e^{-i\phi(\ell)/2} \frac{1 + \cos 2\alpha}{2}
\end{pmatrix}
\]

Wir vereinfachen und erhalten die Matrix

\[
\begin{pmatrix}
e^{i\phi(\ell)/2} + e^{-i\phi(\ell)/2} & \frac{i \sin 2\alpha}{2} e^{i\phi(\ell)/2} - e^{-i\phi(\ell)/2} \\
i \sin 2\alpha e^{i\phi(\ell)/2} - e^{-i\phi(\ell)/2} & \frac{e^{i\phi(\ell)/2} - e^{-i\phi(\ell)/2}}{2}
\end{pmatrix}
\]

und erhalten

\[
\begin{pmatrix}
E_y(\ell) \\
E_z(\ell)
\end{pmatrix} =
\begin{pmatrix}
\cos(\phi(\ell)/2) + i \cos 2\alpha \sin(\phi(\ell)/2) & i \sin 2\alpha \sin(\phi(\ell)/2) \\
i \sin 2\alpha \sin(\phi(\ell)/2) & \cos(\phi(\ell)/2) - i \cos 2\alpha \sin(\phi(\ell)/2)
\end{pmatrix}
\begin{pmatrix}
E_y \\
E_z
\end{pmatrix}
\]

Wir betrachten nun den Spezialfall, dass \(\alpha = \pi/4 \) und \(\phi(\ell) = \pi/2 \) ist. Die obige
Matrix wird dann

$$\begin{pmatrix} E_y(\ell) \\ E_z(\ell) \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & i \sqrt{2} \\ i \sqrt{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} E_y \\ E_z \end{pmatrix}$$ \hspace{1cm} (4.5.18)

oder

$$\begin{pmatrix} E_y(\ell) \\ E_z(\ell) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} E_y \\ E_z \end{pmatrix}$$ \hspace{1cm} (4.5.19)

Eine Lichtwelle, die nur in y-Richtung polarisiert ist, wird zu einer Welle, die sowohl in die y wie auch in die z-Richtung polarisiert ist, aber mit einem Phasenfaktor von $\pi/2$. Die Wellengleichung ist dann

$$E_y(x, t) = E_y \cos(kx - \omega t)$$
$$E_z(x, t) = E_z \cos(kx - \omega t - \pi/2) = E_z \sin(kx - \pi/2)$$ \hspace{1cm} (4.5.20)

Diese Art Wellen heisst zirkular polarisierte Welle. Es gibt zwei Arten, mit rechts- und linksläufigem Drehsinn. Ein dichroitisches Objekt, das obigen Eigenschaften hat, heisst $\lambda/4$-Plättchen.

Abbildung 4.21: Wellen in einem $\lambda/2$-Plättchen

Der zweite wichtige Spezialfall ist $\alpha = \pi/4$ und $\phi(\ell) = \pi$. Die obige Matrix wird dann

$$\begin{pmatrix} E_y(\ell) \\ E_z(\ell) \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} E_y \\ E_z \end{pmatrix}$$ \hspace{1cm} (4.5.21)

Licht mit einer Polarisationsrichtung in y-Richtung wird in Licht mit einer Polarisationsrichtung z überführt. Eine solche Anordnung heisst $\lambda/2$-Plättchen. Zwei $\lambda/4$-Plättchen hintereinander geschaltet haben die gleiche Wirkung. Anwendung: optisches Lesesystem in CDs.

4.5.5 Beschreibung der Polarisation

(Siehe Pérez, Optik [Pér96, pp. 310-319])
Wir wollen in diesem Abschnitt mögliche Darstellungen des Polarisationszustandes des Lichtes beschreiben. Die Darstellung in diesem Abschnitt und den folgenden Unterabschnitten folgt Perez [Pér96].

Ohne Einschränkung der Allgemeinheit können wir annehmen, dass Licht sich entlang der x-Achse in einem kartesischen Koordinatensystem ausbreitet. Licht wird dann durch

\[
E(x, t) = E_y(x, t) + E_z(x, t) \\
= E_{y,0}e_y \cos (k_y x - \omega t - \varphi_y) + E_{z,0}e_z \cos (k_z x - \omega t - \varphi_z) \tag{4.5.22}
\]

mit \(k_y\) dem Wellenvektor der Welle mit einem elektrischen Feld in die y-Richtung, \(k_z\) ist analog definiert. Durch eine Verschiebung der Zeitachse kann erreicht werden, dass \(\varphi_y = 0\) ist. Nur die Differenz der der Phasen \(\phi = \varphi_y - \varphi_z = -\varphi_z\) ist relevant. Gleichung (4.5.22) lautet dann

\[
E(x, t) = E_y(x, t) + E_z(x, t) \\
= E_{y,0}e_y \cos (k_y x - \omega t) + E_{z,0}e_z \cos (k_z x - \omega t + \phi) \tag{4.5.23}
\]

Mit dem Additionstheorem \(\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta\) erhalten wir

\[
E(x, t) = E_y(x, t) + E_z(x, t) \\
= E_{y,0}e_y \left[\cos (k_y x) \cos (\omega t) + \sin (k_y x) \sin (\omega t)\right] \\
+ E_{z,0}e_z \left[\cos (k_z x) \cos (\omega t - \phi) + \sin (k_z x) \sin (\omega t - \phi)\right] \tag{4.5.24}
\]

Wir können die Welle aus Gleichung (4.5.24) an irgend einem Ort untersuchen, z.B. bei \(x = 0\). Dann lautet Gleichung (4.5.24)

\[
E(0, t) = E_y(0, t) + E_z(0, t) = E_{y,0}e_y \cos (\omega t) + E_{z,0}e_z \cos (\omega t - \phi) \tag{4.5.25}
\]

Gleichung (4.5.25) beschreibt eine Ellipse. Die folgende Abbildung 4.22 zeigt verschiedene Kurven als Funktion der Phasenverschiebung \(\phi\).
Abbildung 4.22: Gezeigt wird die Abhängigkeit von der Phase ϕ. Die Werte sind $\omega = 1$, $E_{y,0} = 0.8$ und $E_{z,0} = 1.2$.

Im Laborsystem ist die Ellipse durch

\[E_y(t) = E_{y,0} \cos(\omega t) \quad E_z(t) = E_{z,0} \cos(\omega t - \phi) \quad (4.5.26) \]

und

\[\frac{E_y(t)}{E_{y,0}} = \cos(\omega t) \quad \frac{E_z(t)}{E_{z,0}} = \cos(\omega t) \cos(\phi) + \sin(\omega t) \sin(\phi) \quad (4.5.27) \]

beschrieben, wobei ein Additionstheorem für den cos angewandt wurde. Wir setzen $\cos(\omega t)$ in die zweite Gleichung ein und erhalten

\[\frac{E_z(t)}{E_{z,0}} = \frac{E_y(t)}{E_{y,0}} \cos(\phi) + \sqrt{1 - \cos^2(\omega t)} \sin(\phi) \]

\[= \frac{E_y(t)}{E_{y,0}} \cos(\phi) + \sqrt{1 - \frac{E_y^2(t)}{E_{y,0}^2}} \sin(\phi) \quad (4.5.28) \]

\[\frac{E_z(t)}{E_{z,0}} - \frac{E_y(t)}{E_{y,0}} \cos(\phi) = \sqrt{1 - \frac{E_y^2(t)}{E_{y,0}^2}} \sin(\phi) \]

und

\[\left(\frac{E_z(t)}{E_{z,0}} - \frac{E_y(t)}{E_{y,0}} \cos(\phi) \right)^2 = \left(1 - \frac{E_y^2(t)}{E_{y,0}^2} \right) \sin^2(\phi) \quad (4.5.29) \]

Wird die Gleichung (4.5.29) neu geordnet, bekommen wir
Nach Bronstein [BSMM08, p. 212, Kurven 2. Ordnung] kann bei einer Kurve vom Typ \(ax^2 + 2bxy + cy^2 = f \) der Typ der Kegelschnittkurve bestimmt werden, wenn die folgenden Kennzahlen berechnet werden:

\[
\Delta = \begin{vmatrix}
 a & b & 0 \\
 b & c & 0 \\
 0 & 0 & -f
\end{vmatrix}
\]

\[
\delta = \begin{vmatrix}
 a & b \\
 b & a
\end{vmatrix}
\]

\[
S = a + c
\]

(4.5.32)

berechnet werden. Für \(\Delta \neq 0, \delta > 0 \) und \(\Delta \cdot S < 0 \) beschreibt die Kurve eine Ellipse. Wir haben mit den Koeffizienten aus Gleichung (4.5.31)

\[
\Delta = \begin{vmatrix}
 1 & \cos(\phi) & 0 \\
 \cos(\phi) & E_{y,0}^2 E_{z,0} & 0 \\
 0 & 0 & -\sin^2(\phi)
\end{vmatrix}
\]

\[
\delta = \begin{vmatrix}
 1 & \cos(\phi) \\
 \cos(\phi) & E_{y,0}^2 E_{z,0}
\end{vmatrix}
\]

\[
S = \frac{1}{E_{y,0}^2} + \frac{1}{E_{z,0}^2}
\]

(4.5.33) (4.5.34) (4.5.35)

Da alle Koeffizienten reell sind, haben wir für \(\phi \neq \pi n, n \in \mathbb{Z} \) die Beziehungen \(\Delta < 0 \) oder \(\Delta \neq 0, \delta > 0 \) und \(S \cdot \Delta < 0 \).

Ausser für \(\phi \neq \pi n, n \in \mathbb{Z} \) beschreibt das allgemeine elektrische Feld \(E(t) \) eine Ellipse. Das heisst, dass es möglich ist, diese Ellipse auf ihre Hauptachse zu transformieren. Eine Ellipse wird in ihrem Hauptachsensystem durch

\[
\frac{E_Y^2}{a^2} + \frac{E_Z^2}{b^2} = 1
\]

(4.5.36)

beschrieben, wobei \(a \) die Länge der grossen Hauptachse und \(b \) die Länge der kleinen Hauptachse ist, also mit \(|b/a| \leq 1 \). Das Vorzeichen von \(\phi \) gibt den Drehsinn des elektrischen Feldes.

Für \(\phi = \pi n, n \in \mathbb{Z} \) haben wir lineare Polarisations, das heisst nach (4.5.31)

\[
\frac{E_Z^2(t)}{E_{z,0}^2} + \frac{E_Y^2(t)}{E_{y,0}^2} \mp 2 \frac{E_z(t)}{E_{z,0}} \frac{E_y(t)}{E_{y,0}} = 0 = \left(\frac{E_y(t)}{E_{y,0}} \mp \frac{E_z(t)}{E_{z,0}} \right)^2
\]

\[
\Rightarrow E_y(t) = \pm \frac{E_{y,0}}{E_{z,0}} E_z(t)
\]

(4.5.37)
Im Folgenden wollen wir die Darstellung der vom elektrischen Feld abgeführten Ellipse in ihrem Hauptachsensystem und im Laborsystem vergleichen. Das Laborsystem wird durch die Einheitsvektoren \(e_y \) und \(e_z \) aufgespannt, das Hauptachsensystem durch \(e_Y \) und \(e_Z \). In den beiden Systemen lauten die Gleichungen für die Ellipse (siehe auch Abbildung 4.23)

\[
E_{Y}(t) = a \cos(\omega t + \phi_{HA}) \quad E_{Z}(t) = b \cos(\omega t + \phi_{HA} + \phi) \tag{4.5.39}
\]

mit \(e_y \cdot e_z = 0 \) und \(e_Y \cdot e_Z = 0 \). Die Intensität, gemittelt über die Zeit ist

\[
I_{Labor} = \left\langle K |E_{Labor}(t)|^2 \right\rangle = K \frac{\omega}{2\pi} \int_{0}^{2\pi/\omega} \left(E_y(t) e_y + E_z(t) e_z \right)^2 dt
\]

\[
= K \frac{\omega}{2\pi} \int_{0}^{2\pi/\omega} \left(E_{y,0}^2 \cos^2(\omega t) + E_{z,0}^2 \cos^2(\omega t + \phi) \right) dt
\]

\[
= K \frac{\omega}{2\pi} \left(E_{y,0}^2 \frac{\pi}{\omega} + E_{z,0}^2 \frac{\pi}{\omega} \right) = K \left(E_{y,0}^2 + E_{z,0}^2 \right) \tag{4.5.41}
\]
\[
I_{HS} = \langle K \left| E_{HS}(t) \right|^2 \rangle = K \frac{\omega}{2\pi} \int_0^{2\pi/\omega} (E_Y(t)E_Y + E_Z(t)E_Z)^2 \, dt
\]
\[
= K \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \left(E_Y(t)^2 + E_Z(t)^2 \right) \, dt
\]
\[
= K \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \left(a^2 \cos^2(\omega t) + b^2 \cos^2(\omega t + \phi) \right) \, dt
\]
\[
= K \frac{\omega}{2\pi} \left(a^2 \frac{\pi}{\omega} + b^2 \frac{\pi}{\omega} \right) = K \left(\frac{\pi}{\omega} a^2 + b^2 \right)
\]
(4.5.42)

Dabei ist \(K \) eine (vom Einheitensystem abhängige) Konstante.

Also haben wir die Beziehung

\[
\frac{2I}{K} = a^2 + b^2 = E_{y,0}^2 + E_{z,0}^2
\]
(4.5.43)

Im Hauptachsensystem lautet die Ellipsengleichung

\[
1 = \frac{E_Y^2(t)}{a^2} + \frac{E_Z^2(t)}{b^2}
\]
(4.5.44)

Diese transformieren wir jetzt in das Laborsystem mit der Drehmatrix

\[
A = \begin{pmatrix}
\cos(\psi) & \sin(\psi) \\
-\sin(\psi) & \cos(\psi)
\end{pmatrix}
\]
(4.5.45)

Damit haben wir die Beziehungen

\[
\begin{pmatrix}
E_Y \\
E_Z
\end{pmatrix} = A \begin{pmatrix}
E_y \\
E_z
\end{pmatrix} = \begin{pmatrix}
\cos(\psi) & \sin(\psi) \\
-\sin(\psi) & \cos(\psi)
\end{pmatrix} \begin{pmatrix}
E_y \\
E_z
\end{pmatrix}
\]
\[
\Rightarrow \begin{cases}
E_Y = E_y \cos(\psi) + E_z \sin(\psi) \\
E_Z = -E_y \sin(\psi) + E_z \cos(\psi)
\end{cases}
\]
(4.5.46)

Wir setzen nun Gleichung (4.5.46) in Gleichung (4.5.44) ein und erhalten

\[
\frac{E_Y^2 \cos^2(\psi)}{a^2} + \frac{2E_Y E_Z \sin(\psi) \cos(\psi)}{a^2} + \frac{E_Z^2 \sin^2(\psi)}{a^2}
\]
\[
+ \frac{E_Y^2 \sin^2(\psi)}{b^2} - \frac{2E_Y E_Z \sin(\psi) \cos(\psi)}{b^2} + \frac{E_Z^2 \cos^2(\psi)}{b^2} = 1
\]
(4.5.47)

Wir fassen ähnliche Terme in Gleichung (4.5.47) zusammen und können diese Gleichung so mit Gleichung (4.5.31) vergleichen

\[
\frac{E_Y^2 \cos^2(\psi)}{a^2} + \frac{E_Z^2 \sin^2(\psi)}{a^2} + \frac{E_Y^2 \sin^2(\psi)}{b^2} + \frac{E_Z^2 \cos^2(\psi)}{b^2}
\]
\[
+ 2E_Y E_Z \sin(\psi) \cos(\psi) \left(\frac{1}{a^2} - \frac{1}{b^2} \right) = 1
\]
\[
\frac{E_Y^2(t)}{E_{y,0}^2} + \frac{E_Z^2(t)}{E_{z,0}^2} - \frac{2E_z(t) E_y(t)}{E_{z,0} E_{y,0}} \cos(\phi) = \sin^2(\phi)
\]
(4.5.49)
Der Vergleich der Gleichungen (4.5.48) und (4.5.49) ergibt die Beziehungen

\[\text{Koeffizient von } E_y^2: \quad \frac{1}{E_{y,0}^2 \sin^2(\phi)} = \frac{\cos^2(\psi)}{a^2} + \frac{\sin^2(\psi)}{b^2} \] (4.5.50)

\[\text{Koeffizient von } E_z^2: \quad \frac{1}{E_{z,0}^2 \sin^2(\phi)} = \frac{\sin^2(\psi)}{a^2} + \frac{\cos^2(\psi)}{b^2} \] (4.5.51)

\[\text{Koeffizient von } E_y E_z: \quad \frac{\cos(\phi)}{\sin^2(\phi) E_{y,0} E_{z,0}} = -\cos(\psi) \sin(\psi) \left(\frac{1}{a^2} - \frac{1}{b^2} \right) \] (4.5.52)

Die Addition von Gleichungen (4.5.50) und (4.5.51) ergibt

\[\frac{1}{E_{y,0}^2} + \frac{1}{E_{z,0}^2} = \sin^2(\phi) \left(\cos^2(\psi) + \sin^2(\psi) \right) \left(\frac{1}{a^2} + \frac{1}{b^2} \right) \] (4.5.53)

wobei Gleichung (4.5.43) verwendet wurde. Weiter erhalten wir aus Gleichung (4.5.53) mit Gleichung (4.5.43)

\[\pm ab = E_{y,0} E_{z,0} \sin(\phi) \] (4.5.54)

weiter verwenden wir die Identität [BSMM08]

\[\frac{2 \tan \alpha}{1 + \tan^2 \alpha} = \frac{2 \frac{\sin \alpha}{\cos \alpha}}{1 + \frac{\sin^2 \alpha}{\cos^2 \alpha}} = \frac{2 \sin \alpha \cos \alpha}{\sin^2 \alpha + \cos^2 \alpha} = \sin(2\alpha) \] (4.5.57)

und erhalten mit der Gleichung (4.5.55) multipliziert mit 2

\[\frac{2 \tan(\eta)}{1 + \tan^2(\eta)} = \frac{2 \tan(\gamma)}{1 + \tan^2(\gamma)} \sin(\phi) \]

\[\sin(2\eta) = \sin(2\gamma) \sin(\phi) \] (4.5.58)

Eine weitere Beziehung gewinnen wir aus Gleichung (4.5.52) (mit \(\sin(2\alpha) = 2 \sin \alpha \cos \alpha\)) und Gleichung (4.5.54)
\[
\frac{\cos(\phi)}{\sin^2(\phi) E_{y,0} E_{z,0}} = -\frac{1}{2} \sin(2\psi) \frac{b^2 - a^2}{a^2 b^2} = \frac{\cos(\phi) E_{y,0} E_{z,0}}{a^2 b^2}
\]
\[
\sin(2\psi) = \frac{2 \cos(\phi) E_{y,0} E_{z,0}}{a^2 - b^2}
\]
(4.5.59)

Wir suchen \(\psi(E_{y,0}, E_{z,0}, \phi)\). Dazu müssen noch \(a^2\) und \(b^2\) eliminiert werden. Wir haben

\[
a^2 - b^2 = \frac{2I}{K} \left(a^2 - b^2 \right) = \frac{2I}{K} \frac{a^2 - b^2}{a^2 + b^2}
\]
\[
= \frac{2I}{K} \frac{1 - \frac{b^2}{a^2}}{1 + \frac{b^2}{a^2}} = \frac{2I}{K} \frac{1 - \tan^2(\eta)}{1 + \tan^2(\eta)}
\]
\[
= \frac{2I}{K} \left(\cos^2(\eta) - \sin^2(\eta) \right) = \frac{2I}{K} \cos(2\eta)
\]
(4.5.60)

Andererseits folgt aus der Definition von \(\gamma\) und mit \(\sin^2 \alpha = \tan^2 \alpha/(1 + \tan^2 \alpha)\)

\[
E_{y,0} \sin(\gamma) = E_{z,0} \cos(\gamma)
\]
\[\implies E_{y,0} \sin^2(\gamma) = E_{z,0} \sin(\gamma) \cos(\gamma) = \frac{1}{2} E_{z,0} \sin(2\gamma)
\]
\[
\sin(2\gamma) = \frac{2E_{y,0} \sin^2(\gamma)}{E_{z,0}} = \frac{2E_{y,0}}{E_{z,0}} \frac{\tan^2(\gamma)}{1 + \tan^2(\gamma)} = \frac{2E_{y,0}}{E_{z,0}} \frac{E_{z,0}^2}{1 + E_{z,0}^2}
\]
\[
= \frac{2E_{y,0} E_{z,0}^2}{E_{z,0} \left(E_{y,0}^2 + E_{z,0}^2 \right)} = \frac{2E_{y,0} E_{z,0}}{2K}
\]
(4.5.61)

Weiter ist mit den Gleichungen (4.5.58) und (4.5.61)

\[
a^2 - b^2 = \frac{2I}{K} \cos(2\eta) = \frac{2I}{K} \sqrt{1 - \sin^2(2\eta)} = \frac{I}{2K} \sqrt{1 - \sin^2(2\gamma)} \sin^2(\phi)
\]
\[
= \frac{2I}{K} \sqrt{1 - \left(\frac{2E_{y,0} E_{z,0}}{2I} \right)^2 \sin^2(\phi)} = 2 \sqrt{\frac{I^2}{K^2} - \frac{E_{y,0} E_{z,0}^2}{E_{y,0}^2 + E_{z,0}^2} \sin^2(\phi)}
\]
\[
= \sqrt{\left(E_{y,0}^2 + E_{z,0}^2 \right)^2 - 4E_{y,0}^2 E_{z,0}^2 \sin^2(\phi)}
\]
(4.5.62)

Damit lautet Gleichung (4.5.59)
\[
\sin (2\psi) = \frac{2 \cos (\phi) E_{y,0} E_{z,0}}{a^2 - b^2} = \frac{\cos (\phi) E_{y,0} E_{z,0}}{\sqrt{\frac{I^2}{K^2} - E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)}} = \frac{2 \cos (\phi) E_{y,0} E_{z,0}}{\sqrt{\left(E_{y,0}^2 + E_{z,0}^2\right)^2 - 4 E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)}} (4.5.63)
\]

und mit Gleichung (4.5.43)

\[
\cos (2\psi) = \sqrt{1 - \sin^2 (2\psi)} = \sqrt{1 - \frac{\cos^2 (\phi) E_{y,0}^2 E_{z,0}^2}{\frac{I^2}{K^2} - E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)}}
\]

\[
= \sqrt{\frac{I^2}{K^2} - E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)} = \frac{1}{4} \left(\frac{E_{y,0}^2 + E_{z,0}^2}{E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)}\right)^2 - E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)
\]

\[
= \sqrt{\left(E_{y,0} + E_{z,0}\right)^2 - 4 E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)}
\]

\[
= \frac{1}{4} \left(\frac{E_{y,0}^2 - E_{z,0}^2}{E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)}\right)^2 - E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)
\]

\[
= \sqrt{\left(E_{y,0}^2 + E_{z,0}^2\right)^2 - 4 E_{y,0}^2 E_{z,0}^2 \sin^2 (\phi)} (4.5.64)
\]

Aus den Gleichungen (4.5.63) und (4.5.64) bekommen wir

\[
\tan (2\psi) = \frac{2 \cos (\phi) E_{y,0} E_{z,0}}{E_{y,0}^2 - E_{z,0}^2} (4.5.65)
\]

Damit sind alle Parameter in der Abbildung 4.23 bestimmt.

4.5.1 Poincaré-Kugel

(Siehe Pérez, Optik [Péz96, pp. 316-317])

Wir haben eine Lichtwelle, die durch das elektrische Feld \(E_{y,0} \) entlang der \(y \)-Achse, \(E_{z,0} \) entlang der \(z \)-Achse und durch die Phase \(\phi \) bestimmt ist. Da die \(y \)- und \(z \)-Achse orthogonal sind, kann man für die Gesamtintensität nach (4.5.41) auch schreiben

\[
I = I_y + I_z = \frac{K E_{y,0}^2}{2} + \frac{K E_{z,0}^2}{2} = \frac{K}{2} \left(E_{y,0}^2 + E_{z,0}^2\right) (4.5.66)
\]

Dies ist der erste von drei Parametern nach Poincaré [Poi92, Kapitel 12]. Als zweiten Parameter verwendet Poincaré den Winkel \(\psi = \angle (e_y, e_Y) \), also die Drehung der Ellipse. Der dritte Parameter ist \(\tan (\eta) = \pm b/a \), also das Verhältnis der Hauptachsen des vom elektrischen Feld beschriebenen Ellipsoids. Wegen \(|b/a| \leq 1\) ist auch \(|\eta| \leq \pi/4\).
Poincaré hat deshalb die folgenden drei Parameter definiert (siehe auch Abbildung 4.24):

\[
Q = I \cos (2\eta) \cos (2\psi) \quad (4.5.67a)
\]
\[
U = I \cos (2\eta) \sin (2\psi) \quad (4.5.67b)
\]
\[
V = I \sin (2\eta) \quad (4.5.67c)
\]

Die Definitions bereiche der Winkel sind \(0 \leq \psi \leq \pi\) (die Ellipse ist symmetrisch um die grosse Hauptachse) und \(-\pi/4 \leq \eta \leq \pi/4\). Damit spannen die Gleichungen (4.5.67) eine Kugel auf.

Jeder Polarisationszustand zu einer Welle mit der Intensität \(I\) wird durch einen Punkt auf oder innerhalb der Kugel repräsentiert.

Weiter gilt:

\[
I = \sqrt{Q^2 + U^2 + V^2} \quad (4.5.68)
\]

Welche Zustände gibt es auf der Poincaré-Kugel? Dazu schreiben wir mit Gleichung (4.5.66) die Gleichungen für \(\sin(2\psi)\) (4.5.63), für \(\cos((2\psi)\) (4.5.64) sowie für \(\sin(2\eta)\) (4.5.58) und \(\cos(2\eta)\) auf die Variablen \(I_y\), \(I_z\) und \(\phi\) um. Wir brauchen dazu noch
Gleichung (4.5.56) und den ersten Teil von Gleichung (4.5.58).

\[
\sin(2\gamma) = \frac{2 \tan(\eta)}{1 + \tan^2(\eta)} = \frac{2E_{x,0}E_{y,0}}{F_{x,0}^2 + F_{y,0}^2} = \frac{2\sqrt{I_yI_z}}{I_y + I_z} \tag{4.5.69a}
\]

\[
\sin(2\eta) = \sin(2\gamma) \sin(\phi) = \frac{2\sqrt{I_yI_z}}{I_y + I_z} \sin(\phi) \tag{4.5.69b}
\]

\[
\cos(2\eta) = \sqrt{1 - \sin^2(2\eta)} = \sqrt{1 - \frac{4I_yI_z}{(I_y + I_z)^2}} \sin^2(\phi)
\]

\[
= \frac{(I_y + I_z)^2 - 4I_yI_z \sin^2(\phi)}{I_y + I_z} = \frac{\sqrt{(I_y - I_z)^2 + 4I_yI_z \cos^2(\phi)}}{I_y + I_z} \tag{4.5.69c}
\]

\[
\sin(2\psi) = \frac{2 \cos(\phi) E_{y,0}E_{z,0}}{\sqrt{(E_{y,0}^2 + E_{z,0}^2)^2 - 4E_{y,0}^2E_{z,0}^2 \sin^2(\phi)}} = \frac{2 \cos(\phi) \sqrt{I_yI_z}}{\sqrt{(I_y + I_z)^2 - 4I_yI_z \sin^2(\phi)}} \tag{4.5.69d}
\]

\[
\cos(2\psi) = \frac{E_{y,0}^2 - E_{z,0}^2}{\sqrt{(E_{y,0}^2 + E_{z,0}^2)^2 - 4E_{y,0}^2E_{z,0}^2 \sin^2(\phi)}} = \frac{I_y - I_z}{\sqrt{(I_y - I_z)^2 + 4I_yI_z \cos^2(\phi)}} \tag{4.5.69e}
\]

Setzen wir (4.5.69) in (4.5.67) ein, erhalten wir

\[
Q = I_y - I_z \tag{4.5.70a}
\]

\[
U = 2 \sqrt{I_yI_z} \cos(\phi) \tag{4.5.70b}
\]

\[
V = 2 \sqrt{I_yI_z} \sin(\phi) \tag{4.5.70c}
\]

<table>
<thead>
<tr>
<th>Polarisation</th>
<th>(I_y)</th>
<th>(I_z)</th>
<th>(\phi)</th>
<th>Vektor ((Q, U, V)/I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear in (y)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>((1, 0, 0))</td>
</tr>
<tr>
<td>Linear in (z)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>((-1, 0, 0))</td>
</tr>
<tr>
<td>Linear 45°</td>
<td>(I/2)</td>
<td>(I/2)</td>
<td>0</td>
<td>((0, 1, 0))</td>
</tr>
<tr>
<td>Linear -45°</td>
<td>(I/2)</td>
<td>(I/2)</td>
<td>(\pi)</td>
<td>((0, -1, 0))</td>
</tr>
<tr>
<td>Zirkular links</td>
<td>1</td>
<td>1</td>
<td>(\pi/2)</td>
<td>((0, 0, 1))</td>
</tr>
<tr>
<td>Zirkular rechts</td>
<td>1</td>
<td>1</td>
<td>(-\pi/2)</td>
<td>((0, -1, 0))</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Ausgewählte Zustände auf der Poincaré-Kugel.
4.5.5.2 Stokes-Parameter

(Siehe Pérez, Optik [Pér96, pp. 316-317])

Die Grössen Q, U und V können durch die Messung mit verschiedenen Polarisa-
torstellungen bestimmt werden.

Abbildung 4.25: Messung der Stokes-Parameter.

Wie Abbildung 4.25 zeigt braucht man zur Messung der Stokes-Parameter einen
einstellbaren Analysator, eine drehbare $\lambda/2$-Platte und einen Detektor. Sei α der
Winkel der Polarisationsebene des Analysators zur y-Achse, β der Winkel der $\lambda/2$-
Platte zur y-Achse. Wir messen nun die Intensitäten bei $\alpha = 0$ und $\beta = 0$, also
$I_{0,0}$, bei $\alpha = \pi/4$ und $\beta = 0$, also $I_{\pi/4,0}$, bei $\alpha = \pi/4$ und $\beta = \pi/4$, also $I_{\pi/4,\pi/4}$, bei
$\alpha = \pi/2$ und $\beta = 0$, also $I_{\pi/2,0}$, $\alpha = 3\pi/4$ oder, was äquivalent ist bei $\alpha = -\pi/4$
und $\beta = 0$, also $I_{-\pi/4,0}$ und schliesslich bei $\alpha = -\pi/4$ und $\beta = \pi/4$, also $I_{-\pi/4,\pi/4}$.

Wir verwenden (4.5.27)

\[
E_y(t) = E_{y,0} \cos(\omega t) \quad E_z(t) = E_{z,0} \cos(\omega t - \phi)
\]

(4.5.71)

Ein Polarisator im Winkel α erzeugt eine Welle mit dem E-Feld

\[
|E|(\alpha, t) = E(\alpha, t) = E_y(t) \cos(\alpha) + E_z(t) \sin(\alpha)
\]

\[
= E_{y,0} \cos(\omega t) \cos(\alpha) + E_{z,0} \cos(\omega t - \phi) \sin(\alpha)
\]

(4.5.72)

(4.5.73)

und damit bei einer Rechnung mit komplexen Wellen
\[\alpha = 0 \quad \beta = 0 \quad I_{0,0} = \frac{K}{2} E_{y,0}^2 = I_y \] (4.5.74)

\[\alpha = \frac{\pi}{2} \quad \beta = 0 \quad I_{\pi/2,0} = \frac{K}{2} E_{z,0}^2 = I_z \] (4.5.75)

\[\alpha = \frac{\pi}{4} \quad \beta = 0 \quad I_{\pi/4,0} = \frac{K}{4} \left(E_{y,0}^2 + E_{z,0}^2 + 2E_{y,0}E_{z,0}\sin(\phi) \right) \]
\[= \frac{I_y + I_z}{2} + \sqrt{I_y I_z} \sin(\phi) \] (4.5.76)

\[\alpha = -\frac{\pi}{4} \quad \beta = 0 \quad I_{-\pi/4,0} = \frac{K}{4} \left(E_{y,0}^2 + E_{z,0}^2 - 2E_{y,0}E_{z,0}\sin(\phi) \right) \]
\[= \frac{I_y + I_z}{2} - \sqrt{I_y I_z} \sin(\phi) \] (4.5.77)

\[\alpha = \frac{\pi}{4} \quad \beta = \pi/4 \quad I_{\pi/4,\pi/4} = \frac{K}{4} \left(E_{y,0}^2 + E_{z,0}^2 + 2E_{y,0}E_{z,0}\cos(\phi) \right) \]
\[= \frac{I_y + I_z}{2} + \sqrt{I_y I_z} \cos(\phi) \] (4.5.78)

\[\alpha = -\frac{\pi}{4} \quad \beta = \pi/4 \quad I_{-\pi/4,\pi/4} = \frac{K}{4} \left(E_{y,0}^2 + E_{z,0}^2 - 2E_{y,0}E_{z,0}\cos(\phi) \right) \]
\[= \frac{I_y + I_z}{2} - \sqrt{I_y I_z} \cos(\phi) \] (4.5.79)

Die Stokes-Parameter \(I, Q, U \) und \(V \) bekommen wir nun mit

\[I = I_y + I_z = I_{0,0} + I_{\pi/2,0} \] (4.5.80)

\[Q = I_y - I_z = I_{0,0} - I_{\pi/2,0} \] (4.5.81)

\[U = 2 \sqrt{I_y I_z} \cos(\phi) = I_{\pi/4,\pi/4} - I_{-\pi/4,\pi/4} \] (4.5.82)

\[V = 2 \sqrt{I_y I_z} \sin(\phi) = I_{-\pi/4,0} - I_{\pi/4,0} \] (4.5.83)

Es gibt noch weitere Möglichkeiten, durch die Messung der Intensitäten bei verschiedenen Polarisationsrichtungen den Polarisationszustand zu bestimmen (siehe z. B. Hecht [Hec05] oder Born und Wolf [BW70])

Müller 1948 [Mül48] schlug vor, die Stokes-Parameter als Vektoren zu schreiben, also

\[\mathbf{S} = \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} \] (4.5.84)
Damit werden ausgewählte Polarisationen (siehe auch Tabelle 4.2) geschrieben:

<table>
<thead>
<tr>
<th>Polarisation</th>
<th>Stokes-Vektor</th>
<th>Polarisation</th>
<th>Stokes-Vektor</th>
</tr>
</thead>
</table>
| Linear in y | \[
 \begin{pmatrix}
 1 \\
 0 \\
 0 \\
 0
 \end{pmatrix}
\] | Linear in z | \[
 \begin{pmatrix}
 1 \\
 0 \\
 0 \\
 0
 \end{pmatrix}
\] |
| Linear 45° | \[
 \begin{pmatrix}
 1 \\
 0 \\
 1 \\
 0
 \end{pmatrix}
\] | Linear $-45°$ | \[
 \begin{pmatrix}
 1 \\
 0 \\
 -1 \\
 0
 \end{pmatrix}
\] |
| Zirkular links | \[
 \begin{pmatrix}
 1 \\
 0 \\
 0 \\
 1
 \end{pmatrix}
\] | Zirkular rechts | \[
 \begin{pmatrix}
 1 \\
 0 \\
 0 \\
 -1
 \end{pmatrix}
\] |

Tabelle 4.3: Stokes-Vektoren für ausgewählte Polarisationszustände.

Schließlich verwendet man noch die Definition für den

Polarisationsgrad

\[
p = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}
\] \hfill (4.5.85)

Die Polarisation von Licht und deren Modifikation durch $\lambda/4$ und $\lambda/2$-Platten wird häufig mit Stokes-Vektoren und Müller-Matrizen beschrieben [Col03, Abschnitt 9.5]

4.5.5.3 Beschreibung der Polarisation durch Jones-Vektoren und Jones-Matrizen

(Siehe Hecht, Optik [Hec05, pp. 544]) (Siehe Pérez, Optik [Pér96, pp. 317-319])

Aus der Darstellung im vorhergehenden Kapitel geht hervor, dass nur die y- und die z-Richtung die Polarisation beschreiben. Wir können also Zweiervektoren verwenden. Weiter soll die Phase der Welle als komplexe Zahl dargestellt werden. Schließlich normieren wir die Länge des Vektors auf 1. Eine Welle polarisiert in
die y-Richtung wird also durch den Vektor

$$
A_y = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
$$

(4.5.86)
dargestellt. Rechtshändig zirkular polarisiertes Licht wird durch

$$
A_R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}
$$

(4.5.87)
beschrieben.

<table>
<thead>
<tr>
<th>Jones-Vektoren</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_y = \begin{pmatrix} 1 \ 0 \end{pmatrix}$</td>
<td>Linear polarisiert in y-Richtung</td>
</tr>
<tr>
<td>$A_z = \begin{pmatrix} 0 \ 1 \end{pmatrix}$</td>
<td>Linear polarisiert in z-Richtung</td>
</tr>
<tr>
<td>$A_R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \ -i \end{pmatrix}$</td>
<td>Rechtshändig zirkular polarisiert</td>
</tr>
<tr>
<td>$A_L = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \ i \end{pmatrix}$</td>
<td>Linkshändig zirkular polarisiert</td>
</tr>
</tbody>
</table>

Polarisationen in andere Richtungen können durch die Anwendung von Drehmatrizen berechnet werden. Die Drehung aus dem Koordinatensystem y, z nach y', z' wird durch

$$
y' = y \cos(\alpha) - z \sin(\alpha)
$$
$$
z' = y \sin(\alpha) + z \cos(\alpha)
$$

(4.5.88)
beschrieben. Die *Drehmatrix* lautet also

$$
R(\alpha) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}
$$

(4.5.89)
Ein um den Winkel α zu y-Achse linear polarisierter Strahl wird durch

$$
A(\alpha) = R(\alpha)A_y = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix}
$$

(4.5.90)
beschrieben. Ein linearer Polarisator in y-Richtung wird durch

$$
P_y = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

(4.5.91)
beschrieben. Die Wirkung eines um den Winkel α gedrehten Polarisators kann berechnet man, indem man das Koordinatensystem um $-\alpha$ dreht, den Polarisator in der y-Ebene anwendet und mit α zurückdreht.
\[\mathbf{P}(\alpha) = \mathbf{R}(\alpha) \mathbf{P}_y \mathbf{R}(-\alpha) \] (4.5.92)

\[
\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) \\
\sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
\cos(\alpha) & \sin(\alpha) \\
-\sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) \\
\sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\begin{pmatrix}
\cos(\alpha) & \sin(\alpha) \\
0 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos^2(\alpha) & \cos(\alpha)\sin(\alpha) \\
\cos(\alpha)\sin(\alpha) & \sin^2(\alpha)
\end{pmatrix}
\] (4.5.93)

Die Jones-Matrix des linearen Polarisators in die z-Richtung lautet also

\[\mathbf{P}_z = \mathbf{P}(\pi/2) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \]

Die zirkulare Polarisation wird durch die beiden homogenen Polarisatoren \(\mathbf{P}_R \) und \(\mathbf{P}_L \) erzeugt.

\[
\mathbf{P}_R = \frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}
\] (4.5.94)

\[
\mathbf{P}_L = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}
\]

Das \(\lambda/4 \) mit der schnellen Achse entlang der y-Richtung wird durch

\[\mathbf{P}_{\lambda/4,y} = e^{i\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} = \frac{1}{\sqrt{2}} (1 + i) \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} \] (4.5.95)

Mit der Gleichung (4.5.17) hatten wir ein schräg stehendes \(\lambda/4 \)-Plättchen berechnet. Die Gleichung ist aber allgemeiner: sie beschreibt ein Verzögerungselement von \(\phi \) gedreht um \(\alpha \) zur y-Achse.

\[
\mathbf{P}_{VZ}(\alpha, \phi) = \\
\begin{pmatrix}
\cos(\phi(\ell)/2) + i \cos 2\alpha \sin(\phi(\ell)/2) \\
i \sin 2\alpha \sin(\phi(\ell)/2) & \cos(\phi(\ell)/2) - i \cos 2\alpha \sin(\phi(\ell)/2)
\end{pmatrix}
\] (4.5.96)

Das Verzögerungselement mit der schnellen Achse parallel zur y-Achse ist durch

\[\mathbf{P}_{VZ,y} = \begin{pmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{pmatrix} \] (4.5.97)

gegeben. Die folgende Tabelle zeigt aus Gleichung (4.5.96) berechenbaren Elemente.
<table>
<thead>
<tr>
<th>Jones-Matrix</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{P}_{\lambda/4, y} = e^{i\pi/4} \begin{pmatrix} 1 & 0 \ 0 & -i \end{pmatrix}$</td>
<td>$\lambda/4$-Plättchen mit der schnellen Achse in y</td>
</tr>
<tr>
<td>$\mathbf{P}_{\lambda/4, z} = e^{i\pi/4} \begin{pmatrix} -i & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>$\lambda/4$-Plättchen mit der schnellen Achse in z</td>
</tr>
<tr>
<td>$\mathbf{P}{\lambda/4}(\alpha) = \mathbf{R}(\alpha)\mathbf{P}{\lambda/4, y}\mathbf{R}(-\alpha)$</td>
<td>$\lambda/4$-Plättchen mit der schnellen Achse gedreht um α bezüglich y</td>
</tr>
<tr>
<td>$\mathbf{P}{\lambda/2, y} = \mathbf{P}{\lambda/4, y}\mathbf{P}_{\lambda/4, y} = \begin{pmatrix} i & 0 \ 0 & -i \end{pmatrix}$</td>
<td>$\lambda/2$-Plättchen mit der schnellen Achse in y</td>
</tr>
<tr>
<td>$\mathbf{P}{\lambda/2, z} = \mathbf{P}{\lambda/4, z}\mathbf{P}_{\lambda/4, z} = \begin{pmatrix} -i & 0 \ 0 & i \end{pmatrix}$</td>
<td>$\lambda/2$-Plättchen mit der schnellen Achse in z</td>
</tr>
<tr>
<td>$\mathbf{P}{\lambda/2}(\alpha) = \mathbf{R}(\alpha)\mathbf{P}{\lambda/2, y}\mathbf{R}(-\alpha)$</td>
<td>$\lambda/2$-Plättchen mit der schnellen Achse gedreht um α bezüglich y</td>
</tr>
</tbody>
</table>

Wenn ein Lichtstrahl mit der Polarisation \mathbf{A} durch die Objekte $\mathbf{T}_1, \mathbf{T}_2, \ldots, \mathbf{T}_n$ geht, ist die resultierende Welle

$$\mathbf{A}_{\text{Ende}} = \mathbf{T}_n\mathbf{T}_{n-1}\cdots\mathbf{T}_2\mathbf{T}_1\mathbf{A}$$ \hspace{1cm} (4.5.98)

Mit den oben angegebenen Polarisations- und Rotationsmatrizen können die meisten Polarisationsprobleme berechnet werden.

4.5.6 Beispiele zur Polarisation

(Siehe Gerthsen, Physik [Mes06, pp. 535])

![Abbildung 4.26: Aufspaltung eines Lichtstrahls in einem doppelbrechenden Material wie Kalkspat](image)

©2002-2016 Ulm University, Othmar Marti, [CC BY-SA](http://creativecommons.org/licenses/by-sa/4.0)
4.5 Polarisation

Abbildung 4.27: Doppelbrechung in einem $NaVO_4Mn$-Kristall (gezüchtet von A. Lentz, fotografiert von M. Pietralla). Gezeigt wird, dass die drei Kristallrichtungen eines sechseckig scheinenden Kristalls nicht äquivalent sind.

Viele Kristalle sind nicht isotrop. Es gibt auch in diesen Kristallen Achsen, die eine höhere Symmetrie aufweisen, als die anderen Achsen. Diese Achse wird *Hauptachse* genannt. Alle physikalischen Eigenschaften eines Kristalls, also auch die optischen Eigenschaften, müssen die Symmetrie des Kristalls haben. Die physikalischen Eigenschaften und insbesondere die *Lichtgeschwindigkeit* sind in allen Ebenen senkrecht zur Hauptachse isotrop. Dabei ist die Lichtgeschwindigkeit aber von der Polarisationsrichtung des Lichtes abhängig. In Richtung der Hauptachse ist die Lichtgeschwindigkeit unabhängig von der Polarisationsrichtung c_0. Licht, das sich senkrecht zur Polarisationsrichtung ausbreitet, bewegt sich ebenfalls mit c_0, wenn der E-Vektor in Richtung der Hauptachse zeigt, die Polarisationsrichtung also senkrecht zur Hauptachse liegt. Dieses Licht heisst *ordentliches Licht*. Licht mit der anderen Polarisationsrichtung läuft im Kalkspat schneller, und zwar mit $c_{ao} = 1.16c_0$. Dieses Licht heisst *ausserordentliches Licht*. Wenn die Einfallsrichtung dazwischen liegt, ist die Geschwindigkeit des ordentlichen Lichts immer noch c_0, die des ausserordentlichen Lichts liegt zwischen c_0 und c_{ao}.

Die Wellenflächen des ordentlichen Lichts stammend von einer punktförmigen Quelle sind also Kugelflächen, während die Wellenflächen des ausserordentlichen Lichts Rotationsellipsoide sind, deren Rotationsachse mit der Hauptachse parallel ist. Bei Kalkspat ist das Rotationsellipsoid abgeplattet, das Material heisst *einfach negativ*. Bei Quarz ist das Rotationsellipsoid länglich (die ordentliche Lichtgeschwindigkeit ist größer als die ausserordentliche). Man nennt Quarz deshalb *einfach positiv*.

Wenn Licht senkrecht auf eine Fläche fällt, die schräg zur Hauptachse liegt, müssen zwei verschiedene Konstruktionen verwendet werden:

- Kugelflächen beim ordentlichen Licht
- Rotationsellipsoide beim ausserordentlichen Licht. Die Rotationsachse liegt schiefl zur Einfallsrichtung.
Da die resultierenden Flächen Tangentenflächen sind, bleibt die Richtung des ordentlichen Lichtes senkrecht zur Oberfläche, während das ausserordentliche Licht sich schräg weiter ausbreitet. Zur Berechnung des Lichtweges müssen Tensoren verwendet werden.

In der Technik war die spannungsinduzierte Doppelbrechung lange das einzige Mittel, unzulässige Beanspruchungen in Bauteilen festzustellen.

Versuch zur Vorlesung:
Spannungsdoppelbrechung (Versuchskarte O-008)

4.6 Die Fresnelschen Formeln

(Siehe Hecht, Optik [Hec05, pp. 175]) (Siehe Gerthsen, Physik [Mes06, pp. 539])

Versuch zur Vorlesung:
Fresnelsche Formeln (Versuchskarte O-039)
Die Reflexion und die Brechung von Licht wird durch die Fresnelschen Formeln bestimmt. Wir verwenden die Definitionen

- Der einfallende und der reflektierte Strahl definiert die Einfallsebene. Diese ist senkrecht zur Grenzfläche der beiden Medien.
- Licht, dessen Polarisationsebene senkrecht zur Einfallsebene liegt, heisst s-polarisiertes Licht.
- Licht, dessen Polarisationsebene parallel zur Einfallsebene liegt, heisst p-polarisiertes Licht.
- Für die Intensität des Lichtes gilt in nichtmagnetischen Medien $I \propto \sqrt{\varepsilon E^2}$, wobei $\varepsilon = n^2$ ist.
- Genauer gilt für die Intensität: $I = \frac{1}{2} \sqrt{\varepsilon \varepsilon_0} n' E^2 = \frac{n' \varepsilon_0 c}{2} E^2$ für sinusförmige Wellen mit der Amplitude E.

Im folgenden betrachten wir nur nichtmagnetische Materialien. Wir beginnen die Rechnungen für Licht mit einer Polarisation senkrecht zur Einfallsebene (s-Polarisation).

Wenn in den beiden angrenzenden Medien die Dielektrizitätskonstanten ε und ε' sind, dann muss der Energiestrom an der Grenzfläche kontinuierlich sein, also

$$\frac{n \varepsilon_0 c}{2} \left(E_e^2 - E_r^2 \right) \cos \alpha = \frac{n' \varepsilon_0 c}{2} E_g^2 \cos \beta$$

(4.6.1)

wobei α und β die Winkel zur Oberflächennormalen sind, E_e ist die E-Feldkomponente des einfallenden Lichtes parallel zur Oberfläche, E_r die des reflektierten (beachte das Vorzeichen) und E_g die des gebrochenen.

Vereinfacht kann man die Energieerhaltung schreiben als

$$n \left(E_e^2 - E_r^2 \right) \cos \alpha = n' E_g^2 \cos \beta$$

(4.6.2)

Die Komponente von E parallel zur Oberfläche muss stetig sein, also ist

$$E_e + E_r = E_g.$$
Wir beachten, dass \(a^2 - b^2 = (a-b)(a+b) \) ist und dividieren die beiden Gleichungen (4.6.2) und (4.6.3) durcheinander. Wir erhalten

\[
n (E_e - E_r) \cos \alpha = n'E_g \cos \beta \quad (4.6.4)
\]

Nach dem Brechungsgesetz ist \(n'/n = \sin \alpha / \sin \beta \). Wir setzen dies ein und erhalten

\[
(E_e - E_r) \sin \beta \cos \alpha = E_g \sin \alpha \cos \beta \quad (4.6.5)
\]

Mit \(E_e + E_r = E_g \) bekommen wir

\[
\text{Fresnelsche Formeln für die } s\text{-Polarisation}
\]

\[
E_r = E_e \frac{\sin \beta(\alpha) \cos \alpha - \sin \alpha \cos \beta(\alpha)}{\sin \beta(\alpha) \cos \alpha + \sin \alpha \cos \beta(\alpha)}
\]

\[
= -E_e \frac{\sin(\alpha - \beta(\alpha))}{\sin(\alpha + \beta(\alpha))}
\]

\[
E_g = E_e \frac{2 \sin \beta(\alpha) \cos \alpha}{\sin(\alpha + \beta(\alpha))}
\]

(4.6.6)

• Wenn \(\alpha > \beta \), wenn also das Licht aus dem optisch dünneren Medium auf das optisch dichtere Medium trifft, haben \(E_e \) und \(E_r \) unterschiedliche Vorzeichen: es tritt ein Phasensprung um \(\pi \) bei der Reflexion auf.

• Bei der Reflexion am dünneren Medium \(\alpha < \beta \) wechselt \(\sin(\alpha - \beta) \) das Vorzeichen. Es gibt keinen Phasensprung bei der Reflexion.

• Die Gesetze für die Intensität bekommt man durch Quadrieren und unter Berücksichtigung der relativen Dielektrizitätszahl \(\varepsilon \) und der relativen Permeabilität \(\mu \).

• Bei fast senkrechtem Einfeld bekommt man \(E_r = -E_e \sin \alpha + \sin \beta = -E_e n'/n \)

Fresnelsche Formeln für die Intensität bei der \(s\)-Polarisation für nichtmagnetische Materialien

\[
I_r = I_e \left[\frac{\sin \beta(\alpha) \cos \alpha - \sin \alpha \cos \beta(\alpha)}{\sin \beta(\alpha) \cos \alpha + \sin \alpha \cos \beta(\alpha)} \right]^2
\]

\[
= I_e \frac{\sin^2(\alpha - \beta(\alpha))}{\sin^2(\alpha + \beta(\alpha))}
\]

\[
I_g = \frac{n'}{n} I_e \frac{4 \sin^2 \beta(\alpha) \cos^2 \alpha}{\sin^2(\alpha + \beta(\alpha))}
\]

(4.6.7)
Wir haben die einfallende Intensität \(I_e = \frac{n'c}{n}E_e \) als Referenz verwendet. Deshalb erscheint der Vorfaktor \(\frac{n'}{n} \) für \(I_g \).

Abbildung 4.30: Stetigkeitsbedingungen für Licht mit p-Polarisation. Die dicken Vektoren stellen die \(k \)-Vektoren dar (rot für das einfallende Licht, grün für das reflektierte und blau für das gebrochene Licht). Die \(E \)-Vektoren sind gestrichelt gezeichnet, ihre Projektion auf die Grenzfläche dünn.

Bei \(p \)-polarisiertem Licht ist die Bedingung für die Stetigkeit der Parallelkomponente von \(E \) durch

\[
(E_e + E_r) \cos \alpha = E_g \cos \beta
\]

gegeben. Weiter gilt immer noch die Energieerhaltung

\[
n \left(E_e^2 - E_r^2 \right) \cos \alpha = n' E_g^2 \cos \beta
\]

Teilen wir die beiden Gleichungen, erhalten wir

\[
n (E_e - E_r) = n' E_g
\]

Wir wenden wieder das Snelliusche Gesetz an

\[
n (E_e - E_r) = n \frac{\sin \alpha}{\sin \beta} E_g
\]

Damit müssen wir das Gleichungssystem

\[
E_e \sin \beta = E_r \sin \beta + E_g \sin \alpha
\]

\[
E_e \cos \alpha = -E_r \cos \alpha + E_g \cos \beta
\]

lösen. Wir multiplizieren die erste Gleichung mit \(\cos \alpha \) und die zweite mit \(\sin \beta \).
und addieren

\[E_e (\sin \beta \cos \alpha + \sin \beta \cos \alpha) = E_g (\sin \alpha \cos \alpha + \sin \beta \cos \beta) \quad (4.6.13) \]

Mit \(\sin (\alpha \pm \beta) \cos (\alpha \mp \beta) = \sin \alpha \cos \alpha \pm \sin \beta \cos \beta \) wird die obige Gleichung

\[E_e (2 \sin \beta \cos \alpha) = E_g \sin (\alpha + \beta) \cos (\alpha - \beta) \quad (4.6.14) \]

Um \(E_r \) zu bekommen multiplizieren wir die obere Gleichung in Gleichung (4.6.12) mit \(\cos \beta \) und die untere mit \(\sin \alpha \), subtrahieren und erhalten

\[E_e (\sin \beta \cos \beta - \cos \alpha \sin \alpha) = E_r (\sin \beta \cos \beta + \sin \alpha \cos \alpha) \quad (4.6.15) \]

Dies ist auch

\[E_e \sin (\beta - \alpha) \cos (\beta + \alpha) = E_r \sin (\beta + \alpha) \cos (\beta - \alpha) \quad (4.6.16) \]

Damit erhält man

Fresnelsche Formeln (p-Polarisation):

\[E_r = -E_e \frac{\tan [\alpha - \beta(\alpha)]}{\tan [\alpha + \beta(\alpha)]} \]
\[E_g = E_e \frac{2 \sin \beta(\alpha) \cos \alpha}{\sin [\alpha + \beta(\alpha)] \cos [\alpha - \beta(\alpha)]} \quad (4.6.17) \]

Wenn in der Gleichung für \(E_r \alpha + \beta(\alpha) = \pi/2 \) ist, divergiert der Nenner, wir erhalten also \(E_r (\alpha = \pi/2 - \beta(\alpha)) = 0 \). Dies ist der Brewster-Winkel.

Die Fresnelschen Formeln für die Intensität lauten

Fresnelsche Formeln für die Intensität bei (p-Polarisation):

\[I_r = I_e \frac{\tan^2 [\alpha - \beta(\alpha)]}{\tan^2 [\alpha + \beta(\alpha)]} \]
\[I_g = \frac{n'}{n} I_e \frac{4 \sin^2 \beta(\alpha) \cos^2 \alpha}{\sin^2 [\alpha + \beta(\alpha)] \cos^2 [\alpha - \beta(\alpha)]} \quad (4.6.18) \]
Fresnel-Formeln: E-Feld, $n' > n$

Abbildung 4.31: Verlauf der Amplitude des elektrischen Feldes für p- und s-Polarisation, wenn Licht aus dem dünneren Medium ($n_1 = 1$) in das dichtere ($n_2 = 1.5$) eintritt.

Fresnel-Formeln: I, $n' > n$

Abbildung 4.32: Verlauf der Intensität für p- und s-Polarisation, wenn Licht aus dem dünneren Medium ($n_1 = 1$) in das dichtere ($n_2 = 1.5$) eintritt. Die Intensität ist mit $I = n_i E^2$ berechnet worden, wobei n_i die für das jeweilige Medium gültige Brechzahl ist.
Abbildung 4.33: Verlauf der Amplitude des elektrischen Feldes für p- und s-Polarisation, wenn Licht aus dem dichteren \((n_1 = 1.5)\) Medium in das dünneres \((n_2 = 1)\) eintritt.

Abbildung 4.34: Verlauf der Intensität für p- und s-Polarisation, wenn Licht aus dem dichteren \((n_1 = 1.5)\) Medium in das dünneres \((n_2 = 1)\) eintritt. Die Intensität ist mit \(I = n_i E^2\) berechnet worden, wobei \(n_i\) die für das jeweilige Medium gültige Brechzahl ist.

Wir können kontrollieren, ob im Energiefluss senkrecht zur Grenzfläche die Energie erhalten bleibt. Dazu müssen wir den Energiefluss durch eine Fläche parallel zur
Oberfläche berechnen. Der einfallende Energiefluss ist

\[I_{e, \perp} = \frac{n \epsilon_0 c}{2} E_e^2 \cos \alpha \] (4.6.19)

Der Fluss der reflektierten Energie durch eine Fläche parallel zur Grenzfläche ist

\[I_{r, \perp} = \frac{n \epsilon_0 c}{2} E_r^2 \cos \alpha \] (4.6.20)

Ebenso ist der Fluss der gebrochenen Energie durch eine Fläche parallel zur Grenzfläche

\[I_{g, \perp} = \frac{n' \epsilon_0 c}{2} E_g^2 \cos \alpha \] (4.6.21)

Die Energieerhaltung sagt nun, dass für die \(p \)-Polarisation

\[I_{e, \perp} = n \frac{\epsilon_0 c}{2} E_e^2 \cos \alpha = I_{r, \perp} + I_{g, \perp} \]

\[= n \frac{\epsilon_0 c}{2} E_e^2 \tan^2[\alpha - \beta(\alpha)] \cos \alpha \]

\[+ n' \frac{\epsilon_0 c}{2} E_e^2 \frac{4 \sin^2 \beta(\alpha) \cos^2 \alpha \cos(\beta(\alpha))}{\sin^2[\alpha + \beta(\alpha)] \cos^2[\alpha - \beta(\alpha)]} \]

\[= \frac{\epsilon_0 c}{2} E_e^2 \]

\[\left[\frac{\sin^2[\alpha - \beta(\alpha)] \cos^2[\alpha - \beta(\alpha)] \cos \alpha}{\sin^2[\alpha + \beta(\alpha)] \cos^2[\alpha - \beta(\alpha)]} \right] \]

\[+ n' \frac{4 \sin^2 \beta(\alpha) \cos^2 \alpha \cos(\beta(\alpha))}{\sin^2[\alpha + \beta(\alpha)] \cos^2[\alpha - \beta(\alpha)]} \]

\[= \frac{n \epsilon_0 c}{2} E_e^2 \]

\[\left[\sin^2[\alpha - \beta(\alpha)] \cos^2[\alpha + \beta(\alpha)] \cos \alpha \right. \]

\[+ \frac{\sin \alpha}{\sin \beta(\alpha)} 4 \sin^2 \beta(\alpha) \cos^2 \alpha \cos(\beta(\alpha)) \]

\[\cdot \left[\sin^2[\alpha + \beta(\alpha)] \cos^2[\alpha - \beta(\alpha)] \right]^{-1} \]

\[= \frac{n \epsilon_0 c}{2} E_e^2 \cos \alpha \]

\[\left[\sin^2[\alpha - \beta(\alpha)] \cos^2[\alpha + \beta(\alpha)] \right. \]

\[+ 4 \sin \alpha \sin \beta(\alpha) \cos \alpha \cos(\beta(\alpha)) \]

\[\cdot \left[\sin^2[\alpha + \beta(\alpha)] \cos^2[\alpha - \beta(\alpha)] \right]^{-1} \] (4.6.22)

gilt.

Wir müssen also den Wert des Bruches
\[X = \left\{ \sin^2[\alpha - \beta(\alpha)] \cos^2[\alpha + \beta(\alpha)] + 4 \sin \alpha \sin \beta(\alpha) \cos \alpha \cos(\beta(\alpha)) \right\} \]
\[\cdot \left\{ \sin^2[\alpha + \beta(\alpha)] \cos^2[\alpha - \beta(\alpha)] \right\}^{-1} \]

berechnen.

\[
X = \left\{ \sin^2[\alpha - \beta] \cos^2[\alpha + \beta] + \sin(2\alpha) \sin(2\beta) \right\} \\
\cdot \left\{ \sin^2[\alpha + \beta] \cos^2[\alpha - \beta] \right\}^{-1}
\]
\[= \left\{ \sin^2[\alpha - \beta] \cos^2[\alpha + \beta] + \sin(2\alpha) \sin(2\beta) \right\} \\
\cdot \left\{ \sin^2[\alpha + \beta] \cos^2[\alpha - \beta] \right\}^{-1}
\]
\[= \left\{ \left(1 - \cos[2\alpha - 2\beta] \right) \left(1 + \cos[2\alpha + 2\beta] \right) + \sin(2\alpha) \sin(2\beta) \right\}^{-1}
\]
\[= \left\{ (1 - \cos[2\alpha - 2\beta]) \left(1 + \cos[2\alpha + 2\beta] \right) + 4 \sin(2\alpha) \sin(2\beta) \right\}^{-1}
\]
\[= \left\{ (1 - \cos[2\alpha - 2\beta]) \left(1 + \cos[2\alpha + 2\beta] \right) + 2 \left(\cos[2\alpha - 2\beta] - \cos[2\alpha + 2\beta] \right) \right\}^{-1}
\]
\[= \left\{ (1 - \cos[2\alpha + 2\beta]) \left(1 + \cos[2\alpha - 2\beta] \right) \right\}^{-1}
\]

Wir setzen \(A = \cos[2\alpha - 2\beta] \) und \(B = \cos[2\alpha + 2\beta] \) und schreiben die Gleichung um

\[
X = \frac{(1 - A)(1 + B) + 2A - 2B}{(1 - B)(1 - A)}
\]
\[= \frac{1 - A + B - AB + 2A - 2B}{1 + A - B - AB}
\]
\[= \frac{1 + A - B - AB}{1 + A - B - AB}
\]
\[= 1
\]

Da \(X = 1 \) ist, ist gezeigt, dass für den Energiefluss durch die Grenzfläche für \(p \)-Polarisation Energieerhaltung gilt.

Eine ähnliche Gleichung kann man für die \(s \)-Polarisation berechnen. In der Elektrizitätslehre würde man sagen, dass der Fluss des Pointing-Vektors berechnet wurde.
Abbildung 4.35: Verlauf der mit der Fläche gewichteten Intensität für p- und s-Polarisation, wenn Licht aus dem dünneren ($n_1 = 1$) Medium in das dichtere ($n_2 = 1.5$) eintritt. Die Intensität ist mit $I = n_i E^2 \cos(\alpha_i)$ berechnet worden, wobei n_i die für das jeweilige Medium gültige Brechzahl und α_i der entsprechende Winkel ist. Die drei Kurven für die gesamte Intensität bei der p-Polarisation und der s-Polarisation liegen über der Kurve der winkelgewichteten Intensität des einfallenden Lichtes.
Abbildung 4.36: Verlauf der mit der Fläche gewichteten Intensität für p- und s-Polarisation, wenn Licht aus dem dichteren ($n_1 = 1.5$) Medium in das dünnere ($n_2 = 1$) eintritt. Die Intensität ist mit $I = n_i E^2 \cos(\alpha_i)$ berechnet worden, wobei n_i die für das jeweilige Medium gültige Brechzahl und α_i der entsprechende Winkel ist. Die drei Kurven für die gesamte Intensität bei der p-Polarisation und der s-Polarisation liegen über der Kurve der winkelgewichteten Intensität des einfallenden Lichtes. Im Bereich der Totalreflexion gibt die Rechnung den Energiefluss korrekt wieder.

Parallel zur Oberfläche ist es wegen der Translationssymmetrie schwieriger Energieerhaltungsgrössen zu definieren.

Die dritte Stetigkeitsbedingung an der Grenzfläche, die der Normalkomponente von $\varepsilon E = D$ liefert das Snelliussche Gesetz.

4.6.1 Evaneszente Wellen

(Siehe Hecht, Optik [Hec05, pp. 193,196])

Versuch zur Vorlesung:
Evaneszente Wellen - tunneln mit Licht (Versuchskarte O-080)

Aus den letzten Abbildungen ist ersichtlich, dass wenn Licht aus dem dichteren Medium in das dünnere eintritt, es Winkel gibt ($n' \sin \beta > 1$), für die es keine reelle Lösung der Fresnelschen Formeln gibt. Die Lösung ist rein imaginär. Was bedeutet dies? Dies heisst, dass auch der k-Vektor des Lichtes im dünnen Medium imaginär wird. Darum wird aus e^{ikr} mit $k = i\kappa$ der exponentielle Dämpfungsfaktor $e^{-\kappa r}$, wobei κ vom Einfallswinkel abhängt. Licht im dünnener Medium kann also nicht propagieren: Wegen der Energieerhaltung ist die Reflexion perfekt.
Abbildung 4.37: Momentaufnahme der Interferenz einer total reflektierten Welle mit sich selber sowie der evaneszenten Wellen.
5 Interferenz und Beugung

(Siehe Hecht, Optik [Hec05, pp. 562]) (Siehe Hecht, Optik [Hec05, pp. 649]) (Siehe Pérez, Optik [Pér96, pp. 327]) (Siehe Pérez, Optik [Pér96, pp. 348]) (Siehe Tipler, Physik [TM04, pp. 1109])

Versuch zur Vorlesung:
Wellenmaschine (Versuchskarte SW-077)

In diesem Abschnitt sollen die Eigenschaften von Licht, die auf der Wellennatur beruhen, diskutiert werden.

Interferenz zweier Wellen

\[\delta = 0 \]
\[\delta = \frac{\pi}{4} \]
\[\delta = \frac{\pi}{2} \]
\[\delta = \frac{3\pi}{4} \]
\[\delta = \pi \]
\[\delta = \frac{5\pi}{4} \]
\[\delta = \frac{3\pi}{2} \]
\[\delta = \frac{7\pi}{4} \]
\[\delta = 2\pi \]

Abbildung 5.1: Interferenz zweier Wellen mit der gleichen Amplitude und der gleichen Frequenz und einer Phase, die von 0 ... 2\(\pi\) variiert.

Mathematisch setzen wir zwei Wellen an

\[y_1(x,t) = A \sin(kx - \omega t) \]
\[y_2(x,t) = A \sin(kx - \omega t + \delta) \] (5.0.1)

An einem bestimmten Ort ist die Differenz der Phasen durch

\[(kx - \omega t_1) - (kx - \omega t_2 + \delta) = \omega(t_1 - t_2) - \delta = \omega \Delta t - \delta \] (5.0.2)

gegeben und unabhängig vom Ort. Zu einer bestimmten Zeit ist die Differenz der
Phasen durch

\[(kx_1 - \omega t) - (kx_2 - \omega t + \delta) = k(x_1 - x_2) - \delta = k\Delta x - \delta \quad (5.0.3)\]

geliefert, unabhängig von der Zeit.
Wir wenden die Additionstheoreme für die Winkelfunktionen an. Wir verwenden

\[
\sin(\alpha) + \sin(\beta) = 2 \cos \left(\frac{\alpha - \beta}{2} \right) \sin \left(\frac{\alpha + \beta}{2} \right) \quad (5.0.4)
\]

und erhalten

\[
y(x,t) = y_1(x,t) + y_2(x,t) \\
= A \sin (kx - \omega t) + A \sin (kx - \omega t + \delta) \\
= 2A \cos \left(\frac{\delta}{2} \right) \sin \left(kx - \omega t + \frac{\delta}{2} \right) \quad (5.0.5)
\]

Aus dieser Gleichung kann die folgende Tabelle abgeleitet werden.

<table>
<thead>
<tr>
<th>Phase</th>
<th>resultierende Amplitude</th>
<th>Interferenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2A</td>
<td>konstruktiv</td>
</tr>
<tr>
<td>\pi/2</td>
<td>\sqrt{2}A</td>
<td></td>
</tr>
<tr>
<td>\pi</td>
<td>0</td>
<td>destruktiv</td>
</tr>
<tr>
<td>3\pi/2</td>
<td>\sqrt{2}A</td>
<td></td>
</tr>
<tr>
<td>2\pi</td>
<td>2A</td>
<td>konstruktiv</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Interferenz und Phasendifferenz

5.1 Phasendifferenz und Kohärenz

(Siehe Hecht, Optik [Hec05, pp. 570]) (Siehe Pérez, Optik [Pér96, pp. 367]) (Siehe Tipler, Physik [TM04, pp. 1109]) (Siehe Gerthsen, Physik [Mes06, pp. 514])
Wir betrachten Wellen, die sich auf verschiedenen Wegen ausbreiten.

Zwei Wellen heissen kohärent, wenn sie, bis auf eine Phase die gleiche Zeitabhängigkeit haben.

Versuch zur Vorlesung:
Kohärenz (Versuchskarte O-051)
Die Kohärenz von Wellen ist nur im Idealfall überall und zu jeder Zeit gegeben.
Kohärenzzeit Jede Quelle hat ein beschränktes Phasengedächtnis. Dies bedeutet, dass die Wellenzüge, die vor einer Zeit größer als die Kohärenzzeit \(\tau \) emittiert wurden, keine definierte Phasenbeziehung mehr haben. Der Phasenunterschied wird eine stochastische Größe.

Kohärenzlänge Die Kohärenzzeit \(\tau \) kann in eine Kohärenzlänge \(L \) umgerechnet werden. Ist der Weglängenunterschied größer als \(L \), gibt es keine Kohärenz mehr.

Hat eine Quelle (ein gedämpfter harmonischer Oszillator) eine Bandbreite \(\Delta \omega \), dann ist die Kohärenzzeit

\[
\tau \approx \frac{1}{\Delta \omega}
\]

und

\[
L \approx c \tau = c \frac{1}{\Delta \omega}
\]

Ist die Lichtquelle ausgedehnt (Breite \(b \)), dann gibt es nur im Winkelbereich \(\sigma < \frac{\lambda}{4b} \) eine kohärente Überlagerung. Die Intensität muss verschieden berechnet werden, je nachdem ob die beiden Wellenzüge mit den Amplituden \(E_1 \) und \(E_2 \) kohärent oder nicht sind.

bei kohärenten Wellenzügen

\[
I(x, t) = \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0 \mu \mu_0}{\mu_0}} \left(E_1(x, t) + E_2(x, t) \right)^2
\]

bei inkohärenten Wellenzügen

\[
I(x, t) = \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0 \mu \mu_0}{\mu_0}} \left(E_1(x, t)^2 + E_2(x, t)^2 \right)
\]

Bei kohärenten Wellen mit dem Phasenunterschied \(\phi \) und den Amplituden \(E_1 \) und \(E_2 \) ist die resultierende Amplitude

\[
E(x, t) = E_1 e^{i(kx - \omega t - \phi(x))} + E_2 e^{i(kx - \omega t + \delta - \phi(x))} = E_1 e^{i(kx - \omega t)} \left(1 + e^{i\phi(x)} \right) + (E_2 - E_1) e^{i(kx - \omega t - \phi(x))} \tag{5.1.1}
\]

5.1.1 Stehende Wellen

(Siehe Hecht, Optik [Hec05, pp. 431]) (Siehe Pérez, Optik [Pér96, pp. 293]) (Siehe Tipler, Physik [TM04, pp. 435]) (Siehe Gerthsen, Physik [Mes06, pp. 513])

Wenn wir eine nach links laufende Welle \(y_1(x, t) = E \sin(kx + \omega t) \) und eine nach rechts laufende Welle \(y_2 = E \sin(kx - \omega t + \delta) \) zur Interferenz kommen lassen, erhalten wir

\[
y(x, t) = y_1(x, t) + y_2(x, t)
\]

\[
y(x, t) = E \sin(kx + \omega t) + E \sin(kx - \omega t + \delta)
\]

\[
y(x, t) = 2E \cos \left(\omega t - \frac{\delta}{2} \right) \sin \left(kx + \frac{\delta}{2} \right) \tag{5.1.2}
\]

Die Summe der beiden Wellenfunktionen ist das Produkt zweier Terme

- ein zeitabhängiger Teil, der für alle Orte gleich ist: \(\cos \left(\omega t - \frac{\delta}{2} \right) \)
- ein ortsabhängiger Teil, der für alle Zeiten gleich ist: \(\sin \left(kx + \frac{\delta}{2} \right) \)
Damit bilden sich räumlich stehende Knotenlinien aus, wir haben eine **stehende Welle**.

Wenn die Amplituden der beiden Wellen nicht gleich gross ist, dann interferieren von der Welle mit der grösseren *Amplitude* nur die Amplitudenteile, die gleich gross wie die *Amplitude* der schwächeren Welle sind.

Stehende Wellen als Resultat zweier gegenläufiger Wellen gibt es in jedem Resonator, insbesondere in Laserresonatoren.

5.1.2 **Mach-Zehnder-Interferometer**

(Siehe Hecht, Optik [Hec05, pp. 663]) (Siehe Pérez, Optik [Pér96, pp. 365])

Abbildung 5.2 zeigt den schematischen Aufbau eines Mach-Zehnder-Interferometers. Licht aus der Quelle trifft auf den halbdurchlässigen Spiegel S_1 und spaltet sich in die zwei Wege s_1 und s_2 auf. Der Weg s_1 läuft vom Spiegel S_1 über S_3 nach S_4, der Weg s_2 vom Spiegel S_1 über S_2 nach S_4. Am Spiegel S_4 werden die Lichtwellen vereinigt und gelangen interferierend auf den Detektor. Die relative Phase des Lichtes für die beiden Wege s_1 und s_2 kann aus dem Brechungsindexverlauf entlang der Wege berechnet werden. Die Geschwindigkeit ist durch $c(s) = c_0/n(s)$ gegeben. Dann ist

$$t_i = \int_{s_1}^{s_4} \frac{1}{c(s)} ds = \frac{1}{c_0} \int_{s_1}^{s_4} n_i(s) ds$$ \hspace{1cm} (5.1.3)

Die Phasendifferenz von Licht mit der Vakuumwellenlänge λ_0 und damit der Fre-
Phasendifferenz und Kohärenz

\[\omega = 2\pi \nu = 2\pi c_0/\lambda_0 \]

ist

\[\Delta \phi = \omega (t_2 - t_1) = \frac{2\pi c_0}{\lambda_0} \left(\frac{1}{c_0} \int_{s_1,s_2}^{s_3} n_2(s) ds - \frac{1}{c_0} \int_{s_1,s_1}^{s_3} n_1(s) ds \right) \]

\[= \frac{2\pi}{\lambda_0} \left(\int_{s_1,s_2}^{s_3} n_2(s) ds - \int_{s_1,s_1}^{s_3} n_1(s) ds \right) \quad (5.1.4) \]

5.1.3 Das Michelson-Interferometer

(Siehe Hecht, Optik [Hec05, pp. 596]) (Siehe Pérez, Optik [Pér96, pp. 360]) (Siehe Tipler, Physik [TM04, pp. 1114])

Versuch zur Vorlesung:
Michelson-Interferometer (Versuchskarte O-031)

Abbildung 5.3: Aufbau des Michelson-Interferometers.

Beim Michelson-Interferometer wird Licht durch einen Strahlteiler in zwei Licht-
wege aufgespalten. Der Weg vom Strahlteiler zum festen Spiegel sei \(l_1 \), der zum beweglichen \(l_2 \). Analog zum Mach-Zehnder-Interferometer (siehe Abschnitt 5.1.2) kann die Phase wie folgt geschrieben werden:

\[
\Delta \phi = \omega (t_2 - t_1) = \frac{2\pi c_0}{\lambda_0} \left(\frac{2}{c_0} \int_{l_2} n_2(s) ds - \frac{2}{c_0} \int_{l_1} n_1(s) ds \right)
\]

\[
= \frac{4\pi}{\lambda_0} \left(\int_{l_2} n_2(s) ds - \int_{l_1} n_1(s) ds \right)
\]

(5.1.5)

Die Phase hängt also sowohl vom Weglängenunterschied wie auch von Unterschieden im Brechungsindex ab. Anders als beim Mach-Zehnder-Interferometer wird jeder Weg zweimal und zwar gegenläufig durchlaufen. Bewegungseffekte mitteln sich so in erster Näherung heraus.

Der gesamte Weglängenunterschied ist bei konstantem \(n_i(s) = n_0 \) durch \(\Delta \ell = 2(l_2 - l_1) \) gegeben. Immer wenn \(\Delta \ell \) ein ganzzahliges Vielfaches der Wellenlänge \(\lambda \) ist, tritt konstruktive Interferenz auf. Wird der bewegliche Spiegel um \(\lambda/4 \) verschoben, ändert sich \(\Delta \ell \) um \(\lambda/2 \), dann haben wir destruktive Interferenz.

Wenn wir das Interferometer mit einer Intensität von \(I_0 \) betreiben und wenn wir eine Intensitätsänderung von \(\Delta I \) noch messen können, dann können wir die mögliche Distanzauflosung in nichtmagnetischen Medien wie folgt berechnen:

\[
I(x) = n \frac{\varepsilon_0 c}{2} E^2 \cos^2 \left(2 \pi \frac{x}{\lambda} \right) = I_0 \cos^2 \left(2 \pi \frac{x}{\lambda} \right)
\]

(5.1.6)

oder umgeschrieben

\[
I(x) = \frac{I_0}{2} \left[1 + \cos \left(4 \pi \frac{x}{\lambda} \right) \right]
\]

(5.1.7)

Die Ableitung dieser Gleichung ist

\[
\frac{dI(x)}{dx} = -\frac{2\pi I_0}{\lambda} \sin \left(4 \pi \frac{x}{\lambda} \right)
\]

(5.1.8)

Die maximale Steigung, also die höchste Empfindlichkeit ist

\[
\left| \left(\frac{dI(x)}{dx} \right)_{\text{max}} \right| = \frac{2\pi I_0}{\lambda}
\]

(5.1.9)

Wir können also die Distanz

\[
\Delta x = \frac{\Delta I}{\frac{dI(x)}{dx}}_{\text{max}} = \frac{\Delta I}{2\pi I_0} \lambda
\]

(5.1.10)

Wenn zum Beispiel \(\lambda = 500 \text{ nm} \) ist und \(\Delta I/I_0 = 0.01 \) ist, ist \(\Delta x = 2.75 \text{ nm} \). Das Michelson-Interferometer wird häufig zur Messung von Distanzen verwendet.

5.1.4 Sagnac-Interferometer

(Siehe Hecht, Optik [Hec05, pp. 701])
Beim Sagnac Interferometer läuft das Licht links- und rechts herum und interferiert dann. Die Lichtwege sind identisch, das Verschieben eines Spiegels erzeugt kein Signal. Wenn man das Sagnac-Interferometer jedoch mit der Kreisfrequenz Ω dreht, dann sind die Umlaufzeiten mit und gegen die Drehrichtung unterschiedlich. Die Behauptung ist, dass der Laufzeitunterschied zwischen der links- und der rechtsläufigen Welle

$$\Delta t = t_{\text{rechts}} - t_{\text{links}} = \frac{4A}{c^2} \Omega \quad (5.1.11)$$

ist. Dabei ist Ω die Winkelfrequenz, mit der das Interferometer rotiert, A die vom Licht eingeschlossene Fläche (in Abbildung 5.4 die Fläche des Dreieckes) und c die Vakuumlichtgeschwindigkeit. Sagnac-Interferometer werden heute als Gyroskope verwendet. Sie messen zum Beispiel die Drehraten von Flugzeugen und werden so zur magnetfeldunabhängigen Navigation herangezogen.

Wir betrachten ein Interferometer aus n Seiten. Die Fläche des n-Ecks ist n-mal die Fläche eines einzelnen Dreiecks, und dessen Fläche $A_D = ah/2$. Beim n-Eck ist die Höhe $h = R \cos(\pi/n)$ und die Grundlinie $a = 2R \sin(\pi/n)$. Damit ist

$$A(n) = nA_D = \frac{n}{2} \sin \left(\frac{2\pi}{n}\right) R^2 \quad (5.1.12)$$

Wir brauchen nun die Strecke $P_A(t_0)P_B(t_0 + \Delta t)$. Diese ist die Grundlinie in einem gleichschenkligen Dreieck mit dem Spitzenwinkel

$$\alpha_\pm = \frac{2\pi}{n} \pm \Omega \Delta t_{pm}. \quad (5.1.13)$$

Mit \pm können beide Fälle gleichzeitig behandelt werden. Wir brauchen noch den Winkel an der Grundlinie (zweimal der gleiche Winkel β_\pm

$$\beta_\pm = \frac{1}{2} (\pi - \alpha_\pm) = \frac{\pi}{2} - \frac{\pi}{n} \mp \frac{\Omega \Delta t_\pm}{2}. \quad (5.1.14)$$

Mit dem Sinussatz für beliebige Dreiecke bekommen wir die Länge der Grundlinie
Interferenz und Beugung

\[\ell_\pm \pm \sin(\alpha_\pm) = R \sin(\beta_\pm) \]

\[\Rightarrow \ell_\pm \pm \sin\left(\frac{2\pi}{n} \pm \Omega \Delta t_\pm\right) = R \sin\left(\frac{\pi}{n} \pm \Omega \Delta t_\pm\right) \]

(5.1.15)

\[\ell_\pm = R \pm \sin\left(\frac{2\pi}{n} \pm \Omega \Delta t_\pm\right) \]

(5.1.16)

Die Zeit \(\Delta t_\pm \) ist sowohl die Laufzeit von \(P_A(t_0) \) nach \(P_B(t_0 + \Delta t_\pm) \) wie auch die Zeit, in der sich das Interferometer dreht. Wir haben also die Gleichungen

\[\Delta t_\pm = \ell_\pm = R \left(2 \sin\left(\frac{\pi}{n}\right) \pm \Omega \Delta t_\pm \cos\left(\frac{\pi}{n}\right)\right) + O(\Delta t^2) \]

(5.1.17)

Die Lösungen sind

\[\Delta t_\pm = 2R \sin\left(\frac{\pi}{n}\right) \pm \Omega \Delta t_\pm \cos\left(\frac{\pi}{n}\right) \]

(5.1.18)

Damit ist der Laufzeitunterschied (und daraus kann die Phase berechnet werden)

\[\Delta t_{\text{eine Seite}} = \Delta t_+ - \Delta t_- = \frac{2nR^2\Omega \sin\left(\frac{\pi}{n}\right)}{c^2 - R^2\Omega^2 \cos^2\left(\frac{2\pi}{n}\right)} \]

(5.1.19)

Auch dieser Ausdruck kann entwickelt werden wenn \(|\Omega| \ll \frac{1}{|\Delta t_\pm|} \) gilt. Wir erhalten die linearisierte Gleichung,

\[\Delta t = n \Delta t_{\text{eine Seite}} = \frac{2nR^2 \sin\left(\frac{2\pi}{n}\right)}{c^2} \]

(5.1.20)

und, wenn wir die Fläche \(A(n) \) des \(n \)-Ecks einsetzen

\[\Delta t = \frac{4A(n)}{c^2} \Omega \]

(5.1.21)

Diese Gleichung müsste eigentlich mit der allgemeinen Relativitätstheorie hergeleitet werden. Für langsame Drehungen ist das Resultat jedoch korrekt. Bei einem kreisförmigen Sagnac-Interferometer (z.B. mit whispering gallery modes) ist

\[\Delta t = \frac{4\pi R^2}{c^2} \Omega = \frac{4A_{\text{kreis}}}{c^2} \Omega \]

genau so gross. Mit \(c = \Delta s/\Delta t \) folgt

\[\Delta s = N\lambda = c\Delta t = \frac{4A(n)}{c} \Omega \Rightarrow N = \frac{4A(n)}{c\lambda} \]

(5.1.22)

Beispiel: Mit \(\Omega = 2\pi \text{ s}^{-1}, A(n) = 0.01 \text{ m}^2 \) und \(\lambda = 632 \text{ nm} \) (HeNe-Laser) erhält man \(N = 0.00132648 \) Dies ist eine kleine Zahl, kann aber mit Modulationstechni-
ken problemlos gemessen werden.

5.1.5 Das **Fabry-Perot-Interferometer**

(Siehe Hecht, Optik [Hec05, pp. 670]) (Siehe Pérez, Optik [Pér96, pp. 399]) (Siehe Hecht, Optik [Hec05, pp. 678])

Versuch zur Vorlesung:
Interferenz an dünnen Schichten als Beispiel für das Fabry-Perot-Interferometer (Versuchskarte O-085)

Abbildung 5.5: Stokessche Behandlung von Reflexion und Brechung (nach Hecht [Hec05])

Wir nehmen an, dass eine Welle mit der Amplitude E_{0i}, die vom oberen Medium her auf die Grenzfläche auftritt, mit dem Faktor r reflektiert wird, sowie mit dem Faktor t gebrochen wird. Die Amplitude der gebrochenen Welle ist dann tE_{0i}, die der reflektierten Welle rE_{0i}. Das Fermatsche Prinzip bedeutet, dass auch die zeitumgekehrte Situation eine physikalisch realisierbare ist. Also ist auch die Strahlführung im Teilbild (b) oben eine realisierbare Situation. Dabei müssen wir uns klar machen, dass sowohl die einfallende Welle mit der Amplitude rE_{0i} und diejenige mit tE_{0i} eine reflektierte und eine transmittierte, gebrochene Welle erzeugen. Dabei ist für die Welle, die von unten kommt der Reflexionsfaktor r' und der Transmissionsfaktor t'. Die Situation in (c) ist nur dann äquivalent zu der in (b), wenn gilt

$$E_{0i} = t(\alpha)t'(\beta)E_{0i} + r(\alpha)r(\alpha)E_{0i}$$

$$0 = t(\alpha)r'(\beta)E_{0i} + t(\alpha)r(\alpha)E_{0i} \quad (5.1.23)$$

Damit erhält man eine Verknüpfung der Reflexions- und Brechungskoeffizienten für den Übergang vom Medium 1 in das Medium 2 und umgekehrt. Dabei sind α und β die jeweiligen Einfallswinkel, die durch das Snelliusche Gesetz verknüpft sind.
Die beiden Gleichungen heissen die *Stokeschen Relationen*. Die zweite Gleichung zeigt, dass wenn \(r \) für die Reflexion am dichteren Medium steht, bei der es nach den Fresnelschen Formeln einen Phasensprung von \(\pi \) gibt, dass dann bei der Reflexion am optisch dünnen Medium kein Phasensprung auftritt.

![Strahlengang bei einem Fabry-Perot-Etalon](image)

Abbildung 5.6: Strahlengang bei einem Fabry-Perot-Etalon (nach Hecht [Hec05])

Wir betrachten nun die Reflexion an einem *Etalon*, also einer Glasplatte mit dem Brechungsindex \(n_G \) mit planparallelen Oberflächen. Im Aussenraum sei auf beiden Seiten \(n = 1 \). Die Abbildung zeigt die reflektierten und gebrochenen Strahlen, wobei die Konvention der Gleichung (5.1.24) verwendet wurde. Die reflektierten Strahlen interferieren in dem weit entfernten Punkt \(P \), die transmittierten Strahlen im weit entfernten Punkt \(P' \).
Abbildung 5.7: Strahlengang bei einem *Fabry-Perot-Etalon* (nach Pérez [Pér96, p. 392])

Für das transmittierte Licht ist der Weglängenunterschied durch den Unterschied der optischen Wege \overline{UW} und \overline{UXW}, $\Lambda = \overline{UXW} - \overline{UW}$ der relevante Unterschied. Die Strecke \overline{UXW} ist im Medium mit dem Brechungsindex n_G, im Glas. Der optische Weg ist dann

$$\overline{UXW} = 2n_G \frac{d}{\cos \beta}.$$

Weiter ist die Strecke \overline{UW} durch $\overline{UW} \sin \alpha$ gegeben. Weiter ist aber auch $\overline{UW} = 2d \tan \beta$, eine rein geometrische Überlegung, die keine optischen Wege beinhaltet. Zusammen bekommen wir

$$\overline{UV} = \overline{UW} \sin \alpha = 2d \tan \beta \sin \alpha$$

Damit ist Λ für ein Etalon der Dicke d

$$\Lambda = \overline{UXW} - \overline{UV} = 2n_G \frac{d}{\cos \beta} - 2d \tan \beta \sin \alpha = \frac{2dn_G}{\cos \beta} \left(1 - \frac{1}{n_G} \sin \beta \sin \alpha \right)$$

mit $\sin \beta = \sin \alpha / n_G$ (Brechungsgesetz)

$$\Lambda = 2n_G d \cos \beta$$ \hspace{1cm} (5.1.25)

Der Gangunterschied für die Reflexion Δ kann aus dem Gangunterschied für die Transmission abgeleitet werden, wobei ein Phasensprung von π berücksichtigt werden muss. Wir haben mit $\overline{ZUX} = \overline{UXW}$ und $\overline{ZY} = \overline{UV}$

$$\Delta = \frac{\lambda}{2} + 2n_G d \cos \beta$$ \hspace{1cm} (5.1.26)

Bei den Strahlen, die in P interferieren, ist die Anzahl der inneren Reflexionen
ungerade. Für den Spezialfall des senkrechten Einfalls, oder bei senkrechter Polarisierung, ergeben die Reflexionen keine Phasenänderung. Wenn \(\Lambda = m\lambda \) ist, haben in \(P \) alle Wellen die gleiche Phase, ausser der ersten, deren Phase wegen \(r' = -r \) um \(\pi \) ändert. Also ist die reflektierte Amplitude

\[
E_{0r} = rE_0 + \left(t'r'tE_0 + t'r^3tE_0 + t'r^5tE_0 + \ldots \right) \tag{5.1.27}
\]

Da \(\Lambda = m\lambda \) und damit die innere Phasenverschiebung 0 ist, ersetzen wir \(r' \) mit \(-r \) und erhalten

\[
E_{0r} = E_0 \left[r - t'r \left(1 + r^2 + r^4 + \ldots \right) \right] \tag{5.1.28}
\]

Diese geometrische Reihe konvergiert bei \(r^2 < 1 \) gegen \(1/(1 - r^2) \), so dass wir

\[
E_{0r} = E_0 \left[r - \frac{t'r}{1-r^2} \right] = E_0r \left(1 - \frac{tt'}{1-r^2} \right) \tag{5.1.29}
\]

Nach den Stokeschen Relationen ist \(tt' = 1 - r^2 \) und damit die reflektierte Amplitude

\[
E_{0r} = 0 \tag{5.1.30}
\]

Also wird im Falle \(\Lambda = m\lambda = 2n_Gd \cos \beta \) oder \(d \cos \beta = \frac{m\lambda}{2n_G} \) alles Licht transmittiert.

Der zweite Spezialfall ist \(\Lambda = \left(m + \frac{1}{2} \right) \lambda \). Dann sind die relativen Phasen benachbarter Wellen, unter der Berücksichtigung dass \(r' = -r \) und dass die innere Phase \(\pi \) ist, die Phasenverschiebung \(\pi \), ausser bei den ersten beiden Wellen, die gleichphasig sind. Wir erhalten für die skalare Amplitude

\[
E_{0r} = rE_0 + t'rE_0 - t'r^3tE_0 + t'r^5tE_0 - \ldots \tag{5.1.31}
\]

oder

\[
E_{0r} = E_0 r \left[1 + t't \left(1 - r^2 + r^2 - \ldots \right) \right] \tag{5.1.32}
\]

Die Reihe in der Klammer konvergiert gegen \(1/(1 + r^2) \). Wir erhalten also

\[
E_{0r} = E_0 r \left[1 + \frac{t't}{1+r^2} \right] \tag{5.1.33}
\]

Mit \(t't = 1 - r^2 \) erhalten wir

\[
E_{0r} = E_0 r \left[1 + \frac{1-r^2}{1+r^2} \right] = E_0 r \frac{1+r^2+1-r^2}{1+r^2} = E_0 \frac{2r}{1+r^2} \tag{5.1.34}
\]

Damit wird die reflektierte Intensität maximal, nämlich

\[
I_r = \sqrt{\frac{\epsilon\varepsilon_0}{\mu\mu_0}} \frac{E_{0r}^2}{2} = \sqrt{\frac{\epsilon\varepsilon_0}{\mu\mu_0}} \frac{4r^2}{(1+r^2)^2} \frac{E_0^2}{2} \tag{5.1.35}
\]

Den allgemeinen Fall kann man berechnen, indem man die durch die einfallende Welle \(E_0(t) = E_0 e^{i\omega t} \) angeregten reflektierten Teilwellen aufschreibt, wobei zwischen zwei Teilwellen die Phasenverschiebung \(\delta = k_0\Lambda \) sind.
\[\begin{align*}
\tilde{E}_{1r}(t) &= E_0 r e^{i\omega t} \\
\tilde{E}_{2r}(t) &= E_0 t' r' t e^{i(\omega t - \delta)} \\
\tilde{E}_{3r}(t) &= E_0 t' r^3 t e^{i(\omega t - 2\delta)} \\
\tilde{E}_{4r}(t) &= E_0 t' r^5 t e^{i(\omega t - 3\delta)} \\
&\vdots \\
\tilde{E}_{Nr}(t) &= E_0 t' r^{(2N-3)} e^{i(\omega t - (N-1)\delta)} \\
&\vdots
\end{align*} \]

Die resultierende Welle ist die Summe aller Teilwellen

\[\tilde{E}_r = \tilde{E}_{1r} + \tilde{E}_{2r} + \tilde{E}_{3r} + \tilde{E}_{4r} + \ldots \] (5.1.37)

Eingesetzt ergibt sich

\[\tilde{E}_r = E_0 r e^{i\omega t} + E_0 t' r' t e^{i(\omega t - \delta)} + E_0 t' r^3 t e^{i(\omega t - 2\delta)} + E_0 t' r^5 t e^{i(\omega t - 3\delta)} + \ldots \] (5.1.38)

Zusammengefasst ergibt sich

\[\tilde{E}_r = E_0 e^{i\omega t} \left(r + t' r' t e^{-i\delta} \left[1 + r'^2 e^{-i\delta} + r'^4 e^{-i(2\delta)} + r'^6 e^{-i(3\delta)} + \ldots \right] \right) \] (5.1.39)

\[= E_0 e^{i\omega t} \left(r + t' r' t e^{-i\delta} \left[1 + \left(r'^2 e^{-i\delta} \right)^1 + \left(r'^2 e^{-i\delta} \right)^2 + \left(r'^2 e^{-i\delta} \right)^3 + \ldots \right] \right) \]

Für \(|r'^2 e^{-i\delta}| < 1 \) konvergiert die geometrische Reihe. Wir erhalten

\[\tilde{E}_r = E_0 e^{i\omega t} \left(r + \frac{t' r' t e^{-i\delta}}{1 - r'^2 e^{-i\delta}} \right) \] (5.1.40)

Mit den Stokeschen Relationen \(r' = -r \) und \(t' t = 1 - r^2 \) bekommt man

\[\tilde{E}_r = E_0 e^{i\omega t} \left(r - \frac{r(1 - r^2) e^{-i\delta}}{1 - r^2 e^{-i\delta}} \right) = E_0 e^{i\omega t} \left[r(1 - e^{-i\delta}) \right] \] (5.1.41)

Die reflektierte optische Intensität ist \(I_r = \tilde{E}_r \tilde{E}_r^* / 2 \) und somit

\[I_r = \sqrt{\frac{\varepsilon_0}{\mu_0}} \frac{2 \varepsilon_0 E_0^2}{2 r^2 (1 - e^{-i\delta})(1 - e^{+i\delta}) (1 - r^2 e^{+i\delta})} = I_t \frac{2 r^2 (1 - \cos \delta)}{(1 + r^4) - 2 r^2 \cos \delta} \] (5.1.42)

Mit einer analogen Ableitung berechnet man die transmittierte Intensität

\[I_t = I_r \frac{(1 - r^2)^2}{(1 + r^4) - 2 r^2 \cos \delta} \] (5.1.43)

da das transmittierte Licht sich im gleichen Medium wie das einfallende Licht sich bewegt. Mit \(\cos \delta = 1 - 2 \sin^2(\delta/2) \) werden \(I_t \) und \(I_r \).
Interferenz und Beugung

\[I_r = I_i \frac{\left[\frac{2r}{1-r^2} \right]^2 \sin^2(\delta/2)}{1 + \left[\frac{2r}{1-r^2} \right]^2 \sin^2(\delta/2)} \]
\[I_t = I_i \frac{1}{1 + \left[\frac{2r}{1-r^2} \right]^2 \sin^2(\delta/2)} \]

(5.1.44)

Wir haben dabei angenommen, dass keine Energie absorbiert wird\(^1\). Dann ist \(I_i = I_t + I_r \). Ein Maximum in der Transmission erhält man, wenn der Nenner möglichst klein, das heißt, dass \(\cos \delta = 1 \) ist. Dann ist

\[I_t|_{\max} = I_i \]

(5.1.45)

und

\[I_r|_{\min} = 0 \]

(5.1.46)

Umgekehrt ist die Transmission minimal, wenn der Nenner bei \(I_t \) maximal ist, also wenn \(\cos \delta = -1 \) ist

\[I_t|_{\min} = I_t \frac{(1-r^2)^2}{(1+r^2)^2} \]

(5.1.47)

und

\[I_r|_{\max} = I_i \frac{4r^2}{(1+r^2)^2} \]

(5.1.48)

Es hat sich eingebürgert, dass *Fabry-Perot-Interferometer* mit der Kennzahl *Finessefaktor* charakterisiert werden:

\[F = \left(\frac{2r}{1-r^2} \right)^2 \]

(5.1.49)

Dann gilt für die Intensitätsverhältnisse

\[\frac{I_r}{I_i} = \frac{F \sin^2(\delta/2)}{1 + F \sin^2(\delta/2)} \]
\[\frac{I_t}{I_i} = \frac{1}{1 + F \sin^2(\delta/2)} \]

(5.1.50)

wobei die Funktion \([1 + F \sin^2(\delta/2)]^{-1} = A(\delta) \) auch *Airy-Funktion* genannt wird\(^2\).

\(^1\)Dies ist bei metallbedampften Spiegeln nicht der Fall.

\(^2\)Achtung! Es gibt mehrere Definitionen der Airy-Funktion.
Abbildung 5.8: Transmission durch ein Fabry-Perot-Etalon in Abhängigkeit von der Finesse F. Von oben nach unten sind die Transmissionskurven für $F = 1$, $F = 2$, $F = 4$, $F = 8$, $F = 16$, $F = 32$, $F = 64$, $F = 128$ und $F = 256$ dargestellt.

Abbildung 5.9: Reflexion an einem Fabry-Perot-Etalon in Abhängigkeit von der Finesse F. Von unten nach oben sind die Reflexionskurven für $F = 1$, $F = 2$, $F = 4$, $F = 8$, $F = 16$, $F = 32$, $F = 64$, $F = 128$ und $F = 256$ dargestellt.
Die Halbwertsbreite der Transmissionskurven ist durch
\[
\frac{1}{2} = \frac{I_t}{I_i} = \frac{1}{1 + F \sin^2(\delta/2)} \quad (5.1.51)
\]
gegeben. Daraus folgt
\[
\delta_{1/2} = 2 \arcsin \left(\frac{1}{\sqrt{F}} \right) \quad (5.1.52)
\]
Das Verhältnis des Abstandes benachbarter Maxima zu der Halbwertsbreite heisst *Finesse* und ist
\[
\mathcal{F} = \frac{\pi \sqrt{F}}{2} \quad (5.1.53)
\]
Die einfachsten *Fabry-Perot-Spektrometer* haben ein \(\mathcal{F} \approx 30\). Werte von \(\mathcal{F} \approx 1000\) sind an der Grenze des technisch machbaren. Wenn bei dem Fabry-Perot-Spektrometer Absorption vorhanden ist, müssen kompliziertere Gleichungen, die Sie zum Beispiel in Hecht [Hec05, 617] finden, verwendet werden.

5.2 Wellen in 2 und mehr Dimensionen

(Siehe Gerthsen, Physik [Mes06, pp. 160]) (Siehe Hecht, Optik [Hec05, pp. 41])

Versuch zur Vorlesung:
Wellenwanne (Versuchskarte O-021)

Die Wellenfunktion für eine zeitunabhängige Welle in zwei oder drei Dimensionen wird wie
\[
\Psi(x,t) = \Psi_0(x) \cos [k(x) \cdot x - \omega t] \quad (5.2.1)
\]
für eine longitudinale Welle und
\[
A(x,t) = A_0(x) \cos [k(x) \cdot x - \omega t] \quad (5.2.2)
\]
für transversale Wellen. \(A\) ist ein Vektor, der auch komplexe Komponenten haben kann (Die komplexen Komponenten geben die Phasen an.). Der Vektor, der aus dem Betrag der einzelnen Komponenten gebildet wird, gibt die Schwingungsrichtung der Welle an. Für eine transversale Welle gilt
\[
A(x) \cdot k(x) = 0 \quad (5.2.3)
\]
5.2 Wellen in 2 und mehr Dimensionen

5.2.1 Ebene Wellen

Eine ebene Welle entsteht aus der allgemeinen Wellengleichung dadurch, dass die Amplitude und der Wellenvektor nicht vom Ort abhängen. Eine ebene Transversalwelle ist durch

\[A(x, t) = A_0 \cos(k \cdot x - \omega t) \quad (5.2.4) \]

gegeben. Eine Longitudinalwelle durch

\[\Psi(x, t) = \Psi_0 \cos(k \cdot x - \omega t) \quad (5.2.5) \]

5.2.2 Kugelwellen

(Siehe Hecht, Optik [Hec05, pp. 48, 710]) (Siehe Pérez, Optik [Pér96, pp. 287])

Versuch zur Vorlesung:
Wellenwanne (Versuchskarte O-021)

Eine weitere häufig vorkommende Form von Wellen sind die Kugelwellen. Wir können die Amplitudenabhängigkeit durch folgende Überlegung erhalten.

- Wir denken uns eine Kugeloberfläche um die Quelle, wobei die Quelle im Mittelpunkt der Kugel sein soll.
• Der Energiefluss pro Zeit, die Leistung, die durch die gesamte Kugeloberfläche fließt ist konstant, unabhängig vom Radius der Kugel.

• Damit diese Gleichung für alle \(r \) gilt muss \(A(r) = A_0 \frac{r_0}{r} \) sein.

Abbildung 5.11: Amplitude und Intensität einer Kugelwelle in Abhängigkeit der Distanz \(r \) von der Quelle. Links eine lineare, rechts eine logarithmische Darstellung.

Bei einer Kugelwelle ist
- die Amplitude: \(A(r) = A_0 \frac{r_0}{r} \)
- die Intensität \(I(r) = I_0 \frac{r_0^2}{r^2} \)

Versuch zur Vorlesung:
Moiré-Modell der Interferenz von Kugelwellen (Versuchskarte O-019)
5.2 Wellen in 2 und mehr Dimensionen

Abbildung 5.12: Interferenz bei Moire-Mustern

Der erste Summand beschreibt die Interferenz, während der zweite die nur vorhanden ist, wenn die beiden Amplituden E_1 und E_2 verschieden sind.

Abbildung 5.13: Interferenz zweier Wellen aus A und B

Aus der Zeichnung ist ersichtlich, dass der Weglängenunterschied von A nach P und von B nach P $\Delta \ell = d \sin \varphi$ ist. Aus Gleichung (5.1.1) wissen wir, dass konstruktive Interferenz auftritt, wenn

$$\sin \varphi = \frac{n \lambda}{d} \quad n = 0, \pm 1, \pm 2, \ldots$$ \hspace{1cm} (5.2.6)

ist. In der paraxialen Näherrung (kleine φ) gilt auch

$$\varphi = \frac{n \lambda}{d} \quad n = 0, \pm 1, \pm 2, \ldots$$ \hspace{1cm} (5.2.7)

Interferenzminima treten bei

$$\sin \varphi = \frac{(n + 1/2) \lambda}{d} \quad n = \pm 1, \pm 2, \ldots$$ \hspace{1cm} (5.2.8)
oder, in der paraxialen Näherung (kleine ϕ), bei

$$\varphi = \frac{(n + 1/2)\lambda}{d} \quad n = \pm 1, \pm 2, \ldots$$ \hspace{1cm} (5.2.9)

Die Lage der Interferenzextrema hängen von der Wellenlänge ab.

5.3 Interferenzmuster an einem Doppelspalt

(Siehe Hecht, Optik [Hec05, pp. 572]) (Siehe Pérez, Optik [Pér96, pp. 358]) (Siehe Tipler, Physik [TM04, pp. 1116])

Versuch zur Vorlesung:

Beugung am Doppelspalt (Versuchskarte O-123)

Abbildung 5.14: Strahlengang bei einem Doppelspalt

Aus den Interferenzbedingungen wissen wir, dass wir

konstruktive Interferenz (helle Streifen) bei

$$d \sin \Theta = m\lambda \quad m = 0, \pm 1, \pm 2, \ldots$$ \hspace{1cm} (5.3.1)

destruktive Interferenz (dunkle Streifen) bei

$$d \sin \Theta = \left(m + \frac{1}{2}\right)\lambda \quad m = 0, \pm 1, \pm 2, \ldots$$ \hspace{1cm} (5.3.2)

haben. Wir berechnen nun den Verlauf der Intensität.

Am Punkt P ist die Phasendifferenz

$$\delta = \frac{2\pi}{\lambda} d \sin \Theta$$ \hspace{1cm} (5.3.3)

Der m-te helle Streifen hat von der Achse den Abstand y_m. Nach der Skizze ist
der Winkel dann durch

\[\tan \Theta = \frac{y_m}{\ell} \]

gegeben. Wir verwenden, dass für kleine Winkel \(\Theta \) gilt: \(\tan \Theta \approx \sin \Theta \approx \Theta \). Damit folgt

\[d \sin \Theta \approx d \tan \Theta = d \frac{y_m}{\ell} \approx m \lambda \]

Der \(m \)-te helle Streifen liegt also bei

\[y_m \approx m \frac{\lambda \ell}{d} \]

Der Abstand zweier Streifen ist

\[\Delta y = \frac{\lambda \ell}{d} \]

Wenn wir die Amplituden der Felder verwenden (die elektrischen Felder \(E \)), können wir sagen, dass die beiden Felder \(E_1 = E_0 \sin(\omega t) \) und \(E_2 = E_0 \sin(\omega t + \delta) \) am Punkt \(P \) interferieren.

\[E = E_1 + E_2 = E_0 \sin(\omega t) + E_0 \sin(\omega t + \delta) \]

Mit \(\sin \alpha + \sin \beta = 2 \cos \left(\frac{\alpha - \beta}{2} \right) \sin \left(\frac{\alpha + \beta}{2} \right) \)

bekommt man

\[E = 2 E_0 \cos \left(\frac{\delta}{2} \right) \sin \left(\omega t + \frac{\delta}{2} \right) \]

Die \textit{Intensität} ist dann

\[I = 4 n \epsilon_0 c E_0^2 \cos^2 \left(\frac{\delta}{2} \right) = 2 n \epsilon_0 c E_0^2 \cos^2 \left(\frac{\delta}{2} \right) \]

wobei \(n \) der Brechungsindex des Mediums ist. Mit \(d \sin \Theta \approx yd/\ell \) wird die Phase

\[\delta = \frac{2 \pi}{\lambda} \frac{yd}{\ell} \approx \frac{2 \pi \frac{yd}{\ell}}{\lambda} \]

und

\[I(y) \approx 2 n \epsilon_0 c I_0 \cos^2 \left(\frac{\pi yd}{\lambda \ell} \right) \]
Interferenz und Beugung

Abbildung 5.15: Beugung an einem Doppelspalt. Links ist \(d = 3\lambda \), in der Mitte \(d = 10\lambda \) und rechts \(d = 30\lambda \) (rechts ist der gezeigte Bildausschnitt grösser).

Die Interferenz an einem Doppelspalt hängt von der Polarisationsrichtung ab.

Versuch zur Vorlesung:
Interferenz mit Polarisation (Versuchskarte AT-051)

5.4 Vektoraddition von harmonischen Wellen

(Siehe Hecht, Optik [Hec05, pp. 420]) (Siehe Tipler, Physik [TM04, pp. 1120])
Wir betrachten zwei Wellen

\[
E_1 = \hat{E}_1 \sin(\omega t) \quad E_2 = \hat{E}_2 \sin(\omega t + \delta)
\]

(5.4.1)

Beide Schwingungen haben die gleiche Frequenz: die Zeiger der Schwingung behalten ihre relative Stellung und rotieren gemeinsam. Die Summe muss sein

\[
E_1 + E_2 = \hat{E}_1 \sin(\omega t) + \hat{E}_2 \sin(\omega t + \delta) = E' = \hat{E}' \sin(\omega t + \delta')
\]

(5.4.2)

Wir legen die "1"-Achse so, dass der Vektor \(E_1 \) entlang dieser Achse ist. Die Komponenten von \(E_2 \) sind entlang der "1"-Achse \(E_{2,1} = \hat{E}_2 \cos \delta \) und entlang der "2"-Achse \(E_{2,2} = \hat{E}_2 \sin \delta \). Damit sind die Komponenten

\[
E'_1 = \hat{E}_1 + \hat{E}_2 \cos \delta \\
E'_2 = \hat{E}_2 \sin \delta
\]

(5.4.3)
5.5 Interferenzmuster bei drei und mehr äquidistanten Quellen

Damit ist

\[E' = \sqrt{E_1'^2 + E_2'^2} = \sqrt{(\hat{E}_1 + \hat{E}_2 \cos \delta)^2 + (\hat{E}_2 \sin \delta)^2} \]

(5.4.4)

oder

\[E' = \sqrt{\hat{E}_1^2 + 2\hat{E}_1 \hat{E}_2 \cos \delta + \hat{E}_2^2} \]

(5.4.5)

Die Phase ist

\[\tan \delta' = \frac{E_2'}{E_1'} = \frac{\hat{E}_2 \sin \delta}{\hat{E}_1 + \hat{E}_2 \cos \delta} \]

(5.4.6)

Abbildung 5.16: Grafische Darstellung der Vektoraddition

5.5 *Interferenzmuster* bei drei und mehr äquidistanten Quellen

(Siehe Hecht, Optik [Hec05, pp. 609])
(Siehe Tipler, Physik [TM04, pp. 1122])

Versuch zur Vorlesung:
Interferenz am Glimmerplättchen
(Versuchskarte)

Abbildung 5.17: Interferenz von drei Quellen
Die folgenden drei *paraxialen Wellen* interferieren im Punkt P.

\[
E_1 = E_0 \sin(\omega t) \\
E_2 = E_0 \sin(\omega t + \delta) \\
E_3 = E_0 \sin(\omega t + 2\delta)
\]
(5.5.1)

Die Phasendifferenz ist, wie bei zwei Quellen

\[
\delta = \frac{2\pi d}{\lambda} \sin \Theta \approx \frac{2\pi y d}{\lambda \ell}
\]

(5.5.2)

Für $\Theta = 0$ sind alle drei Wellen in Phase. Wir haben ein Maximum. Das erste Nebenmaximum entsteht, wenn $\delta = 2\pi/3$ ist, und nicht bei $\delta = \pi$ wie bei zwei interferierenden Wellen. Der Winkel Θ des ersten Nebenmaximums ist also grösser.

Abbildung 5.18: Vektordiagramm für die Interferenz von drei Wellen (links) und vier Wellen (rechts).

Die Maxima liegen wieder bei

\[
d \sin \Theta = m\lambda \quad m = 0, \pm 1, \pm 2
\]

(5.5.3)

Die Maxima sind schärfer und intensiver als bei einer Welle.

\[^3\sin \Theta \approx \tan \Theta \approx \Theta\]
5.6 Interferenz an dünnen Schichten

(Siehe Tipler, Physik [TM04, pp. 1111])
Wir betrachten eine dünne Schicht der Dicke d mit dem Brechungsindex n in Luft. Dabei nehmen wir an, dass das Licht fast senkrecht auf die Grenzfläche auftritt. Die Phase des Strahls 1, der an der oberen Grenzfläche reflektiert wird, wird bei der Reflexion um π gedreht. Der Strahl 2, der an der unteren Grenzfläche reflektiert wird, unterliegt keinem Phasensprung. In der dünnen Schicht ist die Wellenlänge kleiner, $\lambda' = \lambda/n$. Wir müssen für die Interferenz den Weg in der Schicht doppelt zählen. Zusätzlich muss die Phase des zweiten interferierenden Lichtstrahls an der Luft berücksichtigt werden. Die Phase bei senkrechtetem Einfall ist durch den Laufzeitunterschied $\Delta t = \frac{d}{c} = \frac{nd}{c}$ im Glas gegeben. Deshalb kann man auch mit dem optischen Weg

$$\delta \ell = 2nd$$

rechnen. Bei schrägem Einfall (Winkel Θ zur Normalen) ist der zurückgelegte Weg $\ell(\Theta) = \frac{2d}{\cos(\Theta)}$, da ja das Brechungsgesetz gelten muss. Mit $\cos \Theta' = \sqrt{1 - \sin^2 \Theta'} = \sqrt{1 - \frac{\sin^2 \Theta}{n^2}}$. Diese Größe ersetzt das d in der obigen Rechnung, so dass wir $\ell(\Theta) = 2d \sqrt{n^2 - \sin^2 \Theta}$ erhalten. Zusätzlich ist in der Luft der zurückgelegte Weg (grün) $d_1 = 2d \tan(\theta) \sin \Theta$ (mit $n \sin \theta = \sin \Theta$). Berücksichtigen wir noch den Phasen- sprung bei der Reflexion an der oberen Grenzschicht, so erhalten wir

$$2d \sqrt{n^2 - \sin^2 \Theta} = m \lambda \quad m = 0, 1, 2, 3, \ldots$$

(5.6.2) destruktive Interferenz

$$2d \sqrt{n^2 - \sin^2 \Theta} = \left(m + \frac{1}{2} \right) \lambda \quad m = 0, 1, 2, 3, \ldots$$

(5.6.3) konstruktive Interferenz

Versuch zur Vorlesung:

Newtonische Ringe (Versuchskarte O-017)
Abbildung 5.22: Querschnitt durch eine Linse auf einem Glasplättchen, bei dem Newtonsche Ringe auftreten.

Wenn zwei Glasplatten sich mit einem sehr kleinen Luftspalt gegenüber liegen, und monochromatisches Licht senkrecht auf die Platten fällt, so treten die Newtonschen Ringe auf. Dabei tritt ein Phasensprung von π bei der Reflexion an der unteren Platte auf. Auch hier gelten die Gleichungen (5.6.2) und (5.6.3);

Abbildung 5.23: Newtonsche Ringe (rechts mit einem Fehler).

Bei dünnen Schichten mit einem niedrigen Brechungsindex zwischen zwei Schichten mit einem höheren Brechungsindex tritt Auslöschung für die Reflexion auf. Damit können reflexmindernde Schichten erzeugt werden.
Abbildung 5.24: Newtonsche Ringe bei weissem Licht (rechts mit einem Fehler).

In der oben stehenden Abbildung werden die Newtonschen Ringe bei weissem Licht durch die Überlagerung dreier Ringsysteme mit rotem Licht ($\lambda = 6/5$), grünem ($\lambda = 1$) und blauem Licht ($\lambda = 4/5$) simuliert. Es treten nun farbige Ringe auf.

5.7 Beugungsmuster an einem Einzelspalt

(Siehe Hecht, Optik [Hech05, pp. 650,663]) (Siehe Tipler, Physik [TM04, pp. 1125]) (Siehe Pérez, Optik [Pér96, pp. 341])

Versuch zur Vorlesung:
Beugung am Einzelspalt (Versuchskarte O-050)

Abbildung 5.25: Berechnung des Beugungsmusters an einem Einzelspalt.

Wir definieren den Winkel Θ genau so wie in der Zeichnung
5.7.1 Berechnung der Intensitätsverteilung

(Siehe Hecht, Optik [Hec05, pp. 663]) (Siehe Tipler, Physik [TM04, pp. 1127])

Wir betrachten $N + 1$ punktförmige Lichtquellen in einem Spalt der Breite a. Ihr Abstand ist $d = a/N$. Der Phasenunterschied zwischen zwei Lichtquellen in die Richtung Θ ist

$$\delta = \frac{2\pi}{\lambda} d \sin \Theta \quad (5.7.1)$$

Abb. 5.26: Definition der Größen. Rechts ist die Berechnung der Amplitude gezeigt.

Der gesamte Phasenunterschied ist

$$\Phi = \sum_{k=0}^{N} \delta = (N + 1) \frac{2\pi}{\lambda} d \sin \Theta = \frac{N + 1}{N} \frac{2\pi}{\lambda} a \sin \Theta \quad (5.7.2)$$

Für $N \to \infty$ ist

$$\Phi = \frac{2\pi}{\lambda} a \sin \Theta \quad (5.7.3)$$

Wie hängt nun die Amplitude von Φ ab?

Die Amplitude E_0 resultiert aus der Addition von $N + 1$ Einzelamplituden E. Aus der Abbildung ist ersichtlich, dass

$$E_0 = 2r \sin \left(\frac{\Phi}{2} \right) \quad (5.7.4)$$

Für den Winkel $\Theta = 0$ ist $A_{max} = A(\Phi = 0) = N \cdot A$. Die Amplituden der einzelnen Quellen sind unabhängig von der Beobachtungsrichtung. Deshalb ist auch die Bogenlänge $A_{max} = N \cdot E = r\Phi$. Wir lösen nach r auf und setzen ein.

$$E_0 = 2 \frac{E_{max}}{\Phi} \sin \left(\frac{\Phi}{2} \right) = \frac{E_{max}}{\frac{\Phi}{2}} \sin \left(\frac{\Phi}{2} \right) \quad (5.7.5)$$

Wenn wir berücksichtigen, dass $I = \frac{n}{2} \sqrt{\frac{\alpha}{\mu_0}} E^2$ ist und wir $I_0 = \frac{n}{2} \sqrt{\frac{\alpha}{\mu_0}} E_{max}^2$ setzen,
erhalten wir für die Intensität

\[I = I_0 \left(\frac{\sin \left(\frac{\Phi}{2} \right)}{\Phi/2} \right)^2 \] \hspace{1cm} (5.7.6)

Wenn wir \(\Phi \) einsetzen, bekommen wir

\[I = I_0 \left(\frac{\sin \left(\frac{\pi a \sin \Theta}{\lambda a \sin \Theta} \right)}{\pi a \sin \Theta} \right)^2 \] \hspace{1cm} (5.7.7)

Abbildung 5.27: Beugungsmuster als Funktion des Ablenkwinkels und, rechts, als Funktion des Abstandes von der optischen Achse.

Wir können mit \(\Theta(y) = \arctan \frac{y}{\ell} \) das Beugungsmuster für einen ebenen Schirm berechnen. Soll das Beugungsmuster in Funktion von \(\Theta \) betrachtet werden, muss es mit einer Sammellinse (Gitter im Brennpunkt) betrachtet werden.

Abbildung 5.28: Beugungsmuster als Funktion der Spaltbreite. Links kontinuierlich und rechts für die Breiten \(a = 0.1, 0.3, 1, 3, 10 \)

Die Lage der Beugungsmaxima und -minima ist gegeben durch \(\Phi/2 = k\pi, k = \)
\[±1,±2,\ldots \text{ für die Minima und } \Phi/2 = (k + 1/2)\pi, \quad j = 0,±1,±2,\ldots \text{ sowie } \Phi = 0 \text{ für die Maxima.} \]

\[
\begin{align*}
\Theta_{\max} &= 0 \\
\Theta_{\max,n} &\approx \arcsin \left(\frac{\lambda(k+1/2)}{a} \right) \quad k \in \mathbb{N} \\
\Theta_{\max,−n} &\approx \arcsin \left(\frac{\lambda−k−1/2}{a} \right) \quad k \in \mathbb{N} \\
\Theta_{\min,n} &= \arcsin \left(\frac{\lambda}{a} \right) \quad k \in \mathbb{Z}
\end{align*}
\]

(5.7.8)

Die *Amplitude* in den Nebenmaxima \(\Theta_{\max,n}\) bekommt man durch Ableitung und auf Null setzen. Ungefähr liegen diese Maxima in der Mitte zwischen den Minima.

Die *Amplitude* ist dort ungefähr

\[E_{\max,n} = E_0 \sin((k + 1/2)\pi) \approx \frac{E_0}{(k + 1/2)\pi} \quad k = 0,±1,±2,\ldots \]

(5.7.9)

Damit gilt für die Intensitäten der Nebenmaxima

\[I_{\max,n} = \frac{I_0}{[(k + 1/2)\pi]^2} \quad k = 0,±1,±2,\ldots \]

(5.7.10)

Tabelle 5.2: Lage der Minima und Maxima

<table>
<thead>
<tr>
<th>Winkel</th>
<th>Art</th>
<th>Amplitude bezogen auf (I_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Maximum</td>
<td>1</td>
</tr>
<tr>
<td>±(\pi)</td>
<td>Minimum</td>
<td>0</td>
</tr>
<tr>
<td>(\approx ±3\pi/2)</td>
<td>Maximum</td>
<td>(\approx \frac{4}{9\pi^2})</td>
</tr>
<tr>
<td>±(2\pi)</td>
<td>Minimum</td>
<td>0</td>
</tr>
<tr>
<td>(\approx ±5\pi/2)</td>
<td>Maximum</td>
<td>(\approx \frac{4}{25\pi^2})</td>
</tr>
<tr>
<td>(\approx ±7\pi/2)</td>
<td>Maximum</td>
<td>(\approx \frac{4}{49\pi^2})</td>
</tr>
<tr>
<td>(\approx ±9\pi/2)</td>
<td>Maximum</td>
<td>(\approx \frac{4}{81\pi^2})</td>
</tr>
</tbody>
</table>

Die genaue Lage der Minima kann man durch

\[
0 = \frac{\partial}{\partial \Phi} \left[\sin \left(\frac{\Phi}{2} \right) \right]^2 = 4 \frac{\sin(\Phi/2) \cos(\Phi/2)}{\Phi^2} - 8 \frac{\sin^2(\Phi/2)}{\Phi^3}
\]

oder vereinfacht für \(\Phi \neq 0\)

\[
0 = \sin \left(\frac{\Phi}{2} \right) \left[\Phi \cos \left(\frac{\Phi}{2} \right) - 2 \sin \left(\frac{\Phi}{2} \right) \right]
\]

(5.7.11)

(5.7.12)

Nullstellen gibt es für \(\sin(\Phi/2) = 0\) und für \(\Phi \cos \left(\frac{\Phi}{2} \right) - 2 \sin \left(\frac{\Phi}{2} \right) = 0\) oder
\[\Phi = 2k\pi \quad k \in \mathbb{Z} \setminus \{0\} \quad \text{Nullstellen oder Minima} \]

Lösung von \(\Phi = 2 \tan(\Phi/2) \quad \text{Maxima} \) \hspace{1cm} (5.7.13)

Dies folgt aus der Analyse der zweiten Ableitung

\[
\frac{\partial^2}{\partial \Phi^2} \left[\frac{\sin \left(\frac{\Phi}{2} \right)}{\Phi/2} \right]^2 = \frac{2 ((\Phi^2 - 6) \cos(\Phi) - 4\Phi \sin(\Phi) + 6)}{\Phi^4}
\]

Für \(\Phi = 2k\pi \) mit \(k \in \mathbb{Z} \setminus \{0\} \) ist die zweite Ableitung positiv, es sind also Minima. Die anderen Lösungen müssen also Maxima sein.

Für grosse Beugungsordnungen \(|k| \to \infty \) geht die Lage der Maxima gegen \(\Phi = (2k - 1)\pi \). In der Nähe der optischen Achse sind sie verschoben.

5.8 Interferenz- und Beugungsmuster beim Doppelspalt

(Siehe Hecht, Optik [Hec05, pp. 670]) \hspace{1cm} (Siehe Tipler, Physik [TM04, pp. 1130])

Versuch zur Vorlesung:

Beugung am Doppelspalt (Versuchskarte O-123)

Bei Doppelspalten oder bei Gittern mit \(N \) Linien setzt sich das Beugungsmuster aus dem Muster des Einzelspaltes multipliziert mit dem Beugungsmuster des Gitters zusammen.

Wir hatten für das Beugungsmuster des Doppelspalts mit linienförmigen Spalten

\[
I = 4I_0 \cos^2 \left(\frac{\delta}{2} \right) \quad \text{(5.8.1)}
\]

wenn wir \(n = 1 \) setzen. Das gesamte Beugungsmuster ist dann durch

\[
I(\Theta) = 4I_0 \left(\frac{\sin \left(\frac{\Phi(\Theta)}{2} \right)}{\Phi(\Theta)} \right)^2 \cos^2 \left(\frac{\delta(\Theta)}{2} \right) \quad \text{(5.8.2)}
\]

wobei \(\Phi(\Theta) = \frac{2\pi}{\lambda} a \sin \Theta \) und \(\delta(\Theta) = \frac{2\pi}{\lambda} d \sin \Theta \) sind mit \(a \) der Spaltbreite und \(d \) dem Abstand der beiden Spalte. Wir können nun noch mit \(\Theta(y) = \arctan \frac{y}{a} \) das
Beugungsmuster für einen ebenen Schirm berechnen.

Abbildung 5.29: Beugung an einem Doppelspalt mit dem Spaltabstand $d = 6$ und der Spaltbreite $a = 3$.

Abbildung 5.30: Beugung an einem 5-fach Spalt mit dem Spaltabstand $d = 3$ und der Spaltbreite $a = 2$

5.9 Fraunhofersche und Fresnelsche Beugung

(Siehe Hecht, Optik [He05, pp. 650, 710]) (Siehe Tipler, Physik [TM04, pp. 1131])
(Siehe Sommerfeld, Theoretische Physik Band IV, Optik [Som78, pp. 206])
Abbildung 5.31: Berechnung der Fresnelbeugung an einer Halbebene.

Bei der Beugung interferiert Licht von Kugelwellen aus allen Punkten mit den Koordinaten x' im Beobachtungspunkt mit der Koordinate x. Für eine einzelne Teilwelle ist der Weg

$$ s = \sqrt{D^2 + (x - x')^2} \quad (5.9.1) $$

Entsprechend ist die komplexe Amplitude am Punkt x gegeben durch

$$ \Phi(x, x') = \frac{\Phi_0}{s(x, x')} e^{i \cdot \frac{2\pi s(x, x')}{\lambda}} \quad (5.9.2) $$

Die Amplitude am Punkt x ist dann nach Huygens

$$ \Phi(x) = \int_{-d/2}^{d/2} \frac{\Phi_0}{s(x, x')} e^{i \cdot \frac{2\pi s(x, x')}{\lambda}} dx' \quad (5.9.3) $$

da wir Kugelwellen haben. Diese Gleichung kann numerisch gelöst werden. Es existieren die folgenden Näherungen:

5.9.1 Fresnelsche Näherung

(Siehe Hecht, Optik [Hec05, pp. 710]) (Siehe Sommerfeld, Theoretische Physik Band IV, Optik [Som78, pp. 206])

Wir betrachten nur Orte, bei denen $|x - x'| \ll D$ sind. Dann ist

$$ s \approx D + \frac{(x - x')^2}{2D} \quad (5.9.4) $$

und $1/s \approx 1/D$. Das heisst auch, dass die Phase ist proportional zu $(x - x')^2$. Unser Integral wird dann

$$ \Phi(x) = \frac{\Phi_0}{D} \int_{-d/2}^{d/2} e^{i \cdot \frac{2\pi s(x, x')}{\lambda}} dx' = \frac{\Phi_0}{D} \int_{-d/2}^{d/2} e^{i \cdot \frac{2\pi [D+(x'-x)^2/2D]}{\lambda}} dx' \quad (5.9.5) $$
und

\[
\Phi(x) = \frac{\Phi_0}{D} \int_{-d/2}^{d/2} e^{i \cdot 2\pi D/\lambda} e^{i \cdot 2\pi(x'-x)^2/2D\lambda} dx' = \frac{\Phi_0}{D} e^{i \cdot 2\pi D/\lambda} \int_{-d/2}^{d/2} e^{i \cdot 2\pi(x'-x)^2/2D\lambda} dx'
\]

(5.9.6)

Mit der Variablentransformation \(\xi = x'-x\) und damit den Grenzen \(\xi_u = -d/2 - x\) und \(\xi_o = d/2 - x\) wird das Integral zu

\[
\Phi(x) = \frac{\Phi_0}{D} e^{i \cdot 2\pi D/\lambda} \int_{-d/2-x}^{d/2-x} e^{i \cdot 2\pi\xi^2/2D\lambda} d\xi
\]

(5.9.7)

Das verbleibende Integral \(\int_{-d/2-x}^{d/2-x} e^{i \cdot 2\pi\xi^2/2D\lambda} d\xi\) kann als Summe und Differenz der Fresnelschen Integrale geschrieben werden. Wir verwenden, dass \(e^{i\alpha} = \cos \alpha + i \sin \alpha\) ist.

Dieses Integral, nach Real- und Imaginärteil aufgetrennt und normiert ergibt die Fresnelschen Integrale

\[
C(w) = \int_0^w \cos \left(\frac{\pi \tau^2}{2}\right) d\tau
\]

\[
S(w) = \int_0^w \sin \left(\frac{\pi \tau^2}{2}\right) d\tau
\]

(5.9.8)

Die Funktion \(\Phi(x)\) kann als Differenz zweier Fresnelscher Integrale geschrieben werden

\[
\Phi(x) = K \left[C \left((d/2 - x) \cdot k \right) - C \left((-d/2 - x) \cdot k \right) \right]
+ i \cdot K \left[S \left((d/2 - x) \cdot k \right) - S \left((-d/2 - x) \cdot k \right) \right]
\]

(5.9.9)

wobei \(K\) eine von der Intensität abhängige Konstante ist.
Abbildung 5.32: Die Cornu-Spirale. Aufgetragen ist die parametrische Kurve
\((C(w), S(w))\) mit \(-\infty \leq w \leq \infty\). Die linke untere Spirale entspricht \(w = -\infty\), die rechte obere Spirale \(w = \infty\).

Die durch \(F(w) = C(w) + iS(w)\) definierte Ortskurve ist die *Cornu-Spirale*. Diese Funktion beschreibt eine längentreue Abbildung der reellen Achse \(w\) auf die komplexe \(C, S\)-Ebene. Mit dieser Konstruktion kann auf einfachem graphischem Wege das *Beugungsmuster* konstruiert werden. Dazu zeichnet man vom Ortspunkt der unteren Integrationsgrenze zum Ortspunkt der oberen Integrationsgrenze eine Linie. Deren Länge gibt die *Amplitude*, deren Winkel zur reellen Achse die Phase. Damit kann das Fresnel-Beugungsbild eines Spalts berechnet werden.
Abbildung 5.33: Fresnelsches Beugungsmuster an einem Spalt der Breite 1. Links die Amplitude und rechts die Intensität.

Wenn man die untere Integrationsgrenze nach $-\infty$ gehen lässt und bei der oberen Integrationsgrenze d gegen Null gehen lässt, bekommt man das Beugungsbild an einer Kante. Wir tragen nun die Strecke vom Zentrum der linken Spirale ($F(-\infty) = -1/2(1+i)$) aus zum Ortspunkt korrespondierend zu x ab. Wir sehen, dass im Schattenbereich (bis der bewegliche Ortspunkt 0,0 erreicht) die Amplitude monoton zunimmt. Dann beginnt eine Oszillation, die als die Interferenzmuster im hellen Bereich beobachtet werden kann.

Abbildung 5.34: Fresnelsches Beugungsmuster an einer Halbebene. Links die Amplitude und rechts die Intensität.
5.9.2 **Fraunhofer-Beugung**

Die Gleichung (5.9.4) kann weiter vereinfacht werden, wenn \(|x'| \ll |x|\) ist. Dann bekommen wir

\[
s \approx D + \frac{x^2 - 2x \cdot x'}{2D} = D + \frac{x^2}{2D} - \frac{x}{D}x'
\]

(5.9.10)

Nun ist die optische Distanz \(s\) eine lineare Funktion von \(x'\). Die Approximation gilt nur, wenn das Beugungsobjekt klein gegen die Distanz zu Objekt und der Größe des Beugungsmusters ist. Diese Fernfeld-Approximation nennt man die **Fraunhofer-Näherung**.

5.9.3 **Vergleich**

(Siehe Pérez, Optik [Pér96, pp. 327])

Die bis jetzt besprochenen Beugungseffekte haben die folgenden Eigenschaften:

Fraunhofersche Beugung

1. Ebene Wellen fallen so auf einen Spalt, dass ihre Strahlen senkrecht auf ihn treffen. Damit sind die Amplituden und die Phasen der nach dem Huygensschen Prinzip emittierten Wellen gleich.

2. Das Beugungsbild wird auf einem weit entfernten Schirm beobachtet. Die von *Punktquellen* ausgehenden Strahlen treffen ungefähr parallel auf den Schirm.

Ist eine der obigen Bedingungen nicht erfüllt, spricht man von **Fresnelscher Beugung**. Eine andere Formulierung der Bedingungen der Fraunhoferschen Beugung ist

1. Der Abstand \(R\) von der Quelle zum Beugungsobjekt ist sehr viel größer als die charakteristische Länge \(d\) des Beugungsobjekts.

2. Der Abstand \(R'\) vom Beobachter zum Beugungsobjekt ist sehr viel größer als die charakteristische Länge \(d\) des Beugungsobjekts.
Abbildung 5.35: Vergleich der Fresnelbeugung (rot) mit der Fraunhoferbeugung (schwarz) für Spaltweiten von 0.1 und 1.

Abbildung 5.36: Vergleich der Fresnelbeugung (rot) mit der Fraunhoferbeugung (schwarz) für Spaltweiten von 2 und 3.
Abbildung 5.37: Vergleich der Fresnelbeugung (rot) mit der Fraunhoferbeugung (schwarz) für Spaltweiten von 4 und 5.

5.10 **Beugungsgitter und Spektrographen**

(Siehe Hecht, Optik [Hec05, pp. 696]) (Siehe Pérez, Optik [Pér96, pp. 429]) (Siehe Tipler, Physik [TM04, pp. 1135])

Versuch zur Vorlesung:

Beugungsgitter (Versuchskarte O-025)

Abbildung 5.38: Lichtdurchgang durch ein Gitter mit der Gitterkonstante g.
Beugungsgitter haben Spaltabstände g in der Größenordnung von etwa 1µm. Licht wird um den Winkel Θ, gegeben durch

$$g \sin \Theta = m \lambda$$ \hspace{1cm} (5.10.1)

abgelenkt. m heisst die Beugungsordnung. Wenn man eine monochromatische Lichtquelle beobachtet, stellt man fest, dass ein einzelnes Beugungsmaximum beobachtet wird. Man spricht von einer Spektrallinie.

Spektrum 1. Ordnung Die Menge der Spektrallinien, deren Beugungsbilder zu $m = 1$ gehören.

Spektrum 2. Ordnung Die Menge der Spektrallinien, deren Beugungsbilder zu $m = 1$ gehören.

Entsprechendes gilt für die höheren Ordnungen.

Das Auflösungsvermögen eines Gitters ist als die Zahl $\lambda/|\Delta\lambda|$ definiert, wobei $|\Delta\lambda|$ die kleinste, noch trennbare Wellenlängendifferenz ist. Damit ist

$$A = \frac{\lambda}{|\Delta\lambda|} = mN$$ \hspace{1cm} (5.10.2)

Das Auflösungsvermögen ist proportional zur Zahl der beleuchteten Spalte N. Zum Beispiel braucht man, um die zwei Na-Linien bei 589nm und bei 589.59nm aufzulösen,

$$A = \frac{589\text{nm}}{589.59\text{nm} - 589\text{nm}} \approx 998$$

5.10.1 Blaze-Gitter

(Siehe Hecht, Optik [Hec05, pp. 700])

Bei einem Beugungsgitter, bei dem alle Flächen senkrecht auf der einfallenden Strahlung stehen, wird der Hauptteil der Energie in die 0. Ordnung gebeugt. Für spektroskopische Zwecke ist das sinnlos, da die Wellenzerlegung bei Ordnungen
grösser als null auftritt. Deshalb haben moderne Gitter eine bestimmte Oberflächenform ("blaze"), wie in der Abbildung gezeigt. Dadurch wird die Reflektion, die die meiste Energie enthält, zu höheren Ordnungen verschoben.

Aus der Abbildung geht hervor, dass der reflektierte Strahl mit der Einfallsrichtung den Winkel 2ϕ bildet, da ja $\Theta = \phi$ gilt. Dieser Winkel soll einer bestimmten Ordnung m der Interferenz entsprechen. Also muss gelten:

$$\sin 2\phi = m\lambda \quad (5.10.3)$$

oder

$$\Phi = \frac{1}{2} \arcsin \left(\frac{m\lambda}{g}\right) \quad (5.10.4)$$

Versuch zur Vorlesung:
Auflösung eines Gitters (Versuchskarte O-124)

5.10.2 Hologramme

(Siehe Hecht, Optik [Hec05, pp. 925]) (Siehe Tipler, Physik [TM04, pp. 1137]) (Siehe Gerthsen, Physik [Mes06, pp. 526])

Versuch zur Vorlesung:
Herstellung von Hologrammen (Versuchskarte O-070)

Versuch zur Vorlesung:
Hologramm einer Elektrolokomotive (Versuchskarte O-014)

Versuch zur Vorlesung:
Hologramm eines Bagers (Versuchskarte O-069)

Bei der Aufzeichnung des Hologramms wird eine möglichst monochromatische Lichtquelle, also zum Beispiel ein Laser auf zwei Pfade aufgeteilt. Der eine Pfad beleuchtet das Objekt, dessen gestreutes Licht mit der Amplitude E_0 die Fotoplatte beleuchtet. Der zweite Strahl wird über ein Spiegelsystem als Referenzstrahl E_B auf die Fotoplatte gebracht, deren Ebene mit Σ_H bezeichnet wird und die identisch mit der Ebene $z = 0$, also der xy-Ebene ist. Auf dem Hologramm wird die Intensitätsverteilung $I(x, y)$ resultierend aus der Interferenz von E_B und E_0 in eine dazu proportionale Schwärzung umgewandelt.
Das Hologramm in der Σ_H-Ebene wird anschliessend mit monochromatischem Licht der gleichen Wellenlänge, E_R beleuchtet. Es entstehen drei Strahlen, nämlich

den ungebeugten Strahl Dieser Strahl hat zwar eine geringere Intensität, kann aber so nicht ausgewertet werden.

einen gebeugten Strahl mit negativer Phase Dieser Strahl erzeugt das reelle Bild, das aber dem Betrachter tiefenverkehrt erscheint.

einem gebeugten Strahl mit positiver Phase Dieser Strahl, mit einer Kamera aufgenommen, erzeugt auf der Bildebene der Kamera ein Intensitätsmuster, wie wenn der Gegenstand noch vorhanden wäre. Dieses tiefenrichtige Bild heisst virtuelles Bild.
Die Berechnung dieser Effekte beginnt mit dem Referenzstrahl E_B

$$E_B(x, y) = E_{0B} \cos[\omega t + \phi(x, y)]$$ \hspace{1cm} (5.10.5)

Dabei ist $\phi(x, y)$ die örtlich variierende Phase, da E_B nicht senkrecht auf Σ_B fällt. Bei einer ebenen Welle, die mit dem Winkel Θ zur Senkrechten auf die Hologrammebene fällt wäre

$$\phi(x, y) = \frac{2\pi}{\lambda} x \sin \Theta = k x \sin \Theta$$ \hspace{1cm} (5.10.6)

Die vom Objekt gestreute Welle ist

$$E_0(x, y) = E_{00}(x, y) \cos[\omega t + \phi_0(x, y)]$$ \hspace{1cm} (5.10.7)

wobei sowohl $E_{00}(x, y)$ und $\phi_0(x, y)$ komplizierte Funktionen des Ortes sind. Die *Intensität* in der Hologrammebene Σ_H ist durch

$$I(x, y) = \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} \left< \left((E_B(x, y) + E_0(x, y))^2 \right) \right>_T$$ \hspace{1cm} (5.10.8)

$$= \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} E_{0B}^2 + \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} E_{00}^2(x, y) +$$

$$\frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} E_{0B} E_{00}(x, y) \cos (\phi(x, y) - \phi_0(x, y))$$
gegeben. Der Kontrast, gegeben durch \(\nu = (I_{max} - I_{min})/(I_{max} + I_{min}) \) ist

\[
\nu = \frac{2 E_{0B} E_{00}}{E_{0B}^2 + E_{00}^2}
\]

(5.10.9)

Die Schwärzung der holografische Emulsion soll proportional zu \(I(x, y) \) sein. Indem wir mit der Rekonstruktionswelle

\[
E_R(x, y) = E_{0R} \cos[\omega t + \phi(x, y)]
\]

(5.10.10)
das Hologramm beleuchten, erhalten wir eine Amplitudenverteilung gerade hinter dem Hologramm proportional zu \(I(x, y)E_R(x, y) \). Ohne konstante Faktoren ist das Resultat

\[
E_F(x, y) \propto \frac{1}{2} E_{0R} \left(E_{0B}^2 + E_{00}^2(x, y) \right) \cos[\omega t + \phi(x, y)] + \frac{1}{2} E_{0R} E_{0B} E_{00}(x, y) \cos[\omega t + 2\phi(x, y) - \phi_0(x, y)] + \frac{1}{2} E_{0R} E_{0B} E_{00}(x, y) \cos[\omega t + \phi_0(x, y)]
\]

(5.10.11)

Wie oben diskutiert existieren drei Terme.

- \(\frac{1}{2} (E_{0B}^2 + E_{00}^2(x, y)) E_{0R} \): die amplitudenmodulierte Rekonstruktionswelle
- \(\frac{1}{2} E_{0R} E_{0B} E_{00}(x, y) \cos[\omega t + 2\phi(x, y) - \phi_0(x, y)] \): Die tiefenverkehrte Welle mit negativer Phase, die das reelle Bild erzeugt.
- \(\frac{1}{2} E_{0R} E_{0B} E_{00}(x, y) \cos[\omega t + \phi_0(x, y)] \): Die rekonstruierte Welle.

Durch den schrägen Einfall der Referenz- und der Rekonstruktionswelle werden virtuelles und reelles Bild getrennt.

Durch die Überlagerung zweier Hologramme können interferometrische Messungen der Verschiebung von Objekten im \(\mu m \)-Bereich durchgeführt werden.
5.11 Beugung und Auflösung

(Siehe Hecht, Optik [Hec05, pp. 327, 694, 703]) (Siehe Tipler, Physik [TM04, pp. 1132]) (Siehe Pérez, Optik [Pér96, pp. 488])

Versuch zur Vorlesung:
Auflösungsvermögen eines Mikroskops (Versuchskarte O-001)

Wir verwenden die Tatsache, dass optische Systeme in den einfachsten Fällen lineare Systeme sind. Wenn \(f(x, y) \) und \(g(x, y) \) Intensitätsverteilungen senkrecht zur optischen Achse sind, und \(f \) die Ausgangsverteilung und \(g \) die Bildverteilung ist, schreibt man für die Abbildung

\[
f(x, y) \rightarrow g(x, y)
\] (5.11.1)

Die Abbildung ist linear, das heisst, wenn \(f_1 \rightarrow g_1 \) und \(f_2 \rightarrow g_2 \) ist, ist

\[
a_1 \cdot f_1 + a_2 \cdot f_2 \rightarrow a_1 \cdot g_1 + a_2 \cdot g_2
\] (5.11.2)

Wir nennen \(\hat{f}(u, v) \) die Fouriertransformation von \(f(x, y) \). Es gilt

\[
f(x, y) = \int \hat{f}(u, v)e^{2\pi i (ux + vy)}dudv
\]

\[
\hat{f}(u, v) = \int f(x, y)e^{-2\pi i (ux + vy)}dxdy
\] (5.11.3)

Wir schreiben \(x = (x, y) \) und \(u = (u, v) \) Die Fouriertransformation lässt sich dann kompakt schreiben als

\[
f(x) = \int \hat{f}(u)e^{2\pi i u \cdot x}du
\]

\[
\hat{f}(u) = \int f(x)e^{-2\pi i u \cdot x}dx
\] (5.11.4)

5.11.1 Impulsantwort und Faltungssatz

(Siehe Hecht, Optik [Hec05, pp. 765])

Versuch zur Vorlesung:
Fourier-Transformation (Versuchskarte O-067)

Ein Lichtfleck an der Position \(x' \) der Eingangsebene erzeugt eine Intensitätsverteilung in der Ausgangsebene, die sowohl vom Beobachtungspunkt \(x \) wie auch von \(x' \) abhängt. Die Impulsantwort ist

\[
h(x, x')
\] (5.11.5)
Ein optisches System ist translationsinvariant, wenn
\[h(x, x') = h(x - x') \] (5.11.6)
gilt. Bei einem kontinuierlichen linearen optischen System gilt zwischen der Bildebene und der Eingangsebene die Beziehung
\[g(x) = \int \int f(x') h(x - x') dx' = f(x) \ast h(x) \] (5.11.7)
Dies ist das **Faltungstheorem** aus der *Fourieroptik*. Im Fourierraum wird aus einer Faltung eine Multiplikation, also
\[\hat{g}(u) = \hat{f}(u) \hat{h}(u) \] (5.11.8)
Wenn die optische Übertragung kohärent verläuft, dann verwendet man die oben definierte kohärente Übertragungsfunktion, die Amplituden verknüpft. Ist die Übertragung nicht kohärent, muss man mit Intensitäten rechnen.

Abbildung 5.43: Berechnung der Beugung an einer Öffnung

Das entstehende Beugungsbild eines Punktes ist das Fraunhofersche **Beugungsmuster** der Blendenöffnung. Die inkohärente Impulsantwort wird
\[H_d(x, y) = \frac{1}{\lambda^2 d_b^2} \left| \int \int P(x', y') e^{-2\pi i \left(\frac{x' x}{\lambda d_b} + \frac{y' y}{\lambda d_b} \right)} dx' dy' \right|^2 \] (5.11.9)
Dies bedeutet, dass \(H_d \) das Betragsquadrat der Fouriertransformation der Pupillenfunktion \(P \) ist.
Für eine kreisförmige Öffnung ist die Pupillenfunktion
\[P(x', y') = \begin{cases} 1 & \text{für } r' \leq D/2 \\ 0 & \text{sonst} \end{cases} \] (5.11.10)
wobei \(D \) den Durchmesser der Öffnung und \(r' = \sqrt{x'^2 + y'^2} \) den Radius darstellt. Die Rechnung ist in Polarkoordinaten einfacher.
\[r' = \sqrt{x'^2 + y'^2} \]
\[\Theta' = \arctan\left(\frac{y'}{x'}\right) \]

sowie in der Bildebene

\[r = \sqrt{x^2 + y^2} \]
\[\Theta = \arctan\left(\frac{y}{x}\right) \]

Mit \(\rho_b = r/(\lambda d_b) \) bekommt man

\[
\hat{P}(\rho_b) = \int_0^{D/2} \int_0^{2\pi} e^{-2\pi i \rho_b r' (\cos \Theta' \cos \Theta + \sin \Theta' \sin \Theta)} r' dr' d\Theta'
= \int_0^{D/2} r' dr' \left\{ \int_0^{2\pi} e^{-2\pi i \rho_b r' \cos(\Theta' - \Theta)} d\Theta' \right\}
\]

Dabei ist die Größe

\[J_0(2\pi \rho_b r') = \frac{1}{2\pi} \int_0^{2\pi} e^{-2\pi i \rho_b r' \cos(\Theta' - \Theta)} d\Theta' \]

die sogenannte Besselfunktion nullter Ordnung. Die Fouriertransformation einer runden Pupille wird also

\[
\hat{P}(\rho_b) = \int_0^{D/2} 2\pi r' J_0(2\pi \rho_b r') dr'
= \frac{1}{2\pi \rho_b^2} \int_0^{\pi \rho_b D} \omega J_0(\omega) d\omega
= \frac{\pi \rho_b D}{2\pi \rho_b^2} J_1(\pi \rho_b D)
= \frac{D}{2\rho_b} J_1(\pi \rho_b D)
\]

\[J_1(\alpha) = \int_0^\alpha \omega J_0(\omega) d\omega \]

ist die Besselfunktion erster Ordnung. Mit \(r = \lambda d_b \rho_b, \Theta \) und \(S = \pi D^2/4, \) der Pupillenfläche, bekommt man für die komplexe Amplitude

\[
\psi(r) = \hat{P}(\rho_b) = S \left[\frac{2J_1(\pi \rho_b D)}{\pi \rho_b D} \right]
\]
\[
I(r) = |\psi(r)|^2 = S^2 \left[\frac{2J_1(\pi \rho_b D)}{\pi \rho_b D} \right]^2
\]

Die Intensitäten als Funktion von \(X = \rho_b D \) sind

<table>
<thead>
<tr>
<th>(X)</th>
<th>0</th>
<th>1.22</th>
<th>1.63</th>
<th>2.33</th>
<th>2.68</th>
<th>3.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>([2J_1(\pi X)/(\pi X)]^2)</td>
<td>1</td>
<td>0</td>
<td>0.017</td>
<td>0</td>
<td>0.004</td>
<td>0</td>
</tr>
</tbody>
</table>
Bei der Beugungsfigur an einer kreisförmigen Öffnung mit dem Durchmesser \(d \) ist das erste Minimum bei
\[
\sin \Theta = 1.22 \frac{\lambda}{d}.
\]

Bei dem sogenannten kritischen Winkel \(\alpha_K \), der durch
\[
\sin \alpha_K = 1.22 \frac{\lambda}{d}
\]
gegeben ist, fällt das Minimum der einen Beugungsfigur gerade auf das Maximum der anderen. Das obige Kriterium wird das \textit{Rayleighsche Auflösungskriterium} genannt.
Abbildung 5.46: Form der Intensität bei der Überlagerung zweier inkohärenter Punkte. Der Abstand variiert von 0.6 (rot) bis 1.6 (blau) in Schritten von 0.1.

Diese Abbildung zeigt, dass die Definition des Auflösungsvermögens an das mögliche Signal-Rausch-Verhältnis gebunden ist. Mit modernen Detektoren mit 16 Bit Auflösung sind deshalb leicht bessere Grenzen der Auflösung möglich.

Abbildung 5.47: Querschnitt zweier inkohärenter Punkte als Funktion des Abstandes (links) und Bild der Intensitätsverteilung bei einem Abstand von 1.

Wenn das zu untersuchende Objekt in ein Medium mit dem Brechungsindex n
eingebettet ist, dann verbessert sich die Auflösung auf \(\sin \alpha_K = 1.22 \frac{\lambda}{n \cdot d} \), da in diesem Medium die Wellenlänge ja \(\lambda' = \frac{\lambda}{n} \) ist.
6 Resonatoren und ihre Lichtmoden

6.1 Matrixformulierung der Lichtpropagation

(Siehe Hecht, Optik [Hec05, pp. 371]) (Siehe Yariv, Quantum Electronics [Yar75, pp. 99])

Zur Behandlung von Resonatoren verwenden wir die Matrixdarstellung der Lichtausbreitung paraxialer Strahlen in einer zylindersymmetrischen Anordnung. Die Lage des Lichtstrahls wird durch den Vektor

\[r = \begin{pmatrix} r(z) \\ r'(z) \end{pmatrix} \] \hspace{1cm} (6.1.1)

wobei \(z \) die Koordinate entlang der optischen Achse ist. Die Wirkung eines optischen Elementes wird durch eine Matrix \(A \) beschrieben

\[r_{\text{aus}} = Ar_{\text{ein}} \] \hspace{1cm} (6.1.2)
Tabelle 6.1: Matrizen für die Strahlausbreitung

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Matrix</th>
</tr>
</thead>
</table>
| Gerade Strecke | \[
\begin{bmatrix}
1 & d \\
0 & 1
\end{bmatrix}
\] |
| **Dünne Linse, Brennweite** f ($f > 0$: Sammellinse, $f < 0$: Zerstreuungslinse) | \[
\begin{bmatrix}
1 & 0 \\
-\frac{1}{f} & 1
\end{bmatrix}
\] |
| **Dielektrische Grenzschicht mit den Brechungsindizes** n_1 und n_2 | \[
\begin{bmatrix}
1 & 0 \\
0 & \frac{n_1}{n_2}
\end{bmatrix}
\] |
| **Sphärische dielektrische Grenzschicht mit Krümmungsradius** R und den Brechungsindizes n_1 und n_2 | \[
\begin{bmatrix}
1 & 0 \\
\frac{n_2-n_1}{n_2} - \frac{1}{R} & \frac{n_1}{n_2}
\end{bmatrix}
\] |
| **Sphärischer Spiegel mit dem Krümmungsradius** R | \[
\begin{bmatrix}
1 & 0 \\
-\frac{2}{R} & 1
\end{bmatrix}
\] |
| Gerade Strecke | \[
\begin{bmatrix}
\cos\left(\sqrt{\frac{k_2}{k}}\ell\right) & \frac{k}{k_2} \sin\left(\sqrt{\frac{k_2}{k}}\ell\right) \\
-k \sin\left(\sqrt{\frac{k_2}{k}}\ell\right) & \cos\left(\sqrt{\frac{k_2}{k}}\ell\right)
\end{bmatrix}
\] |
Abbildung 6.1: Linsenübertragungsstrecke als Modell für einen Laserresonator.

Der Strahl von der \(n \)-ten zur \(n+1 \)-ten Linse ist durch

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\quad r_{\text{ein}} =
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]

Wir haben dann eine Lichtausbreitung in einem Resonator, wenn die Strahllage nach der \(n+2 \)-ten Linse gleich wie nach der \(n \)-ten ist. Daraus folgt

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\quad r_{\text{ein}} =
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]

Ausmultipliziert erhalten wir

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]

Um eine Resonatormode zu bekommen muss \(r_{\text{aus}} = r_{\text{ein}} \) sein. Wir setzen

\[
A = 1 - \frac{d}{f_2} \\
B = d \cdot \left(2 - \frac{d}{f_2}\right) \\
C = -\frac{1}{f_1} - \frac{1}{f_2} + \frac{d}{f_1 f_2} \\
D = -\frac{d}{f_1} + \left(1 - \frac{d}{f_1}\right) \cdot \left(1 - \frac{d}{f_2}\right)
\]

Damit bekommen wir auch

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\quad r_{\text{ein}} =
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\quad r_{\text{ein}} =
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\quad r_{\text{ein}} =
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\quad r_{\text{ein}} =
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]

\[
\begin{pmatrix}
1 & 0 \\
\frac{1}{f_1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{aus}} =
\begin{pmatrix}
\frac{1}{f_1} & -d \\
-d & 1 \\
\end{pmatrix}
\quad r_{\text{ein}} =
\begin{pmatrix}
\frac{1}{f_2} & -d \\
-d & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & d \\
0 & 1 \\
\end{pmatrix}
\quad r_{\text{ein}}
\]
\[r_{n+2} = A \cdot r_n + B \cdot r'_n \]
\[r'_{n+2} = C \cdot r_n + D \cdot r'_n \] \hspace{1cm} (6.1.7)

Wir lösen die erste Gleichung nach \(r'_n \) auf und erhalten
\[r'_n = \frac{1}{B} (r_{n+2} - A \cdot r_n) \] \hspace{1cm} (6.1.8)

Diese Gleichung schreiben wir um 2 verschoben hin und bekommen
\[r'_{n+2} = \frac{1}{B} (r_{n+4} - A \cdot r_{n+2}) \] \hspace{1cm} (6.1.9)

Wir setzen diese Resultate in die zweite Gleichung (6.1.7) ein und erhalten
\[r_{n+4} - (A + D) r_{n+2} + (AD - BC) r_n = 0 \] \hspace{1cm} (6.1.10)

Durch ausrechnen erhält man, dass \(AD - BC = 1 \) ist. Wenn wir \(b = \frac{1}{2} (A + D) = (1 - \frac{d}{f_2} - \frac{d}{f_1} + \frac{d^2}{2f_1f_2}) \) setzen, können wir schreiben
\[r_{n+4} - 2br_{n+2} + r_n = 0 \] \hspace{1cm} (6.1.11)

Diese Differenzengleichung ist formal äquivalent zu einer Differentialgleichung vom Typ \(\ddot{r} + kr = 0 \). Die Lösung der Differentialgleichung ist \(r(z) = r(0) \exp \left[\pm i \sqrt{k}z \right] \). Deshalb setzen wir in die Differenzengleichung den Ansatz \(r_s = r_0 \exp [is\Theta] \) mit \(s = 2n \) ein und erhalten
\[e^{2i\Theta} - 2be^{i\Theta} + 1 = 0 \] \hspace{1cm} (6.1.12)

Die Lösung ist
\[e^{i\Theta} = b \pm \sqrt{b^2 - 1} = b \pm i \sqrt{1 - b^2} \] \hspace{1cm} (6.1.13)

Mit \(b = \cos \Theta \) und daraus \(\sqrt{1 - b^2} = \sin \Theta \) ist die obige Gleichung erfüllt. Die allgemeine Lösung ist also
\[r_s = r_{\text{max}} \sin (s\Theta + \delta) \] \hspace{1cm} (6.1.14)

mit \(r_{\text{max}} = r_0 / \sin \delta \). Damit wir eine stabile Lösung haben, muss \(\Theta \) reell sein. Daraus folgt
\[|b| \leq 1 \] \hspace{1cm} (6.1.15)

Aus der Definition von \(b \) folgt\(^2\)

\(^1\)Dazu schreiben wir die Gleichung wie folgt um. \(r_{n+4} - 2r_{n+2} + 4r_n + 2(1 - b)r_{n+2} = 0 \). Nun sind die ersten drei Summanden die zweite Ableitung.
\(^2\)Wir rechnen
\[0 \leq 2 - \frac{d}{f_1} - \frac{d}{f_2} + \frac{d^2}{2f_1f_2} \leq 2 \]
\[0 \leq 1 - \frac{d}{f_2} - \frac{d}{2f_2} + \frac{d^2}{4f_1f_2} \leq 1 \]
-1 \leq 1 - \frac{d}{f_1} - \frac{d}{f_2} + \frac{d^2}{2f_1f_2} \leq 1
0 \leq \left(1 - \frac{d}{2f_1}\right)\left(1 - \frac{d}{2f_2}\right) \leq 1 \quad (6.1.16)

6.1.1 Stabilität

Wenn wir die neuen normierten Koordinaten \(x = d/2f_1 \) und \(y = d/2f_2 \) einführen, heißt die Stabilitätsbedingung

\[0 \leq (1 - x)(1 - y) \leq 1\quad (6.1.17)\]

Abbildung 6.2: Stabilitätsdiagramm für Strahlführoptiken mit Linsen. Die gelbe Farbe zeigt die instablen Bereich, die türkis-Farbe die stabilen.

Das obige Stabilitätsdiagramm kann auch für Spiegel berechnet werden, indem man \(f = R/2 \) setzt, wobei \(R \) der Krümmungsradius des Spiegels ist.

und damit folgt die Behauptung.
6.2 Resonatoren mit sphärischen Spiegeln

(Siehe Hecht, Optik [Hec05, pp. 893])

Beim konzentrischen Resonator ist $R_1 = R_2 = \ell/2$. Damit liegt dieser Resonator auf der Diagonale des Stabilitätsdiagramms am Punkt $(2,2)$ an der Grenze zur Instabilität.
Beim konfokalen Resonator ist $\ell = R_1 = R_2$. Dieser Resonator liegt am Punkt (1,1) und ist auch an der Grenze zu instabilen Regionen.

Der planparallele Resonator ist ein Sonderfall der sphärischen Resonatoren mit $R_1 = R_2 = \infty$. Dieser Resonator, der an der Stabilitätsgrenze bei (0,0) liegt, ist heute der am häufigsten vorkommende Resonator: praktisch jede Laserdiode besteht aus einem planparallelen Resonator.

6.3 Gaußsche Strahlen

(Siehe Yariv, Quantum Electronics [Yar75, pp. 106])

Als Vorstufe betrachten wir die durch eine Linse induzierte abstandsabhängige Phasendifferenz für paraxiale Strahlen. Die Linsenkrümmung sei R. Die x,y-Ebene sei senkrecht zur optischen Achse. Dann ist die Dicke der Sammellinse durch $d(x,y) = d_0 - (x^2 + y^2)/2R_1 - (x^2 + y^2)/2R_2$ gegeben. Der optische Weg setzt sich dann aus $s = s_{\text{Linse}}(r) + s_{\text{Luft}}(r)$ zusammen. Die Zeit, die Das Licht für das durchlaufen dieser Strecke benötigt ist

$$t = t_{\text{Linse}} + t_{\text{Luft}} = \frac{s_{\text{Linse}}(r)n}{c} + \frac{s_{\text{Luft}}(r)}{c}$$ (6.3.1)
Mit $s_{Laft} = s_0 - s_{Linse}$ und unter Weglassung aller konstanten Termen bekommt man

$$t = -(x^2 + y^2) \left(\frac{1}{2R_1} + \frac{1}{2R_2} \right) (n - 1) \quad (6.3.2)$$

Mit $1/f = (n - 1)(1/R_1 + 1/R_2)$ ist das Resultat

$$t = -\frac{x^2 + y^2}{2f} \quad (6.3.3)$$

Wenn wir mit $E_L(x, y)$ die Amplitudenverteilung links von der Linse und mit $E_R(x, y)$ die Verteilung rechts von der Linse beschreiben, gilt

$$E_R(x, y) = E_L(x, y) e^{ik\sqrt{x^2 + y^2}} \quad (6.3.4)$$

Den gleichen Effekt erreicht man mit einem Medium, das die folgende Variation des Brechungsindexes hat

$$n(x, y) = n_0 \left[1 - \frac{k^2}{k} (x^2 + y^2) \right] \quad (6.3.5)$$

Mit dem Fermatschen Prinzip in differentieller Schreibweise

$$\frac{d}{ds} \left(n \frac{dr}{ds} \right) = \nabla n = \text{grad } n \quad (6.3.6)$$

kann die Trajektorie des Lichtstrahls ausgerechnet werden. Dabei ist s die Weglänge entlang des Lichtstrahls. Bei paraxialen Strahlen kann d/ds durch d/dz ersetzt werden. Damit ist die Gleichung für paraxiale Strahlen

$$\frac{d^2r}{dz^2} + \left(\frac{k^2}{k} \right) r = 0 \quad (6.3.7)$$

Wenn der Strahl am Eingang die Position r_0 und die Steigung r'_0 hat, ist die Lösung

$$r(z) = \cos \left(\sqrt{\frac{k^2}{k^2}} z \right) r_0 + \sqrt{\frac{k}{k^2}} \sin \left(\sqrt{\frac{k^2}{k^2}} z \right) r'_0$$

$$r'(z) = \sqrt{\frac{k}{k^2}} \sin \left(\sqrt{\frac{k^2}{k^2}} z \right) r_0 + \cos \left(\sqrt{\frac{k^2}{k^2}} z \right) r'_0 \quad (6.3.8)$$

Aus der Elektrizitätslehre folgt (ohne Ableitung), dass für das elektrische Feld

$$\nabla^2 \mathbf{E} + k^2(r) \mathbf{E} = 0 \quad (6.3.9)$$

gilt. Wir beschränken uns auf den Fall wo $k^2(r) = k^2 - kk_2 r_0^2$ gilt. Der Laplace-Operator in Zylinderkoordinaten für Funktionen, die nur von $r = \sqrt{x^2 + y^2}$ abhängen, ist

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2} \quad (6.3.10)$$
Wir verwenden die Abkürzung $\nabla_i^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$. Weiter setzen wir an:

$$E = \psi(x, y, z)e^{-iz} \quad (6.3.11)$$

und erhalten

$$\nabla_i^2 \psi - 2ik \frac{\partial \psi}{\partial z} - kk_2r^2\psi = 0 \quad (6.3.12)$$

Wenn die *Intensität* entlang z sich nur wenig ändert ($k(\partial \psi / \partial z) \gg \partial^2 \psi / \partial z^2 \ll k^2 \psi$, ist, können wir für ψ ansetzen

$$\psi(x, y, z) = \exp \left\{ -i \left[P(z) + \frac{1}{2} Q(z) r^2 \right] \right\} \quad (6.3.13)$$

Wir setzen dies ein und bekommen

$$-Q^2r^2 - 2iQ - kr^2 \frac{\partial Q}{\partial z} - 2k \frac{\partial P}{\partial z} - kk_2r^2 = 0 \quad (6.3.14)$$

Da dies Gleichung für alle r gelten soll, müssen die Koeffizienten der verschiedenen Potenzen von r einzeln verschwinden. Also ist

$$Q^2 + k \frac{\partial Q}{\partial z} + kk_2 = 0$$

$$\frac{\partial P}{\partial z} = \frac{iQ}{k} \quad (6.3.15)$$

In einem homogenen Medium ist $k_2 = 0$ so dass wir die Gleichung

$$Q^2 + k \frac{\partial Q}{\partial z} = 0 \quad (6.3.16)$$

erhalten. Wir definieren die Funktion $s(z)$ über

$$Q = k \frac{\partial s}{s} \quad (6.3.17)$$

Durch Einsetzen sehen wir, dass

$$\frac{\partial^2 s}{\partial z^2} = 0 \quad (6.3.18)$$

Damit muss $s(z) = az + b$ sein. Somit ist Q

$$Q(z) = k \frac{a}{az + b} \quad (6.3.19)$$

Bequemer ist es im weiteren, wenn wir die Funktion

$$q(z) = \frac{k}{Q(z)} = \frac{2\pi n}{\lambda Q(z)} \quad (6.3.20)$$

verwenden. Diese hat die Form

$$q(z) = z + q_0 \quad (6.3.21)$$

Wir setzen $Q(z)$ in die Gleichung für $P(z)$ ein und erhalten
\[\frac{\partial P}{\partial z} = -i \frac{q}{z^2 + q_0} \]
\[P(z) = -i \ln \left(1 + \frac{z}{q_0} \right) \]
(6.3.22)

Wir nehmen an, dass \(q_0 \) rein imaginär ist. Dann gilt für die örtliche Amplitudenverteilung
\[\psi(r, z) = \exp \left\{ -i \left[-i \ln \left(1 + \frac{z}{q_0} \right) + \frac{k}{2(q_0 + z) r^2} \right] \right\} \]
(6.3.23)

Wir setzen \(q_0 = i \frac{\pi^2 n}{\lambda} \), berücksichtigen \(\lambda = \frac{2\pi n}{k} \) und verwenden die Identität
\[\ln(a + ib) = \ln \left(\sqrt{a^2 + b^2} \right) + \text{arctan} \left(\frac{b}{a} \right) \]
und erhalten für den ersten Term im obigen Produkt
\[\exp \left[-\ln \left(1 - i \frac{\lambda z}{\pi \omega_0^2 n} \right) \right] = \frac{1}{\sqrt{1 + \left(\frac{\lambda z}{\pi \omega_0^2 n} \right)^2}} \exp \left[i \text{arctan} \left(\frac{\lambda z}{\pi \omega_0 n} \right) \right] \]
(6.3.24)

Der zweite Term wird
\[\exp \left[-\frac{ikr^2}{2(q_0 + z)} \right] = \exp \left\{ -\frac{r^2}{\omega_0^2 \left[1 + \left(\frac{\lambda z}{\pi \omega_0^2 n} \right)^2 \right]} - \frac{ikr^2}{2z \left[1 + \left(\frac{\pi \omega_0 n}{\lambda z} \right)^2 \right]} \right\} \]
(6.3.25)

Die folgenden Definitionen sind üblich
\[\omega^2(z) = \omega_0^2 \left[1 + \left(\frac{\lambda z}{\pi \omega_0^2 n} \right)^2 \right] = \omega_0^2 \left(1 + \frac{z^2}{z_0^2} \right) \]
(6.3.26)
\[R(z) = \left[1 + \left(\frac{\pi \omega_0 n}{\lambda z} \right)^2 \right] = z \left(1 + \frac{z_0^2}{z^2} \right) \]
(6.3.27)
\[\eta(z) = \text{arctan} \left(\frac{\lambda z}{\pi \omega_0^2 n} \right) = \text{arctan} \left(\frac{z}{z_0} \right) \]
(6.3.28)
\[z_0 \equiv \frac{\pi \omega_0^2 n}{\lambda} \]
(6.3.29)

Die Parameter haben die folgende Bedeutung:

\(\omega(z) \)	Der halbe Strahlendurchmesser an der Position \(z \)
\(R(z) \)	Der Krümmungsradius der Wellenfront an der Stelle \(z \)
\(\eta(z) \)	Phasenfaktor
\(z_0 \)	Ort der maximalen Krümmung der Wellenfront

Mit dieser abgekürzten Schreibweise wird
\[E(x, y, z) = E_0 \frac{\omega_0}{\omega(z)} \exp \left[-i (kz - \eta(z)) - \frac{r^2}{\omega^2(z) + \frac{ik}{2r(z)}} \right] \]
(6.3.30)
Weiter ist
\[
\frac{1}{q(z)} = \frac{1}{R(z)} - i\frac{\lambda}{\pi n\omega^2(z)}
\] (6.3.31)

Die Größe $1/q(z)$ beschreibt die Gaußschen Strahlen. Der Realteil gibt den Krümmungsradius der Wellenfronten, der Imaginärteil den Strahldurchmesser.

Die Größe $q(z)$ ist deshalb sehr wichtig, weil mit Hilfe der Transfermatrizen $q(z)$ propagent werden kann. Die Transfermatrizen geben deshalb auch die Änderung der Strahlform durch optische Elemente an.

6.3.1 Divergenz und Strahldurchmesser

(Siehe Yariv, Quantum Electronics [Yar75, pp. 106])

Die obigen Parameter haben die folgende Bedeutung

6.3.1.1 $\omega(z)$ und ω_0

Die transversale Amplitudenverteilung folgt einer Gaußkurve, wie man aus dem Term $\text{exp}\left[r^2/\omega^2(z)\right]$ ersehen kann. $\omega(z)$ ist die Distanz zur optischen Achse, bei der die Intensität um den Faktor e vom Maximum abgefallen ist. ω_0 beschreibt den minimalen Strahldurchmesser.

6.3.1.2 $R(z)$

$R(z)$ ist der Krümmungsradius der Wellenfronten. Aus $R(z) = z\left(1 + \frac{z^2}{\omega_0^2}\right)$ ist ersichtlich, dass $\lim_{z \to 0} R(z) = \infty$ ist. Damit nähern Gaußsche Wellen im Fokus eine ebene Welle an. Ebenso ist $\lim_{z \to \pm\infty} R(z) = \pm\infty$. Auch für sehr grosse Distanzen sind Gaußsche wellen eine gute Approximation für ebene Wellen.

6.3.1.3 Öffnungswinkel

Weit weg vom minimalen Strahldurchmesser kann ein Gaußscher Strahl durch einen Öffnungswinkel
\[
\Theta = \arctan\left(\frac{\lambda}{\pi \omega_0 n}\right) \approx \frac{\lambda}{\pi \omega_0 n}
\] (6.3.32)

beschrieben werden. Es gilt deshalb die folgende Gleichung
\[
\Theta \omega_0 = \text{const} = \frac{\lambda}{\pi n}
\] (6.3.33)

die formal äquivalent zur Unschärfereaktion ist. Damit ist klar, dass ein kleinerer Brennfeeck unweigerlich einen grösseren Öffnungswinkel bedeutet. In einer nullten Approximation sieht man auch, dass $\omega_0 \geq \frac{\lambda}{\pi n}$ sein muss.
6.3.2 Wirkung optischer Elemente auf Gausssche Strahlen

Die Transformation eines Gaussschen Strahls mit optischen Elementen, die durch die Matrix

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]

charakterisiert sind, wird durch

\[
q_2 = \frac{Aq_1 + B}{Cq_1 + D}
\]
(6.3.34)

beschrieben. Zum Beispiel wirkt eine Linse mit der Brennweite \(-f\), also der Matrix

\[
\begin{bmatrix}
1 & 0 \\
-1/f & 1
\end{bmatrix}
\]

so auf einen Gaussschen Strahl

\[
q_2 = \frac{q_1}{-q_1/f + 1}
\]
(6.3.35)

Wir nehmen den Kehrwert und bekommen

\[
\frac{1}{q_2} = \frac{1 - q_1/f}{q_1} = \frac{1}{q_1} - \frac{1}{f}
\]
(6.3.36)

Mit der Definition \(1/q = 1/R + i\lambda/(\pi n\omega^2)\) wird die Gleichung

\[
\frac{1}{R_2} + i\frac{\lambda}{\pi n\omega_2^2} = \frac{1}{R_1} + i\frac{\lambda}{\pi n\omega_1^2} - \frac{1}{f}
\]
(6.3.37)

Diese Gleichung muss für den Real- und den Imaginärteil separat erfüllt sein. Also haben wir

\[
\frac{1}{\omega_1} = \omega_2 \\
\frac{1}{R_2} = \frac{1}{R_1} - \frac{1}{f}
\]
(Realteil)
(Imaginärteil)
(6.3.38)

Wenn zwei optische Elemente mit den Matrizen

\[
\begin{bmatrix}
A_1 & B_1 \\
C_1 & D_1
\end{bmatrix}
\]

und

\[
\begin{bmatrix}
A_2 & B_2 \\
C_2 & D_2
\end{bmatrix}
\]

hintereinander geschaltet, ist das Resultat durch
\[q_3 = \frac{A_2q_2 + B_2}{C_2q_2 + D_2} = \frac{A_2\frac{A_1q_1 + B_1}{C_1q_1 + D_1} + B_2}{C_2\frac{A_1q_1 + B_1}{C_1q_1 + D_1} + D_2} \]
\[= \frac{(A_2A_1 + B_2C_1)q_1 + (A_2B_1 + b_2D_1)}{(C_2A_1 + D_2C_1)q_1 + (C_2B_1 + D_2D_1)} \]
\[= \frac{A_Tq_1 + B_T}{C_Tq_1 + D_T} \] \hspace{1cm} (6.3.39)

gegeben. Die Analyse dieser Gleichung zeigt, dass für die Koeffizienten auch
\[\begin{bmatrix} A_T & B_T \\ C_T & D_T \end{bmatrix} = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \] \hspace{1cm} (6.3.40)

gilt. Damit gelten für Gaussche Strahlen die gleichen mathematischen Formeln für die Berechnung von optischen Systemen wie bei Lichtstrahlen.

Abbildung 6.7: Fokussierung eines Gausschen Strahls.

In der Eingangsebene 1 ist \(R_1 = \infty \) und \(\omega = \omega_{01} \). Dann ist
\[\frac{1}{q_1} = \frac{1}{R_1} - i \frac{\lambda}{\pi \omega_{01}^2 n} = -i \frac{\lambda}{\pi \omega_{01}^2 n} \] \hspace{1cm} (6.3.41)

In der Ebene 2 ist
\[\frac{1}{q_2} = \frac{1}{q_1} - \frac{1}{f} = -\frac{1}{f} - i \frac{\lambda}{\pi \omega_{01}^2 n} \] \hspace{1cm} (6.3.42)

Damit ist
\[q_2 = \frac{1}{-\frac{1}{f} - i \frac{\lambda}{\pi \omega_{01}^2 n}} = -\frac{a + ib}{a^2 + b^2} \] \hspace{1cm} (6.3.43)
wobei $a = 1/f$ und $b = \lambda/(\pi \omega_0^2 n)$. In der Ebene 3 ist

$$q_3 = q_2 + \ell = \frac{-a}{a^2 + b^2} + \ell + \frac{ib}{a^2 + b^2} \quad (6.3.44)$$

Nun muss in der Ebene 3 auch gelten

$$\frac{1}{q_3} = \frac{1}{R_3} - i \frac{\lambda}{\pi \omega_3^2 n} = \left(\frac{-a}{a^2 + b^2} + \ell\right) - i \frac{b}{a^2 + b^2} \quad (6.3.45)$$

In der Ebene 3 soll der Durchmesser minimal sein, also ist $R_3 = \infty$. Damit muss in der obigen Gleichung der Realteil null sein. Damit ergibt sich die Bedingung

$$0 = \frac{-a}{a^2 + b^2} + \ell \Leftrightarrow \ell = \frac{a}{a^2 + b^2} = \frac{f}{1 + \left(\frac{f \lambda}{\pi \omega_0^2 n}\right)^2} = \frac{f}{1 + \left(\frac{f}{z_01}\right)^2} \quad (6.3.46)$$

Und damit ist auch der Ort des Strahlminima gegeben. Der neue Strahldurchmesser ist

$$\frac{\omega_3}{\omega_{01}} = \frac{f \lambda}{\pi \omega_0^2 n} \sqrt{1 + \left(\frac{f \lambda}{\pi \omega_0^2 n}\right)^2} = \frac{f}{z_01} \sqrt{1 + \left(\frac{f}{z_01}\right)^2} \quad (6.3.47)$$

Der Parameter z_0 ist der konfokale Parameter, der angibt, in welcher Distanz vom Strahlminimum der Strahldurchmesser um $\sqrt{2}$ zunimmt. Der Wert des konfokalen Parameters ist

$$z_0 = \frac{\pi \omega_0^2 n}{\lambda} \quad (6.3.48)$$

6.3.3 Moden

(Siehe Hecht, Optik [Hech05, pp. 881]) (Siehe Yariv, Quantum Electronics [Yar75, pp. 118])

Versuch zur Vorlesung:

Laser (Versuchskarte AT-052)

Die Gausssschen Strahlen sind die Grundmode von Laserstrahlung. Sie zeichnen sich dadurch aus, dass sie keine Knotenlinie hat. Es existieren weiter Moden, die durch die Anzahl Knotenlinien in horizontaler und vertikaler Richtung charakterisiert sind. Die möglichen Moden sind durch die Randbedingungen vorgegeben. So erzeugt eine vertikale Störung durch die Resonatorachse eine Mode mit zwei Maxima, die durch eine vertikale Knotenlinie getrennt sind.

Im folgenden werden Messungen von Moden gezeigt, die im Institut für Experimentelle Physik an vertikal emittierenden Laserdioden (VCSEL) aus der Abteilung Optoelektronik gemessen wurden.
Abbildung 6.8: Aufbau der Nahfeld-Messeinrichtung für Modenverteilungen. (Zeichnung von Markus Fischer[Fi97]).
Abbildung 6.9: Nahaufnahme von Glasfaser-Nahfeldsonden. (Daten gemessen von Markus Fischer [Fis97]).
Abbildung 6.10: Transmission von Nahfeld-Glasfasersonden. (Schaubild gezeichnet von Markus Fischer[Fis97]).
Abbildung 6.11: Wellenleitermoden für elliptische Wellenleiter. Links sind die Bezeichnungen, dann die Anordnung der elektrischen Felder und schliesslich die Intensitätsmuster gezeigt. (gezeichnet nach [Dyo95].)
Abbildung 6.12: Diese Aufnahme zeigt Moden bei relativ geringen Strömen. Deshalb können nur die Grundmode sowie noch wenige Oberwellen anschwingen. Die Modenform wird durch die Verunreinigungen auf den Laserspiegeln (rechts sichtbar) hervorgerufen. In der Unter-teren Reihe ist der Analysator für die Polarisation um $\pi/2$ ge-dreht worden. Die beiden Reihen zeigen also die beiden ortho-gonalen Polarisationszustände des Lichtes. (Daten gemessen von Markus Fischer [Fis97]).
Abbildung 6.13: Bei ähnlichem Strom hängen die möglichen Moden auch vom Durchmesser des Resonators ab. Dieser Resonator ist größer als der im vorherigen Bild. (Daten gemessen von Markus Fischer[Fi97]).
Abbildung 6.14: Hier ist der Strom bei gleicher Geometrie grösser als im vorherigen Bild. Entsprechend schwingen mehr Moden an. Beachten Sie, dass die Knotenlinien von Moden mit einer orthogonalen Polarisation auch orthogonal sind. (Daten gemessen von Markus Fischer [Fis97]).
Abbildung 6.15: Dieser Laserresonator hat den grösseren Durchmesser als der vorherige. Da auch der Injektionsstrom grösser ist, schwingen hier sehr viele Moden an, die zum Teil auch nicht mehr identifiziert werden können. (Daten gemessen von Markus Fischer [Fis97]).
Einfluß der Spitze auf Polarisation

M84/96 (Größe 3), 7.5 mA, 15 x 15 μm
Polfilter 0°

Probe 90° nach links gedreht

Abbildung 6.16: Hier wird gezeigt, dass die Sonde, hier "Spitze" genannt, keinen Einfluss auf die Messung hat. (Daten gemessen von Markus Fischer[Fis97]).
Abbildung 6.17: Wie bei allen Messmethoden gibt es auch hier Artefakte. So führen hier Rückwirkungen auf den Laser zu einer optisch sonst nicht erklärbaren Streifenbildung. (Daten gemessen von Markus Fischer\[Fis97\]).

Nach Yariv\[Yar75, 118\] genügen die Moden in rechteckförmigen Wellenleiter

\[
E_{\ell,m} = E_0 \frac{\omega_0}{\omega(z)} H_\ell \left(\frac{\sqrt{2}}{\omega(z)} \right) H_m \left(\frac{\sqrt{2}}{\omega(z)} \right) \\
\times \exp \left[-i \frac{x^2 + y^2}{2q(z)} - ikz + i(m + n + 1)\eta \right] \\
= E_0 \frac{\omega_0}{\omega(z)} H_\ell \left(\frac{\sqrt{2}}{\omega(z)} \right) H_m \left(\frac{\sqrt{2}}{\omega(z)} \right) \\
\times \exp \left[- \frac{x^2 + y^2}{\omega^2(z)} - i k \frac{x^2 + y^2}{2R(z)} - ikz + i(m + n + 1)\eta \right]
\]

(6.3.49)

wobei \(H_\ell\) das Hermitsche Polynom \(\ell\)-ten Grades ist und die anderen Grössen wie bei den Gausssschen Strahlen definiert sind.
Abbildungsverzeichnis

2.1 Mikroskope ... 7
2.2 Laser ... 8
2.3 Nahfeldmikroskope .. 8
2.4 Optiklabor ... 8
2.5 Lichtgeschwindigkeit .. 9
2.6 Bradley und die Lichtgeschwindigkeit 10
2.7 Dreiecke zur Berechnung der Lichtgeschwindigkeit nach Bradley 10
2.8 Lichtgeschwindigkeitsmessung nach Armand Fizeau (1849) 11
2.9 Messung der Lichtgeschwindigkeit mit der Drehspiegelmethode 12
2.10 Reflexionsgesetz .. 13
2.11 Strahlengang bei Brechung 14
2.12 Brechung von Licht an einer gekrümmten Glasoberfläche 15
2.13 Dünne Linse .. 16
2.14 Brennweitenbestimmung nach Bessel 17
2.15 Wellenfronten beim Durchgang durch eine Linse 19
2.16 Zerstreuungslinse ... 19
2.17 Abbildung bei einer Konvexlinse 20
2.18 Abbildung bei einer Konkavlinse 20
2.19 Dicke Linse .. 21
2.20 Geometrie eines Doppellinsensystems 21
2.21 Bildposition .. 23
2.22 Ebener Spiegel ... 23
2.23 Gekrümmter Spiegel ... 24
2.24 Sphärische Aberration 25
2.25 Konvexspiegel ... 26
2.26 Bildentstehung beim Konkavspiegel 27
2.27 Abbildungsmassstab .. 28
2.28 Vereinfachung der Konstruktion 28
2.29 Abbildung bei einem convexen Spiegel 29
2.30 Sphärische Aberration 30
2.31 Chromatische Aberration 30
2.32 Intensitätsverteilung im Fokus bei chromatischer Aberration 31
2.33 Charakteristische Kurve bei chromatischer Aberration 31
2.34 Astigmatismus ... 32

3.1 Das Auge ... 33
3.2 Weitsichtiges Auge: Links ohne Brille, rechts mit Korrektur 34
3.3 Kurzsichtiges Auge: Links ohne Brille, rechts mit Korrektur 34
3.4 Wirkungsweise einer Lupe 34
3.5 Schematische Skizze einer Spiegelreflexkamera 35
3.6 Strahlengang in einem Mikroskop ... 37
3.7 Das Teleskop ... 38
3.8 Das Spiegelteleskop ... 39
3.9 Aufnahmen des Hubble-Teleskops ... 39
3.10 Galaxien ... 40
3.11 Hubble-Teleskop ... 40
3.12 Prisma .. 41
3.13 Modell eines Oszillators .. 42
3.14 Resonanzkurven ... 42
3.15 Polarisierbarkeit: Modell .. 43
3.16 Federmodell für die Dispersion ... 43
3.17 Dispersionsrelation für Federketten mit zwei unterschiedlichen Atomen 47
4.1 Huygenssches Prinzip ... 50
4.2 Huygenssches Prinzip ... 50
4.3 Huygenssches Prinzip ... 51
4.4 Huygenssches Prinzip ... 51
4.5 Huygenssches Prinzip ... 52
4.6 Huygenssches Prinzip ... 52
4.7 Geometrie der Reflexion .. 53
4.8 Geometrie der Brechung .. 55
4.9 Transport von Licht in einer Stufenindexfaser 56
4.10 Begründung des Reflexionsgesetzes mit dem Fermatschen Prinzip 58
4.11 Anwendung des Fermatschen Prinzips .. 58
4.12 Fermatsches Prinzip ... 60
4.13 Interferenzsumme .. 61
4.14 Polarisation durch Absorption in einem Drahtpolarisator 62
4.15 Polarisator und Analysator ... 63
4.16 Dichroismus in einem NaVO₄Mn-Kristall 64
4.17 Polarisation durch Streuung an einem Teilchen 64
4.18 Brewster-Winkel ... 65
4.19 Wirkungsweise eines λ/4-Plättchens oder eines λ/2-Plättchens 67
4.20 Wellen in einem λ/4-Plättchen .. 67
4.21 Wellen in einem λ/2-Plättchen .. 70
4.22 Verschiedene Polarisationsellipsen ... 72
4.23 Koordinatensysteme zur Berechnung der elliptischen Polarisation 74
4.24 Poincaré-Kugel ... 79
4.25 Messung der Stokes-Parameter ... 81
4.26 Aufspaltung eines Lichtstrahls in einem doppelbrechenden Material 86
4.27 Doppelbrechung in einem NaVO₄Mn-Kristall 87
4.28 Das Nicolische Prisma ... 88
4.29 Definition der s-Polarisation und der p-Polarisation 89
4.30 Stetigkeitsbedingungen für Licht .. 91
4.31 Amplitudenverlauf für p- und s-Polarisation 93
4.32 Intensitätsverlauf für p- und s-Polarisation 93
4.33 Amplitude des elektrischen Feldes .. 94
4.34 Intensitätsverlauf für p-Polarisation ... 94
4.35 Verlauf der Intensität ... 97
<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Bildschirmverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.36</td>
<td>Gewichtete Intensität</td>
</tr>
<tr>
<td>4.37</td>
<td>Momentaufnahme der Interferenz</td>
</tr>
<tr>
<td>5.1</td>
<td>Interferenz zweier Wellen</td>
</tr>
<tr>
<td>5.2</td>
<td>Aufbau des Mach-Zehnder-Interferometers</td>
</tr>
<tr>
<td>5.3</td>
<td>Aufbau des Michelson-Interferometers</td>
</tr>
<tr>
<td>5.4</td>
<td>Sagnac-Interferometer. Rechts nach einer Laufzeit</td>
</tr>
<tr>
<td>5.5</td>
<td>Stokessche Behandlung von Reflexion und Brechung (nach Hecht [Hec05])</td>
</tr>
<tr>
<td>5.6</td>
<td>Strahlengang bei einem Fabry-Perot-Etalon (nach Hecht [Hec05])</td>
</tr>
<tr>
<td>5.7</td>
<td>Strahlengang bei einem Fabry-Perot-Etalon (nach Pérez [Pér96, p. 392])</td>
</tr>
<tr>
<td>5.8</td>
<td>Transmission durch ein Fabry-Perot-Etalon</td>
</tr>
<tr>
<td>5.9</td>
<td>Reflexion an einem Fabry-Perot-Etalon</td>
</tr>
<tr>
<td>5.10</td>
<td>Bild einer ebenen Welle</td>
</tr>
<tr>
<td>5.11</td>
<td>Amplitude und Intensität</td>
</tr>
<tr>
<td>5.12</td>
<td>Interferenz bei Moire-Mustern</td>
</tr>
<tr>
<td>5.13</td>
<td>Interferenz zweier Wellen aus A und B</td>
</tr>
<tr>
<td>5.14</td>
<td>Strahlengang bei einem Doppelspalt</td>
</tr>
<tr>
<td>5.15</td>
<td>Beugung an einem Doppelspalt</td>
</tr>
<tr>
<td>5.16</td>
<td>Grafische Darstellung der Vektoraddition</td>
</tr>
<tr>
<td>5.17</td>
<td>Interferenz von drei Quellen</td>
</tr>
<tr>
<td>5.18</td>
<td>Vektoriagramm für die Interferenz</td>
</tr>
<tr>
<td>5.19</td>
<td>Interferenzmuster für zwei bis fünf Punkte, nicht normiert</td>
</tr>
<tr>
<td>5.20</td>
<td>Interferenzmuster für zwei bis sieben sowie 20 Punkte, normiert</td>
</tr>
<tr>
<td>5.21</td>
<td>Interferenz an dünnen Schichten</td>
</tr>
<tr>
<td>5.22</td>
<td>Newtonsche Ringe in einem Glasplättchen</td>
</tr>
<tr>
<td>5.23</td>
<td>Newtonsche Ringe (rechts mit einem Fehler)</td>
</tr>
<tr>
<td>5.24</td>
<td>Newtonsche Ringe bei weissem Licht</td>
</tr>
<tr>
<td>5.25</td>
<td>Berechnung des Beugungsmusters an einem Einzelspalt</td>
</tr>
<tr>
<td>5.26</td>
<td>Definition der Grössen</td>
</tr>
<tr>
<td>5.27</td>
<td>Beugungsmuster als Funktion des Ablenkwinkels</td>
</tr>
<tr>
<td>5.28</td>
<td>Beugungsmuster als Funktion der Spaltbreite</td>
</tr>
<tr>
<td>5.29</td>
<td>Beugung an einem Doppelspalt</td>
</tr>
<tr>
<td>5.30</td>
<td>Beugung an einem 5-fach Spalt</td>
</tr>
<tr>
<td>5.31</td>
<td>Berechnung der Fresnelbeugung an einer Halbebene</td>
</tr>
<tr>
<td>5.32</td>
<td>Die Cornu-Spirale</td>
</tr>
<tr>
<td>5.33</td>
<td>Fresnelsches Beugungsmuster</td>
</tr>
<tr>
<td>5.34</td>
<td>Fresnelsches Beugungsmuster</td>
</tr>
<tr>
<td>5.35</td>
<td>Vergleich der Fresnelbeugung mit der Fraunhoferbeugung</td>
</tr>
<tr>
<td>5.36</td>
<td>Vergleich der Fresnelbeugung mit der Fraunhoferbeugung</td>
</tr>
<tr>
<td>5.37</td>
<td>Vergleich der Fresnelbeugung mit der Fraunhoferbeugung</td>
</tr>
<tr>
<td>5.38</td>
<td>Lichtdurchgang durch ein Gitter mit der Gitterkonstante g</td>
</tr>
<tr>
<td>5.39</td>
<td>Blaze-Gitter</td>
</tr>
<tr>
<td>5.40</td>
<td>Aufzeichnung eines Hologramms</td>
</tr>
<tr>
<td>5.41</td>
<td>Auslesen eines Hologramms</td>
</tr>
<tr>
<td>5.42</td>
<td>Schematischer Aufbau von Hologrammen</td>
</tr>
<tr>
<td>5.43</td>
<td>Berechnung der Beugung an einer Öffnung</td>
</tr>
<tr>
<td>5.44</td>
<td>Die Beugung an einer ringförmigen Apertur</td>
</tr>
<tr>
<td>5.45</td>
<td>Abbildung zweier punktförmiger, incohärenter Quellen</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Bildunterschrift</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>5.46</td>
<td>Überlagerung zweier inkohärenter Punktquellen</td>
</tr>
<tr>
<td>5.47</td>
<td>Querschnitt zweier inkohärenter Punktquellen</td>
</tr>
<tr>
<td>6.1</td>
<td>Linsenübertragungsstrecke als Modell für einen Laserresonator</td>
</tr>
<tr>
<td>6.2</td>
<td>Stabilitätsdiagramm für Strahlführungstrecken mit Linsen</td>
</tr>
<tr>
<td>6.3</td>
<td>Das Stabilitätsdiagramm für Spiegelresonatoren</td>
</tr>
<tr>
<td>6.4</td>
<td>Konzentrischer Resonator</td>
</tr>
<tr>
<td>6.5</td>
<td>Konfokaler symmetrischer Resonator</td>
</tr>
<tr>
<td>6.6</td>
<td>Resonator mit planparallelen Spiegeln</td>
</tr>
<tr>
<td>6.7</td>
<td>Fokussierung eines Gaussschen Strahls</td>
</tr>
<tr>
<td>6.8</td>
<td>Aufbau der Nahfeld-Messeinrichtung für Modenverteilungen</td>
</tr>
<tr>
<td>6.9</td>
<td>Nahaufnahme von Glasfaser-Nahfeldsonden</td>
</tr>
<tr>
<td>6.10</td>
<td>Transmission von Nahfeld-Glasfaser sonden</td>
</tr>
<tr>
<td>6.11</td>
<td>Wellenleitermoden für elliptische Wellenleiter</td>
</tr>
<tr>
<td>6.12</td>
<td>Moden von VCSELn</td>
</tr>
<tr>
<td>6.13</td>
<td>Modenstrukturen von VCSELn</td>
</tr>
<tr>
<td>6.14</td>
<td>Modenstruktur von VCSELn</td>
</tr>
<tr>
<td>6.15</td>
<td>Lasermoden bei VCSEL</td>
</tr>
<tr>
<td>6.16</td>
<td>Einfluss der Sonden auf die gemessenen Modenstrukturen</td>
</tr>
<tr>
<td>6.17</td>
<td>Artefakte</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>2.1</td>
<td>Vorzeichenkonventionen für die Abbildung</td>
</tr>
<tr>
<td>3.1</td>
<td>Brechungsindex für Flintglas</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameter für die Berechnung</td>
</tr>
<tr>
<td>4.1</td>
<td>Doppelbrechende Materialien</td>
</tr>
<tr>
<td>4.2</td>
<td>Ausgewählte Zustände auf der Poincaré-Kugel</td>
</tr>
<tr>
<td>4.3</td>
<td>Stokes-Vektoren</td>
</tr>
<tr>
<td>5.1</td>
<td>Interferenz und Phasendifferenz</td>
</tr>
<tr>
<td>5.2</td>
<td>Lage der Minima und Maxima</td>
</tr>
<tr>
<td>6.1</td>
<td>Matrizen für die Strahlausträbung</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

[NAS00a] The Hubble Heritage Team (AURA/STScI) NASA. The keyhole nebula, within ngc 3372. a mosaic of four April 1999 images by hubble's wide field planetary camera 2., Februar 2000.
[NAS00b] The Hubble Heritage Team (STScI/AURA) NASA. Glowing eye of planetary nebula ngc 6751, 2000.

[NU99] Paul Scowen NASA, Donald Walter (South Carolina State University) and Brian Moore (Arizona State University). Ngc 7635 or the bubble nebula. Internet, October and November 1997 and April 1999.

Index

λ/2-Platte, 81
Öffnungswinkel, 163

Abbildungsfehler, 29–32
Abbildungsgleichung, 25
Abbildungsmaßstab, 28, 37
Aberration
 chromatisch, 30
 sphärisch, 25, 29
Airy-Funktion, 114
Akkomodation, 33
Amplitude, 62, 63, 93, 94, 101–104, 117, 118, 129, 131, 134, 136, 137, 143, 149
Analysator, 63
Astigmatismus, 31
Astronomie, 38
Atomkern, 43
Auflösung
 Beugung, 147–152
 Grenze, 151
Auflösungsvermögen, 141, 151
Auge, 33–34
ausserröntliches Licht, 87
Bahnebene der Erde, 11
Beispiele
 Polarisation, 86–88
Beschreibung
 Polarisation
 mathematisch, 70–86
Besselfunktion nullter Ordnung, 149
Beugung, 101–152
 Einzelspalt, 128–132
 Fraunhofer, 138
Fresnel, 134, 138
Beugungsgitter, 140–146
Beugungsmuster, 128, 130, 132, 133, 136, 137, 146, 148
 Fraunhofer, 148
 Fresnel, 137
Beugungsordnung, 141
Bilderzeugung
 Brechung, 14–23
 Bildkonstruktion
 Linsen, 19–20
Bildweite, 15, 16, 20, 21, 24, 26
Blaze-Gitter, 141–142
Bradley, 9
Brechung, 14, 54–59
 Bilderzeugung, 14–23
Brechungsgesetz, 14, 58, 59
Brechungsindex, 14, 16, 53, 55, 60, 66, 68, 88, 126, 127, 151
Brechzahl, 54
Brennpunkt, 17, 19, 27, 34, 35, 37, 130
Brennweite, 17, 20, 21, 25, 26, 31, 33, 34, 36, 38, 154, 164
Brewnster-Winkel, 65, 66, 92
chromatische Aberration, 30
Cornu-Spirale, 136
Dünne Linse, 16–19, 154
Dichroismus, 62–64
Dicke Linse, 21
Dicke Linsen, 20–21
Dielektrizitätskonstanten, 89
Divergenz, 163
Doppelbrechung
 Polarisation, 66–70
Doppelspalt, 120–122, 132–133
Drehmatrix, 75, 84
Drehspiegelmethode, 12
Ebene Welle, 117
Effekt
 photoelektrischer, 7
einachsig negativer, 87
einachsig positiv, 87
Index

Einfallsebene, 65, 89
Einheitensystem, 75
Einstein, Albert, 7
Einzelspalt, 128
 Intensitätsverteilung, 129–132
Eiklptik, 11
Elementarwelle, 53
Energiestrom, 89
Etalon, 110
Evaneszente Wellen, 98–99
Fabry-Perot-Etalon, 110, 111
Fabry-Perot-Interferometer, 109–116
Fabry-Perot-Spektrometer, 116
Faltungssatz, 147–152
Faltungstheorem, 148
Feldkonstante
dielektrisch, 54
Fermat, Pierre de
 Prinzip, 57
Fermatsches Prinzip, 57–61
 Interferenz, 59–61
Fernrohr, 38
Finesse, 116
Finessefaktor, 114
Fizeau, Armand, 11
Foucault, Leon, 12
Fourieroptik, 148
Fraunhofer-Beugung, 138
Fraunhofer-Näherung, 138
Fraunhoferbeugung, 133–140
Fraunhofersche Beugung, 138
Fresnel
 Näherung, 134–138
Fresnel, Augustin, 7
Fresnel-Huygens
 Prinzip, 49
Fresnel-Huygenssches Prinzip, 49–52
Fresnelbeugung, 133–140
Fresnelsche Formeln
 p-Polarisation, 92
Fresnelsche Näherung, 134
Fresnelscher Beugung, 138
Gabor, Dennis, 142
Gausssche Strahlen, 159–176
 \(\omega(z)\), 163
Gegenstandsweite, 15, 24
Geometrische Optik, 7–32
 Begründung, 49–99
 Licht, 12–14
 Gesamtvergrösserung, 37
 Gesetz von Snellius, 14
 Glaskörper, 33
 Gyroskop, 107
 Hauptachse, 87
 Hauptachsensystem, 66, 73–75
 Hauptebeine, 29
 Hohlspiegel
 Bildkonstruktion, 27–29
 Hologramme, 142–146
 Holographie, 142
 Hubble-Teleskop, 39
 Huygens
 Prinzip, 49–52
 Huygenssche Elementarwelle, 54
 Huygenssches Prinzip, 49–52
 Impulsantwort, 147–152
 Intensität, 53, 54, 60–63, 89, 90, 93,
 94, 97, 98, 103, 106, 118, 120,
 121, 130, 137, 144, 145, 151,
 161, 163
 Interferenz, 101–152
 dünne Schicht, 125–128
 Fermatsches Prinzip, 59–61
 mehrere Quellen, 123–125
 Interferenzextrema, 120
 Interferenzmuster, 51, 52, 120, 123
 Interferometer
 mach-Zehnder, 104
 Jones-Matrix, 83–86
 Jones-Vektor, 83–86
 Kamera, 35–37
 Kaustik, 25
 Kohärenz, 102–116
 Kohärenzlänge, 103
 Kohärenzzeit, 103
 Konkavlinse, 20
 Konkavspiegel, 25
 Konvexlinse, 20
 Konvexspiegel, 25–26
 Kreiswellen, 49–51
 Kugelwellen, 49, 117–120
 Licht
Index

Geometrische Optik, 12–14
Lichtgeschwindigkeit, 9–12, 87
Lichtstrahl, 9, 12
lineare Federkette, 43
Linse, 16, 17, 19–22, 33, 37, 127, 155, 159, 160, 164
Auge, 33
dünn, 16–19, 154
dick, 21
Objektiv, 37
Linsen
 Bildkonstruktion, 19–20
dick, 20–21
mehrere, 21–23
Linsenkrümmung, 159
Lupe, 34–35
Vergrösserung, 35
Mach-Zehnder-Interferometer, 104–106
mathematische Beschreibung
 Polarisation, 70–86
Matrix
 Jones, 83–86
Matrixformalismus, 153–159
Michelson-Interferometer, 105–106
Mikroskop, 36–38
Moden, 166–176
 Licht, 153–176
monochromatisch, 12
Näherung
 paraxial, 119, 120
Näherung:paraxial, 15
Newton, Isaac, 7
Oberfläche, 15, 16, 88, 89
Runde, 15, 16, 88, 89
Oberflächennormalen, 89
Objektiv, 29, 35–38
DIC, 66
Objektivlinse, 37
Okular, 37, 38
Optische Elemente
 Gausssche Strahlen, 164–166
Optische Instrumente, 33–48
ordentliches Licht, 87
p-Polarisation, 89, 93, 94, 97, 98
p-polarisiertes Licht, 89
paraxiale Näherung, 15, 25
Phasendifferenz, 102–116
Phasengeschwindigkeit, 44
photoelektrischer Effekt, 7
Poincaré, 78
Poincaré-Kugel, 78–80
Polarisation, 61–88
 Beispiele, 86–88
 Beschreibung, 70–86
 Doppelbrechung, 66–70
 Jones-Matrix, 83–86
 Jones-Vektor, 83–86
 mathematische Beschreibung, 70–86
 p, 93, 94, 97, 98
 Poincaré-Kugel, 78–80
 Reflexion, 65–66
 s, 89, 90, 93, 94, 97, 98
 Stokes-Parameter, 81–83
 Streuung, 64
 zirkular, 70
Polarisationszustand, 71, 79, 82
Polarisator, 63
Prinzip
 Fermat, 57, 58
 Huygens, 50–52
 Prinzip von Fresnel-Huygens, 49
 Prisma, 40–48
 Punktquelle, 125, 138, 151
 inkoherent, 151
 Pupille
 runde, 149
R(z), 163
Rayleighsche Auflösungskriterium, 150
Reflexion, 27, 52–54, 56–58, 65, 89, 90, 98, 126, 127, 142
 Polarisation, 65–66
 Reflexionsgesetz, 13
Relation
 Stokes, 110
Resonatoren, 153–176
 sphärische Spiegel, 158–159
Römer, Ole, 9
s-Polarisation, 89, 90, 93, 94, 97, 98
s-polarisiertes Licht, 89
Sagnac-Interferometer, 106–109
Sammellinse, 159
Sehinkel, 35, 38
Snellius, 59

©2002-2016 Ulm University, Othmar Marti, [CC BY-SA]
Index

Spektrallinie, 141
Spektrographen, 140–146
sphärische Aberration, 25, 29
Spiegel
 eben, 23–24
 sphärisch
 Bilderzeugung, 24
Spiegelteleskop, 39
Stabilität, 157–158
Stehende Wellen, 103–104
Stokes-Parameter, 81–83
Stokes-Vektor, 81–83
Stokessche Relation, 110
Strahl
 paraxial, 27, 28, 153, 159, 160
Strahldurchmesser, 163
Streuung
 Polarisation, 64
Teleskop, 38, 38, 39, 40
 Hubble, 39
 Spiegel, 39
Totalreflexion, 55–57
Vektor
 Jones, 83–86
 Stokes, 81–83
Vergleich
 Fraunhofer und Fresnel, 138–140
Vergrösserung, 20, 37, 38
 Lupe, 35, 37
 Okular, 37
Volumenhologramme, 146
Welle
 eben, 117
 Kugel, 117–120
 paraxial, 124
Wellen
 2D, 116–120
 3D, 116–120
 Vektoraddition, 122–123
Wellenbild, 51
Wellenlänge, 54
Wellenleiter, 170, 176
 elliptisch, 170
 rechteckförmig, 176
Wellenvektor, 53
Winkel

Brewster, 65, 66
Winkelvergrösserung, 37
Young, Thomas, 7
Zerstreuungslinse, 19
Zwischenbild, 38