Lorentztransformationen für die magnetische Induktion

Bewegung entlang der $ x$-Richtung


$\displaystyle E_x'$ $\displaystyle =$ $\displaystyle E_x$  
$\displaystyle E_y'$ $\displaystyle =$ $\displaystyle \gamma(v_x) \left(E_y-v_x\cdot B_z\right)$  
$\displaystyle E_z'$ $\displaystyle =$ $\displaystyle \gamma(v_x) \left(E_z+v_x\cdot B_y\right)$  
$\displaystyle B_x'$ $\displaystyle =$ $\displaystyle B_x$  
$\displaystyle B_y'$ $\displaystyle =$ $\displaystyle \gamma(v_x)\left(B_y+ \frac{v_x}{c^2}E_z\right)$  
$\displaystyle B_z'$ $\displaystyle =$ $\displaystyle \gamma(v_x) \left(B_z-\frac{v_x}{c^2}E_y\right)$  

Bewegung entlang der $ y$-Richtung


$\displaystyle E_x'$ $\displaystyle =$ $\displaystyle \gamma(v_y) \left(E_x+v_y\cdot B_z\right)$  
$\displaystyle E_y'$ $\displaystyle =$ $\displaystyle E_y$  
$\displaystyle E_z'$ $\displaystyle =$ $\displaystyle \gamma(v_y) \left(E_z-v_y\cdot B_x\right)$  
$\displaystyle B_x'$ $\displaystyle =$ $\displaystyle \gamma(v_y) \left(B_x-\frac{v_y}{c^2}E_z\right)$  
$\displaystyle B_y'$ $\displaystyle =$ $\displaystyle B_y$  
$\displaystyle B_z'$ $\displaystyle =$ $\displaystyle \gamma(v_y)\left(B_z+ \frac{v_y}{c^2}E_x\right)$  

Bewegung entlang der $ z$-Richtung


$\displaystyle E_x'$ $\displaystyle =$ $\displaystyle \gamma(v_z) \left(E_x-v_z\cdot B_y\right)$  
$\displaystyle E_y'$ $\displaystyle =$ $\displaystyle \gamma(v_z) \left(E_y+v_z\cdot B_x\right)$  
$\displaystyle E_z'$ $\displaystyle =$ $\displaystyle E_z$  
$\displaystyle B_x'$ $\displaystyle =$ $\displaystyle \gamma(v_z)\left(B_x+ \frac{v_z}{c^2}E_y\right)$  
$\displaystyle B_y'$ $\displaystyle =$ $\displaystyle \gamma(v_z) \left(B_y-\frac{v_z}{c^2}E_x\right)$  
$\displaystyle B_z'$ $\displaystyle =$ $\displaystyle B_z$  

Othmar Marti
Experimentelle Physik
Universiät Ulm