Lorentztransformation für das magnetische Feld

Bewegung entlang der $ x$-Richtung

$\displaystyle E_x'$ $\displaystyle = E_x \nonumber$    
$\displaystyle E_y'$ $\displaystyle = \gamma(v_x) \left(E_y-\frac{v_x}{c^2}\frac{1}{\varepsilon_0} H_z\right)\nonumber$    
$\displaystyle E_z'$ $\displaystyle = \gamma(v_x) \left(E_z+\frac{v_x}{c^2}\frac{1}{\varepsilon_0}\cdot H_y\right)$    
$\displaystyle H_x'$ $\displaystyle = H_x \nonumber$    
$\displaystyle H_y'$ $\displaystyle = \gamma(v_x)\left(H_y+ v_x \varepsilon_0 E_z\right)\nonumber$    
$\displaystyle H_z'$ $\displaystyle = \gamma(v_x) \left(H_z- v_x\varepsilon_0 E_y\right) \nonumber$    

Bewegung entlang der $ y$-Richtung

$\displaystyle E_x'$ $\displaystyle = \gamma(v_y) \left(E_x+\frac{v_y}{c^2}\frac{1}{\varepsilon_0}\cdot H_z\right)$    
$\displaystyle E_y'$ $\displaystyle = E_y \nonumber$    
$\displaystyle E_z'$ $\displaystyle = \gamma(v_y) \left(E_z-\frac{v_y}{c^2}\frac{1}{\varepsilon_0} H_x\right)\nonumber$    
$\displaystyle H_x'$ $\displaystyle = \gamma(v_y) \left(H_x- v_y\varepsilon_0 E_z\right) \nonumber$    
$\displaystyle H_y'$ $\displaystyle = H_y \nonumber$    
$\displaystyle H_z'$ $\displaystyle = \gamma(v_y)\left(H_z+ v_y \varepsilon_0 E_x\right)\nonumber$    

Bewegung entlang der $ z$-Richtung

$\displaystyle E_x'$ $\displaystyle = \gamma(v_z) \left(E_x-\frac{v_z}{c^2}\frac{1}{\varepsilon_0} H_y\right)\nonumber$    
$\displaystyle E_y'$ $\displaystyle = \gamma(v_z) \left(E_y+\frac{v_z}{c^2}\frac{1}{\varepsilon_0}\cdot H_x\right)$    
$\displaystyle E_z'$ $\displaystyle = E_z \nonumber$    
$\displaystyle H_x'$ $\displaystyle = \gamma(v_z)\left(H_x+ v_z \varepsilon_0 E_y\right)\nonumber$    
$\displaystyle H_y'$ $\displaystyle = \gamma(v_z) \left(H_y- v_z\varepsilon_0 E_x\right) \nonumber$    
$\displaystyle H_z'$ $\displaystyle = H_z \nonumber$    

Othmar Marti
Experimentelle Physik
Universiät Ulm