Umrechnung von thermodynamischen Funktionen

(Siehe Handbook of Chemistry and Physics [Wea80, pp. D-120])

Die folgenden Funktionen werden betrachtet:

$ p$
Druck
$ V$
Volumen
$ T$
Temperatur
$ \nu$
Molzahl
$ S$
Entropie
$ U$
innere Energie
$ c_{p\text{,} mol}$
molare Wärmekapazität bei konstantem Druck
$ \alpha$
isobarer Volumenausdehnungskoeffizient
$ \kappa$
isotherme Kompressibilität
$ H=U+pV$
Enthalpie
$ F=U-TS$
freie Energie
$ G=H-TS$
freie Enthalpie

Aus den folgenden Tabellen können die ersten Ableitungen von $ p$, $ V$, $ T$, $ U$, $ S$, $ H$, $ F$ und $ G$ als Funktion von $ \left(\partial V / \partial T\right)_p$, $ \left(\partial V / \partial p\right)_T$ und $ \left(\partial H / \partial T\right)_p$ berechnet werden. Diese Grössen können gemessen werden:

$\displaystyle \alpha$ $\displaystyle = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_p$ isobare Volumenkompressibilität (K..786)
$\displaystyle \kappa$ $\displaystyle = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_T$ isotherme Kompressibilität (K..787)
$\displaystyle \nu c_{p\text{,} mol}$ $\displaystyle = \left(\frac{\partial H}{\partial T}\right)_p$ molare Wärmekapazität bei konstantem Druck (K..788)


Beispiel:


Wir wollen $ \left(\frac{\partial H}{\partial p}\right)_S$ als Funktion von $ T$, $ p$ und $ V$ berechnen.

Wir wollen $ \left(\frac{\partial S}{\partial V}\right)_T$ als Funktion von $ T$, $ p$ und $ V$ berechnen.



  Konstanten
Differenzial $ T$ $ p$
$ T$ 0 $ 1$
$ p$ $ -1$ 0
$ V$ $ -\left( \frac{\partial V}{\partial p}\right) _{T}$ $ \left( \frac{\partial V}{\partial T}\right) _{p}$
$ S$ $ \left( \frac{\partial V}{\partial T}\right) _{p}$ $ \frac{\nu
c_{p\text{,} mol}}{T}$
$ U$ $ T\left( \frac{\partial V}{\partial T}\right) _{p}+p\left(
\frac{\partial V}{\partial p}\right) _{T}$ $ \nu c_{p\text{,} mol}-p\left(
\frac{\partial V}{\partial T}\right) _{p}$
$ H$ $ -V+T\left( \frac{\partial V}{\partial T}\right) _{p}$ $ \nu c_{p\text{,} 
mol}$
$ F$ $ p\left( \frac{\partial V}{\partial p}\right) _{T}$ $ -S-p\left(
\frac{\partial V}{\partial T}\right) _{p}$
$ G$ $ -V$ $ -S$
Thermodynamische Relationen I




  Konstante
Differenzial $ V$
$ T$ $ \left( \frac{\partial V}{\partial p}\right) _{T}$
$ p$ $ -\left( \frac{\partial V}{\partial T}\right) _{p}$
$ V$ 0
$ S$ $ \left( \frac{1}{T}\right) \left[ \nu c_{p\text{,} mol}\left(
\frac{\partial V...
...al p}\right) _{T}+T\left( \frac{\partial V}{\partial
T}\right) _{p}^{2}\right] $
$ U$ $ \nu c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right)
_{T}+T\left( \frac{\partial V}{\partial T}\right) _{p}^{2}$
$ H$ $ \nu c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right)
_{T}+T\left(...
...al V}{\partial T}\right) _{p}^{2}-V\left(
\frac{\partial V}{\partial T}\right) $
$ F$ $ -S\left( \frac{\partial V}{\partial p}\right) _{T}$
$ G$ $ -V\left( \frac{\partial V}{\partial T}\right) _{p}-S\left(
\frac{\partial V}{\partial p}\right) _{T}$
Thermodynamische Relationen II




  Konstante
Differenzial $ S$
$ T$ $ -\left( \frac{\partial V}{\partial T}\right) _{p}$
$ p$ $ -\frac{\nu c_{p\text{,} mol}}{T}$
$ V$ $ \left( -\frac{1}{T}\right) \left[ \nu c_{p\text{,} mol}\left(
\frac{\partial ...
...al p}\right) _{T}+T\left( \frac{\partial V}{\partial
T}\right) _{p}^{2}\right] $
$ S$ 0
$ U$ $ \left( \frac{p}{T}\right) \left[ \nu c_{p\text{,} mol}\left(
\frac{\partial V...
...al p}\right) _{T}+T\left( \frac{\partial V}{\partial
T}\right) _{p}^{2}\right] $
$ H$ $ -\frac{V_{\nu}c_{p\text{,} mol}}{T}$
$ F$ $ \left( \frac{1}{T}\right) \left[ p_{\nu}c_{p\text{,} mol}\left(
\frac{\partia...
...l T}\right) _{p}^{2}+TS\left( \frac{\partial V}{\partial
T}\right) _{p}\right] $
$ G$ $ \left( -\frac{1}{T}\right) \left[ \nu c_{p\text{,} mol}V-TS\left(
\frac{\partial V}{\partial T}\right) _{p}\right] $
Thermodynamische Relationen III




  Konstante
Differenzial $ U$
$ T$ $ -T\left( \frac{\partial V}{\partial T}\right) _{p}-p\left(
\frac{\partial V}{\partial p}\right) _{T}$
$ p$ $ -\nu c_{p\text{,}\,mol}+p\left( \frac{\partial V}{\partial T}\right) _{p}%%
$
$ V$ $ -\nu c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right)
_{T}-T\left( \frac{\partial V}{\partial T}\right) _{p}^{2}$
$ S$ $ \left( -\frac{p}{T}\right) \left[ \nu c_{p\text{,} mol}\left(
\frac{\partial ...
...al p}\right) _{T}+T\left( \frac{\partial V}{\partial
T}\right) _{p}^{2}\right] $
$ U$ 0
$ H$ $ -V\left[ \nu c_{p\text{,} mol}-p\left( \frac{\partial V}{\partial
T}\right) _...
...al p}\right) _{T}+T\left( \frac{\partial V}{\partial T}\right)
_{p}^{2}\right] $
$ F$ $ p\left[ \nu c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right)
_{T}...
...artial T}\right) _{p}+p\left( \frac{\partial
V}{\partial p}\right) _{T}\right] $
$ G$ $ -V\left[ \nu c_{p\text{,} mol}-p\left( \frac{\partial V}{\partial
T}\right) _...
...artial
T}\right) _{p}+p\left( \frac{\partial V}{\partial p}\right) _{T}\right]
$
Thermodynamische Relationen IV




  Konstante
Differenzial $ H$
$ T$ $ V-T\left( \frac{\partial V}{\partial T}\right) _{p}$
$ p$ $ -\nu c_{p\text{,} mol}$
$ V$ $ -\nu c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right)
_{T}-T\left...
...}{\partial T}\right) _{p}^{2}+V\left(
\frac{\partial V}{\partial T}\right) _{p}$
$ S$ $ \frac{V\nu c_{p\text{,} mol}}{T}$
$ U$ $ V\left[ \nu c_{p\text{,}\,mol}-p\left( \frac{\partial V}{\partial
T}\right) _{...
... _{T}+T\left( \frac{\partial V}{\partial T}\right) _{p}%%
^{2}\right] \right] $
$ H$ 0
$ F$ $ -\left[ S+p\left( \frac{\partial V}{\partial T}\right) _{p}\right]
\times\left...
...\nu
}c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right) _{T}\right]
$
$ G$ $ -V_{\nu}c_{p\text{,} mol}-VS+TS\left( \frac{\partial V}{\partial T}\right)
_{p}$
Thermodynamische Relationen V




  Konstanten
Differenzial $ F$
$ T$ $ -p\left( \frac{\partial V}{\partial p}\right) _{T}$
$ p$ $ S+p-\left( \frac{\partial V}{\partial T}\right) _{p}$
$ V$ $ S\left( \frac{\partial V}{\partial p}\right) _{T}$
$ S$ $ \left( -\frac{1}{T}\right) \left[ p_{\nu}c_{p\text{,} mol}\left(
\frac{\parti...
...l T}\right) _{p}^{2}+TS\left( \frac{\partial V}{\partial
T}\right) _{p}\right] $
$ U$ $ -p\left[ \nu c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right)
_{T...
...artial T}\right) _{p}+p\left( \frac{\partial
V}{\partial p}\right) _{T}\right] $
$ H$ $ \left[ S+p\left( \frac{\partial V}{\partial T}\right) _{p}\right]
\times\left[...
...\nu
}c_{p\text{,} mol}\left( \frac{\partial V}{\partial p}\right) _{T}\right]
$
$ F$ 0
$ G$ $ S\left[ V+p\left( \frac{\partial V}{\partial p}\right) _{T}\right]
+pV\left( \frac{\partial V}{\partial T}\right) _{p}$
Thermodynamische Relationen VI




  Konstanten
Differenzial $ G$
$ T$ $ V$
$ p$ $ S$
$ V$ $ V\left( \frac{\partial V}{\partial T}\right) _{p}+S\left(
\frac{\partial V}{\partial p}\right) _{T}$
$ S$ $ \left( \frac{1}{T}\right) \left[ \nu c_{p\text{,} mol}V-TS\left(
\frac{\partial V}{\partial T}\right) _{p}\right] $
$ U$ $ V\left[ \nu c_{p\text{,} mol}-p\left( \frac{\partial V}{\partial
T}\right) _{...
...artial
T}\right) _{p}+p\left( \frac{\partial V}{\partial p}\right) _{T}\right]
$
$ H$ $ V_{\nu}c_{p\text{,} mol}+VS-TS\left( \frac{\partial V}{\partial T}\right)
_{p}$
$ F$ $ -S\left[ V+p\left( \frac{\partial V}{\partial p}\right) _{T}\right]
+pV\left( \frac{\partial V}{\partial T}\right) _{p}$
$ G$ 0
Thermodynamische Relationen VII


Othmar Marti
Experimentelle Physik
Universiät Ulm