(Siehe Hecht, Optik [Hec, pp. 71]) (Siehe Tipler, Physik [TM04, pp. 1025])
![]()
Bestimmung der Lichtgeschwindigkeit mit
Hilfe der Periodendauer der Umlaufzeit des Jupitermondes Io.
|
Astronomische Beobachtungen waren schon immer sehr genau. Ole
Rømer beobachtete 1675 dass der Eintritt des Jupitermondes Io in
den Kernschatten sich abhängig von den Sternkonstellationen verschob. Die
Periode der Umlaufzeit beträgt 42.5 Stunden und nimmt zu, wenn die Erde sich
vom Jupiter weg bewegt und ab, wenn sie sich auf den Jupiter zu bewegt. Der
maximale Zeitunterschied ist
.
Zwischen zwei Eintritten in den Kernschatten ist der Zeitunterschied zum
mittleren Zeitunterschied
. Ole Rømer brauchte also eine Uhr, die in 24h weniger als
eine Sekunde Fehler hatte. Ole Rømer mass eine Lichtgeschwindigkeit von
ungefähr
. Daraus kann geschlossen werden, dass seine
Zeitmessung eine relative Genauigkeit von
hatte, besser als
manche Armbanduhr heute.
Eine gewaltige Verbesserung der Genauigkeit erzielte Bradley mit seiner Beobachtung der Aberration des Lichtes. Analog zum Regen, der, wenn man steht von oben kommt und der wenn man geht schräg von vorne fällt, ändert das Licht seine Einfallsrichtung. Aus der Winkeländerung kann auf die Lichtgeschwindigkeit geschlossen werden, wenn man die Eigengeschwindigkeit kennt.
![]()
Bradley beobachtete die Position
eines Fixsterns (möglichst unendlich weit weg) zu verschiedenen Zeiten.
|
In der Abbildung sind zwei extreme Positionen aufgezeichnet, da wo die Erde mit
maximaler Geschwindigkeit auf den Stern sich hinbewegt und da, wo sie sich mit
maximale Geschwindigkeit entfernt. Die Bahngeschwindigkeit der Erde ist etwa
. Alternativ könnte man die Position des Sterns auch
im Abstand von 12 Stunden ausmessen. dabei müsste die Umfangsgeschwindigkeit,
die in Ulm etwa
und damit etwa
mal kleiner
ist, verwendet werden.
![]()
Dreiecke zur Berechnung der Lichtgeschwindigkeit nach Bradley
|
Zur Berechnung verwenden wir den Sinussatz:
![]() |
(2..1) |
Praktischerweise ergeben sich für beide Fälle, sowohl auf die Erde zu wie von der Erde weg die gleiche Gleichung. Diese Beziehung formen wir um
![]() |
![]() |
(2..2) |
![]() |
||
![]() |
Für kleine Winkel
bekommen wir
![]() |
(2..3) |
Wie gross ist nun der zu messende Winkel ? Wir betrachten einen Stern,d
er etwa
über der Ekliptik (der Bahnebene der Erde)
liegt. Mit
und
und
erhalten
wir
![]() |
(2..4) |
Der gemessene Winkelunterschied zwischen den Punkten und
ist somit
![]() |
(2..5) |
Wenn wir nur im Zeitabstand von einem Tag messen, ist der der Winkel
.
![]() |
Fizeau verwendete einen Weg von . Bei bestimmten Geschwindigkeiten
(welchen?) wurde der Weg des Lichtes blockiert, bei anderen durchgelassen.
Nehmen wir an, dass das Zahnrad mit 100 Umdrehungen pro Sekunde rotiere. Das
licht wird blockiert, wenn das Zahnrad sich um einen halben Zahn weiter dreht
in der Laufzeit des Lichts. Die Laufzeit ist
. Die Umdrehungszeit des Rades ist
. Also hat das Rad
Zähne, machbar!.
![]() |
![]() |
Eine verbesserte Methode ist die Messung der Lichtgeschwindigkeit. Er verwendete einen Drehspiegel. Seine Genauigkeit war so gross, dass er auch den Unterschied der Lichtgeschwindigkeit in stehendem und fliessendem Wasser messen konnte.
Heute wird die Lichtgeschwindigkeit mit moderner Elektronik gemessen.
Die Lichtgeschwindigkeit im Vakuum beträgt
![]() |
Othmar Marti