©2002-2017 Ulm University, Othmar Marti, pict
[Nächste Seite] [Vorherige Seite] [vorheriges Seitenende] [Seitenende] [Ebene nach oben] [PDF-Datei][Epub-Datei][Andere Skripte]

4.2  Brechung



Literatur


(Siehe Hecht, Optik [Hec05, pp. 166]) (Siehe Pérez, Optik [Pér96, pp. 20]) (Siehe Tipler, Physik [TM04, pp. 1032])


Versuch zur Vorlesung:
Optische Scheibe (Versuchskarte O-046)


Da jede Huygenssche Elementarwelle eine periodische Schwingung mit einer gegebenen Frequenz ν darstellt, ändert sich die Frequenz beim Übergang von einem Medium in das zweite nicht. Da die Ausbreitungsgeschwindigkeit cm = c∕n kleiner ist, gilt für die Wellenlänge

      cm    c∕n    λ
λm =  ---=  ----=  --
      ν      ν     n
(4.1)

In einem Medium mit einer Brechzahl n > 1 ist die Wellenlänge kleiner. So hat rotes Licht λ = 600 nm in Glas die Wellenlänge λm = 400 nm.

__________________________________________________________________________

pict

Geometrie der Brechung

_____________________________________________________________________

Wir betrachten nun den Weg, den das Licht im Inneren eines Mediums zurücklegt. Wir berücksichtigen, dass die Geschwindigkeit im Medium um den Brechungsindex n kleiner ist. Aus dem rechtwinkligen Dreieck wissen wir, dass

pict

Weiter ist

pict

Also gilt

--cΔt---= --cΔt---
n1sin ϕ   n2 sinϕ′
(4.4)

Wir kürzen mit cΔt und setzen ϕ = ϕ1 und ϕ= ϕ2 und erhalten das Snelliussche Brechungsgesetz.

Brechungsgesetz

n1sinϕ1 =  n2sinϕ2
(4.5)

Bei diesem Gesetz gibt es nur dann immer eine Lösung, wenn n1 n2 ist. Sonst gibt es den Winkel der Totalreflexion. Wenn der vom optisch dichteren Medium einfallende Lichtstrahl gegen die Grenzflächennormale den Winkel ϕtot hat und der Winkel des resultierenden Lichtstrahls gegen die Grenzflächennormale im optisch dünneren Medium π∕2 ist, hat das Brechungsgesetz gerade noch eine reelle Lösung.

             (   )
ϕ   =  arcsin  n1-       mit n  < n
  tot          n2             1     2
(4.6)

Für Winkel, die grösser als ϕtot sind, wird Licht aus dem optisch dünneren Medium total reflektiert. Die Reflexion geschieht in einer Tiefe von etwa 100nm innerhalb des optisch dünneren Mediums.

4.2.1  Totalreflexion



Literatur


(Siehe Hecht, Optik [Hec05, pp. 191]) (Siehe Pérez, Optik [Pér96, pp. 21]) (Siehe Tipler, Physik [TM04, pp. 1035]) (Siehe Gerthsen, Physik [Mes06, pp. 485])


Versuch zur Vorlesung:
Brechung und Reflexion (Versuchskarte O-068)




Versuch zur Vorlesung:
Wasserstrahl als Lichtleiter (Versuchskarte O-072)


_______________________________________________

pict

Transport von Licht in einer Stufenindexfaser

_____________________________________________________________________

Wenn Licht mit einem Winkel nahe der Achse der optischen Faser in diese eingekoppelt wird, dann wird das Licht mit Totalreflexion transportiert. Nur Licht, das innerhalb des Akzeptanzwinkels den Faserkern trifft, wird weiter transportiert. Wenn die Faser gekrümmt wird, dann verlässt ein Teil des Lichtes die Faser: Krümmungen in der Faser erhöhen die Verluste.

Wenn der Faserkern den Durchmesser d hat, ist der effektive Weg vom Winkel α gegen die Achse abhängig. Die Hypothenuse ist H = d∕ sin α lang, der direkte Weg wäre = d∕ tan α. Die relative Längenänderung ist

ℓ       d  tan α    sin α      1         1
-H-=  -----------=  ------= ----- ≈ 1 + --α2
 ℓ    sinα   d      tan α    cos α       2
(4.7)

Die Laufzeit hängt also davon ab, wie das Licht durch eine Glasfaser läuft. Zusätzlich tritt Dispersion (Siehe Abschnitt 6.6) auf. bei allen Gläsern ist

nblau > ngr¨un > ngelb > nrot
(4.8)

Deshalb ist die Laufzeit für die verschiedenen Farben auch unterschiedlich. Da cMedium = c∕nMedium ist ist auch

cblau < cgr¨un < cgelb < crot
(4.9)



[Nächste Seite] [Vorherige Seite] [vorheriges Seitenende] [Seitenanfang] [Ebene nach oben]
©2002-2017 Ulm University, Othmar Marti, pict  Lizenzinformationen